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Recursion tables for thermostatic derivatives

Any person working on thermodynamics must eventually master the skill of converting thermody-
namic derivatives into expressions involving only measurable material state variables and tabulated
material properties. However, a systematic means of doing so is rarely presented in thermodynamics
textbooks. Most students take a “random walk” through various nebulous identities, hoping to even-
tually stumble upon the answer. This document makes the process systematic (guaranteed success).

Classical reversible thermostatics is mostly math, not physics. It is a grand application of the cal-
culus of functions of two variables, founded on the constitutive™ assumption that the internal energy
per unit mass u is expressible as afunction of the specific volume v (i.e., volume per mass, which is
1/density) and the entropy s. Thisfunction u(s, v) iscalled afundamental potential because all other
quantities of interest in thermodynamics can be determined from it. For example, as explained in any
undergraduate thermodynamics textbook, the temperature T and pressure P can be found by

T= (%—‘gv and P= _(%%)s (1)

To be afundamental potential, the internal energy must be expressed as a function of v and s, so we
call these two independent variables the “natural” variables for the internal energy.

Equation (1a) impliesthat T isafunction of sand v. In principle, this equation could be solved for
sasafunction of T and v. You could then substitute s(T, v) into u(s, v) to obtain u(T, v). Sadly, the
function u(T, v) isnot afundamental potential. It haslost information content. Having only u(T, v),
you will no longer be able to uniquely determine all thermodynamic quantities. The fact that u(T, v)
embodies less information than u(s, v) is not obvious — the proof and further information can be
found in most advanced thermodynamicstextbooksfr Fortunately, all isnot lost. Even though u(T, v)
is not a fundamental potential, there is a different energy measure that is a fundamental potential
when it is expressed as afunction of T and v. If you seek afundamental potential for which v and T
are the independent natural variables (instead of v and s), then you must use a “contact” (Legendre)
transformation to introduce an alternative energy measure, called the Helmholtz free energy:

a=u-Ts (2)

Asoutlined in any good thermodynamics textbook, this new variable is afundamental potential func-
tion when it isexpressed intermsof T and v. With it, you may compute entropy and pressure by

S = g——@v and P = —@—f})T

3)
Similar strategies and introductions of new energies (potentials) can be applied to permit construction
of fundamental potentials in terms of any convenient pair of thermomechanical state variables. The
process leaves us with so many formulas, that mnemonics and executive summary tables are needed
to keep everything organized and useful.

* The word “constitutive” means “relating to a particular material or class of materials, possibly further restricted
to certain constraints on service conditions.” For example, many materials can be regarded to be elastic under
strict conditions on, say, the magnitude and/or duration of loading. In classical thermostatics, we consider mate-
rials and service conditions for which only two independent variables, perhaps entropy and volume, are needed
to fix the values of al other quantities of interest (such as pressure and temperature). This constitutive assump-
tion is broadly applicable to gases and inviscid fluids and also applicable to isotropic solids when the deforma-
tions are constrained to allow changesin size but not changes in shape.

T e.g. Thermodynamics and an I ntroduction to Thermostatistics (1985) by H.B. Callen.



Thermodynamic square

The thermodynamic sgquare is a mnemonic device that helps you recall the nat-
ural variables associated with the energies, as well as many other things such | V a T
as the Legendre transformations and Maxwell’s relations. The square is con-
structed by placing the state variables on the corners and the energies on the

edges, along with two arrows as shown. u g
. . _ S h P
State variables (corners of the thermodynamic square):
v = gpecific volume (= 1 Where p ismass density) m3/kg
T = temperature P K
P = pressure N/m? = J/m?3
s = gpecific entropy JI(kgeK)

Energies” (edges of the thermodynamic square):

a = Helmholtz free energy = natural functionof v and T Jikg
g = Gibbs free energy = natural functionof T and P Jikg
h = enthalpy = natural function of P and s Jikg
u = specific internal energy = natural functionof s and v Jikg

The Legendre transformations (i.e., the relationships between the energies) are inferred from the ther-
modynamic sgquare by subtracting energies in the off-diagonals in the same directions as the arrows:

u—a=h-g=Ts and h—u=g—-a=Pv 4)

In the thermodynamic square, the energies are surrounded by their natural variables. Looking at
the square, for example, u(s, v) isafundamental potential because u is surrounded by s and v. Gibbs
free energy is afundamental potential when it iswritten in the form g(T, P) . Similarly, according to
the thermodynamic square, a(v, T) and h(s, P) are fundamental potentials. With a fundamental
potential, you can get “everything else.” For example, the Gibbsian relations give

W @ @ (@) o
(5, =T ($) = (59 =-s () =7 (5b)

These equations apply when differentiating with respect to an energy’s natural variable, holding the
other natural variable constant. The final result is found by moving diagonally across the square, set-
ting the = sign based on whether you move with or against the arrow. If e denotes any of the ener-
gies (u, & h, or g) andif x and y arethe natural variables associated with e, then

)

o) = X* (6)
2

where x* isthe variable diagonally opposite from x on the thermodynamic square multiplied by +1 if
traversing the diagonal moves with the arrow, or —1 if opposing the arrow. Specifically,

st =T, T* = —s, P = v, and v:=-p. 7
The formulas listed explicitly in Eq. (5) are specific instances of the generic Eq. (6).

* The energies are also “state variables’ in the sense that they return to their original value for any closed path of
variationsin the other state variables.
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The thermodynamic square can also be used to recall Maxwell’s relations:

Y, a T
(%), = (58, 59, =57,
&), = (%), 5, =%, u
-0 &3 s” h P

), = (5, ), =153,

These formulas all involve derivatives of a state variable with respect to another state variable on the
same edge of the thermodynamic square. The variable held constant can be either of the two state
variables on the other side of the square. An edge derivative like this is equated to its mirror-image
edge derivative across the square with the = sign assigned to be “+” if the symmetry of the edgesis
the same as that of the arrows or “—’ otherwise. For example, in Maxwell’s relations,

v

ds

oT
oP

Inthiscase, we aretalking about vertical edges. The arrowsare also symmetric about the vertical.
Therefore apositive sign is used in the Maxwell relation.

involves variables v and s, which are on a vertical edge

uses the corresponding “mirror-image” variables on the other vertical edge

av
oT

as
oP

In this case, we are talking about horizontal edges, but the arrows are symmetric about the
vertical. Therefore a negative sign is used in the Maxwell relation.

involves variables v and T, which are on a horizontal edge

uses the corresponding “mirror-image” variables on the other horizontal edge

IMPORTANT: what is being held constant in the derivative matters. Maxwell relations involve only
state variables (corners of the thermodynamic square). Moreover, not only are the major playersin the
derivative following edge symmetry, but the thing being held constant is too. For example

59, = (G, bu 59, % (5, ®

In thermodynamics, partial derivatives are almost always of the form (dA/9B)., which quanti-
fies how some variable “A” changes in response to changes of “B” during processes that hold “C”
fixed. Changing the constraint (i.e., changing the thing held constant) will change the meaning of the
partial derivative. A partial derivative dA/0B that fails to indicate what is being held constant is
meaningless. There are 336 ways to form derivatives of the form (dA/9dB). using the eight thermo-
dynamics variables (P, v, s, T, u, a h,g). Of these, some will have reasonably intuitive physical
meanings. As a rule, derivatives that involve only corner state variables (P, v, s, T) can be readily
interpreted physically, and are most likely to be measured in the lab and tabulated in handbooks. We
call these material properties (they are functions of the thermodynamic state, not constants). For
example, the derivative (dv/dT)p represents the volume change produced in a gasif the temperature
isincreased while holding the pressure constant. Similarly, (dP/dv)+ isthelocal slope of apressure-
volume curve measured under isothermal conditions. Of the 336 possible derivatives, the ones that
involve energies often lack apparent meaning. For example, (ds/dh), is bizarre and incomprehensi-
ble. We need away to transform the derivatives involving energies into expressions that involve more
easily interpreted elements. “Distilling” is the process of converting any derivative into a form
involving only state variables (P, v, s, T) and materia property derivatives (which are meaningful
and often tabulated in handbooks). Simplifying the distilling processis the goal of this document.



Thermostatic material properties:

The state variables (P, v, s, T) are regarded as easily measurable or easily controllable in the lab. In
any process, only two state variables can be independently controlled at any time. Standard experi-
ments will vary one state variable while holding a second state variable constant (thus controlling
exactly two variables). The resulting variation of the other two state variables is recorded. Suppose,
for example, that an experiment is conducted in which the volume is varied under thermally insulated
(AKA, adiabatic, constant entropy, isentropic’) conditions. Then the data record how the dependent
state variables (pressure and temperature) change in response to this adiabatic volume change. The
isentropic bulk modulus (a material property) is determined from the adiabatic pressure-volume
curve. The adiabatic temperature-volume curve leads to a lesser-known material property called the
Gruneisen parameter. You can perform different experiments that vary different state variables, hold-
ing different state variables constant. In every case, the slopes of the response functions are propor-
tional to material properties. Properties that can be measured in thisway are listed below:

K+ = Bulk modulus at constant temperature J/m?3 = N/m?
K = bulk modulus at constant entropy Jim3 = N/m?
K = compressibility at constant temperature = 1/K m3/J
Ks = compressibility at constant entropy = 1/K m3/J
c, = specific heat at constant volume JI(kgeK)
Cp = specific heat at constant pressure JI(kgeK)
B, = changein pressure with respect to temperature at constant volume Ji(m3eK)
B, = change in pressure with respect to temperature at constant entropy J/(m3eK)
oy = volumetric thermal expansion coefficient at constant pressure 1/K
vy = the Griineisen parameter dimensionless

Material properties are defined equal to (or proportional to) the derivative of one state variable
(P,v, s, T) with respect to a second state variable, holding a third state variable constant. In light of
the relationships listed in Eqg. (5), only three of the above ten material properties are independent —
all of the others can be computed from them. A goal of this document is to show you how to perform
these conversions between properties. Specifically, if you have a handbook that lists three properties
but you really want a different property, then you can compute it. Materia properties are sometimes
defined in terms of second derivatives of the energies with respect to their natural variables. For
example, since the isentropic bulk modulusis defined to be proportional to the slope of the isentropic
pressure-volume curve, we know it is proportional to (dP/dv),, which (using the first expression in
Eq. 59) is equivalent to —(d2u/dv2),. Each energy is expressible as a function of itstwo natural vari-
ables. Any function of two variables has exactly three independent second-partia derivatives. There-
fore natural groupings of three independent material properties correspond to the second-partial
derivatives of an energy. Since there are four energies (u, a, h, g), material property triplets found in
handbooks usually correspond to second-partials of one of the energy functions.

* |n general, adiabatic means“no heat flow is permitted into our out from the system,” while isentropic means “no
entropy is generated.” For general materials, these terms mean different things because, even under adiabatic
conditions, it is still possible to generate entropy viairreversible materia dissipation (which islike internal heat-
ing from friction, as opposed to external heating supplied directly from an outside source). This effect can be
modeled only by permitting the energy function to depend on more than just two state variables — it must addi-
tionally depend on other “internal state variables.” Even without material dissipative mechanisms, you can still
generate entropy under adiabatic conditions by applying the load dynamically. This document coversonly classi-
cal thermostaticsin which material dissipation is zero and loads are applied very slowly. In this case, adiabatic
and isentropic are synonymous.
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Materia properties are proportional to (not always identical to) derivatives of one state variable
holding a third state variable constant. The proportionality factors are introduced merely as a conve-
nience. For example, the derivatives that define material properties often contain negative signs to
ensure that the definition will be positive for most materials. Material property definitions involving
differentials of specific volume dv usually contain a normalizing factor of the specific volume itself,
which alters the meaning slightly from being an increment in volume to an increment in volumetric
strain, defined e, = In(v/v,) . Here, v, is any constant reference volume; which goes away in dif-
ferential form (i.e., de, = dv/v isindependent of v, ). With this logarithmic definition of volumetric
strain, the expression (dv)/v isequivalent to de,,. Material property definitions involving the differ-
ential of entropy ds are likewise usualy multiplied by T because Tds is the heat increment (for
reversible processes). This said, the mathematical definitions of the above thermodynamic properties
are listed below, categorized according to whether they characterize mechanical effects, thermal
effects, or thermo-mechanical coupling effects.

Mechanical material properties (pressure-volume relationships): units
_ 9P) _ (aia) 3
K = V(av =V 2+ Jim
oP _ (9% 3
Kg = —v(av) V(avz) J/m
2 2
Ky v
2h/oP2
o -1 __(@%h/0P?), -
K Y

S

Thermal material properties (temperature-entropy relationships):

c, = T(aa—_sr)v = —T@%Dv = (aZTTaSZ)V J(kgeK)
Thermomechanical (coupling) material properties:
%p = %(%)P = \—1/(8%28%) 1/K
B, = @_'IDV = ‘(aa\%r) JI(m3K)
_Y 8_ = o%u dimensionless
T(BD S (ava
-V, V-V,

* For small volume changes, v=v, and therefore e = In(v/v,) = ! . Thus, the logarithmic strain
reduces to engineering strainin th| scase. The logarithmic strain i€9deal for generdlization to large volume
changes because it goesto += at full expansion and —- at full compression (zero volume). Engineering strain
does not obey this nice property.




These expressions show how each material property is related to second derivatives of energy poten-
tials. The physically meaningful (practical) definitions, which are cited first, would be used to set up
laboratory experiments to measure the properties. The volumetric expansion coefficient (O is the
increment in volumetric strain [de,, = (dv)/v] induced per unit change in temperature, measured
while holding the pressure constant. Similarly, since “dv/v” equals the increment de,, in volumetric
strain, the isothermal bulk modulus K+ is the slope of the pressure vs. strain curve that is measured
under constant temperature conditions. The definition of K uses a negative because, for most mate-
rials, an increase in volume usually corresponds to a decrease in pressure, making K> 0. For a
reversible process, heat flow is proportional to the entropy production. Consequently, any derivative
that holds s constant may be regarded as a measurement taken under quasistatic insulated conditions.
For example, K, isthe (negative) slope of the pressure-strain curve that is measured without permit-
ting heat to flow into or away from the system. For reversible thermoel asticity, the increment of heat
(per unit mass) added to a system equals TAs; therefore, the specific heats (c, and cp) can be
regarded as the amount of heat needed to induce a unit change in temperature in a unit mass — the
result depends on whether the heat is added at constant volume or at constant pressure, which is why
there are two specific heats.

Distilling derivatives

The goal of this document is to outline a “never-fail” procedure for you to convert any partial
derivative of the form (dA/dB). into an expression that involves only state variables and material
properties. If you encounter a derivative (0A/dB)- in which one of the letters of the alphabet
(A, B, or C) isrepeated, then you would apply one of the following

@7@0 -1 (S—QA =0 @—@B = o ©

You will never see all three letters in a derivative repeated. Specifically, (0A/9A), ismeaningless.

Most of the time, you won’t be so lucky to have the same variable appearing twice in aderivative,
so simplification is more arduous. Recall that al of the material property definitions involve the
derivative of one state variable with respect to a second state variable, holding a third state variable
constant. In other words, none of the material property derivatives explicitly involves an energy
(u, &, g, h). Consequently, the first task is to eliminate energies from a partial derivative. Given a
derivative of the form (dA/9dB), supposethat “ A” is an energy. If the independent variables (B and
C) happen to be the same as the energy’s natural variables, then you can simply apply Eg. (6), and
you're done. Equation (6) holds only when differentiating with respect to one of the energy’s natural
state variables, holding the other natural variable constant. Suppose that the natural variables associ-
ated with an energy e (i.e, either a, g, h or u) are x and y, and you wish to simplify a derivative of
the form (de/ ap)q, where p and/or g are not natural variables for that energy. In this case, you
would use the chain rule so that you can implicitly introduce the natural variable function
e = e(x ). Specifically

5, = 6.5+ 5 5. (10)

Now that we have derivatives involving natural variables, Eq. (6) may be used to write

(g—s)q = X*(g_;)qw*@ﬁ)q (11)

This process has eliminated the energy e from being explicitly present. If p and g are state variables,
then the remaining derivatives in this expression can be equated to material properties (or the deriva
tives can be ssimplified using EqQ. 9 if two variables happen to match each other), and you will have
succeeded in fully distilling your original derivative into aform involving readily measurable quanti-

6
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ties. On the other hand, if p and/or g is an energy, then more work remains. For each of the remain-
ing derivatives, you must use multivariable calculusto recast them into aform that puts the energy in
the “numerator”, at which point you can apply a version of Eq. (11) for each energy you wish to
remove. Given a generic partial derivative of the form (dA/dB). two key calculus identities are
used at this stage. To change things so that “ B” (instead of “ A" ) is differentiated, use

(a@ (aB/aA)C ' 42

To change things so that “ C” (instead of “ A”) is differentiated, use

C/0B
(8@ _ (9C/0B)p (cyclic identity) (13)

 (3C/9A)g

Sidebar: The presence of the negative sign in Eq. 13 might be confusing to readers who are rusty in

multivariable calculus. After al, for ordinary single variable calculus, “everyone” knows that

dy _ dz/dx
dx ~ dz/dy dy
revolves around what is being held constant in derivatives. Suppose that y is a function of a second
(02/9%),
(02/9y),
negative sign because o is held constant in all derivatives, so this formula is effectively making a

. There is no negative in this equation, so why is there one in Eq. 13? The answer

variadble oo sothat y = y(x, o). It is definitely true that (%)Y) . This equation has no
statement about aworld in which o is always constant in every derivative (so your favorite formulas
from single-variable calculus still apply). Contrast this result with Eg. 13, which has different things
held constant in all three derivatives. To get Eq. 13, you first note that the very act of writing

(0A/0B) impliesthat, at least in somelocal neighborhood, A = A(B, C) . Imagine locally inverting

aC
)

constant, we know that dC = 0 and thisincremental equation may be solved for dA/dB to give the

this relationship to obtain C = C(A, B) sothat dC = ( dA+(ag) dB. Inaworld where C is

right-hand-side of Eq. 13, negative sign and all. To emphasize that the result applies when C is held

constant, you must note that g—g isrealy (g—g‘)c

To reiterate, if an energy isthe thing being differentiated, your first task is aways to apply Eg. (11) to
get rid of it! If the remaining derivativesinvolve no energies, then you are done because they must be
expressible in terms of material properties and/or state variables. Otherwise, if you till have partial
derivatives involving energies, then you need to use Eq (12) or (13) to move those energies so that
they become the things being differentiated, after which Eq. (11) can be applied to eliminate them.
Always follow the sequence (first eliminate from “numerator”, then “denominator”, then the “held
constant” part) to produce an expression that involves only measurable quantities (material state vari-
ables and material properties). Deviating from the sequence will get you nowhere.

The derivative distilling process is essentially recursive. To expedite this stage of the work, we
have provided computer-generated recursion tables that show you which partial derivative identities
[Egs. 9, 11, 12 or 13] you need to use. The recursion tables provide formulas for every possible deriv-
ative of the form (dA/dB)- that can be made using the eight thermodynamics variables

(P,v,T,s u,ag9,h).



Instructions for using the recursion tables:

In the tables to follow, any three-character symbol of the form “aBc” is a short-hand notation for
(0A/0B), whichisthe derivative of A with respect to B holding C constant.

The three-column computer-generated recursion table (spanning pages 9 and 10) permits you to
reformulate any thermodynamic derivative of the form (dA/dB). <o that it is ultimately phrased
only in terms of state variables and material property derivatives (i.e., in terms of “measurable
things’). Thefirst step isto recursively apply this three-column table until it provides no further sm-
plification. Then the “Material property recursion table” on page 11 is applied to express the result in
terms of whatever set of material properties you have available in a handbook.

A worst-case scenario. Recall that distilling derivatives requires using identities and thermody-
namic relationships to re-write a derivative into a form that involves no explicit presence of energies.
Therefore, the most difficult derivative to distill would be the partial derivative of an energy with
respect to an energy, holding an energy constant. Suppose, for example, you wish to express the
derivative (da/0Q),, in terms of state variables and material properties. First write this derivative in
our shorthand notation as “agn”. Thefirst table tellsyou that “agh” equals”-s Tgh -P vgh”, which
translates into more conventional notation as (9a/dg),, = —s(dT/dg),,—P(dv/ag),, . This entry is simply
applying Eq. (11) to eliminate the Helmholtz free energy “ a” from being explicitly present. Your new
expression still involves some different energies (g and h) in the derivatives Tgh and vgh, SO you
must go back to the table and look them up. You will find that the table cites entries that apply
Eg. (12) to move the energy g so that it becomes the thing being differentiated. Again applying the
table leads to yet another application of Eq. (11), this time to remove the Gibbs function “ g” from
being explicitly present. At this stage, you will have derivatives involving the enthalpy h held con-
stant. Looking up these derivatives in the table gives entries that apply Eg. (13) to move h so that it
becomes the thing differentiated. Applying the table one last time gives entries that apply Eq. (11),
after which the three-column computer-generated table produces no further changes. By back substi-
tution, you will have succeeded in expressing the original derivative in terms of state variables and
“primitive” material property derivatives.

Example 1

Suppose that you wish to distill the derivative of the Helmholtz free energy with respect to
entropy holding pressure constant, (da/ds)p . In other words, suppose that you desire to express this
derivative in terms of measured material properties and the thermodynamic state. This derivative,
(da/0s)p, isdenoted “asp” in our notation. The first table (starting on page 9) says

asP = -s TsP -P vsP
TsP = TsP

vsP = vsP

The first table provides no alteration of either TsP or vsP. Hence, they are “primitive” material deriv-
atives, and they may be looked up in the second table on page 11, which says that

TsP = 1/ Cy
vsP = 1/Bg
Thus, by back substitution,
(a_a = — S_T —_ B (14)
0 P Cp BS

With this, we have achieved our goal of expressing the original derivative in terms of state variables
(s, T, and P) and materid properties(cp and B,).

8
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aah
aaP
aas
aaT
aau
aav
aga
agg
agh
agP
ags
agT
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agv
aha
ahg
ahh
ahP
ahs
ahT
ahu
ahv
aPa
aPg
aPh
aPP
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aPT
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-s Thg -P

Infinity
-s ThP -P
-s Ths -P
-P vhT
-s Thu -P
-s Thv

0
-s TPg -P
-s TPh -P

Infinity
-s TPs -P
-P vPT
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-s Tsh -P
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Infinity
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Infinity
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Infinity
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gPv
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guP
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hag
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hgg

hgP
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hhP
hhs
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hPT
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-s
-s

0
-s
-s
Infi

v PsT
-s
-s
-s

0
-s
-s
-s
Infi
-s
-s
-s

0
-s
-s
-s
v PuT
Infi
-s
-s

0
-s
-s
-s

v PvT

-s

Infi
Infi
T sag
0
saP
Pas
saT
sau
sav
sga

Infi

HHHH<SH

T sgP
v Pgs
T sgT
T sgu
T sgv

RFERRRRRER

T sPa
T sPg
0

Infi

sPT
sPu
sPv
+V
+v

HHAHAHAAS

0

H

Infi
T +v
T +v
T +v
T sTa
T sTg

Thu
Thv
TPa

TPh
nity
TPs

TPu
TPv
Tsa

Tsh
TsP
nity

Tsu
Tsv
+v

+v

+Vv
nity

+v

+v
Tua

Tuh
TuP
Tus

nity
Tuv
Tva

Tvh
TvP
Tvs

Tvu

nity

nity
+v

+Vv
+Vv
+v
+v
nity

+Vv
+Vv
+Vv

+Vv
+v

nity

+v
+v
+v
Psa
Psg

nity
PsT
Psu
Psv
+v
+v
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+Vv
+v
+v
+Vv
+Vv
+v
+v

+Vv

+v

+v
+v
PTa
PTh
PTs
PTu
PTv
+v
+v
+v
+v
+v
+Vv

+Vv

+v

Pag

PaT
Pau
Pav
Pga

PgT
Pgu
Pgv

PTa
PTg

Phu
Phv

Psa

Psh

Psu
Psv

Pua

Puh

Pus

Puv

Pva

Pvh

Pvs

Pvu

hTP
hTs
hTT
hTu
hTv
hua
hug
huh
huP
hus
huT
huu
huv
hva
hvg
hvh
hvP
hvs
hvT
hvu
hvv
Paa
Pag
Pah
PaP
Pas
PaT
Pau
Pav
Pga
Pgg
Pgh
PgP
Pgs
PgT
Pgu
Pgv
Pha
Phg
Phh
PhP
Phs
PhT
Phu
Phv
PPa
PPg
PPh
PPs
PPT
PPu
PPv
Psa
Psg
Psh
PsP
Pss
PsT
Psu
Psv
PTa
PTg
PTh
PTP
PTs
PTT
PTu
PTv
Pua
Pug
Puh
PuP
Pus
PuT
Puu
Puv
Pva
Pvg
Pvh
PvP
Pvs
PvT
Pvu
Pvv

=T sTP
=v PTs

=T sTu +v
=T sTv +Vv
=T sua +Vv
=T sug +Vv

Infinity

PTu
PTv
Pua
Pug
0

=T suP
=v Pus

=T suT +Vv

=T suv +Vv
=T sva +Vv
=T svg +V

=T svT +Vv
=T svu +Vv

PuT
Infinity

Puv
Pva
Pvg

PvT
Pvu
Infinity
Infinity
1 / aPg
aPh

/

/ aPs
/ aPT
/ aPu
/ aPv
/ gPa
nfinity
/ gPh
/ gPs
/ gPT
/ gPu
/ gPv
/ hPa
/
nf

inity

| RFRRPRPRHEHRERRPRPRRERRPRPOHRRERRERRERPHEHORHRRERREROR

asP / aPs
gsP / gPs
hsP / hPs

Infinity

1 / sPT
- usP / uPs
Psv

- aTP / aPT
- gTP / gPT
- hTP / hPT
0

1 / TPs
Infinity

- uTP / uPT
PTv
/ uPa
/ uPg
/ uPh

/ uPs

/ uPT
nfinity

/ uPv

avP / aPv

gvP / gPv

hvP / hPv

I RFHRHRORRR

Pvs

PvT

- uvP / uPv
Infinity

put not Tor profit.
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saa = Infinity ThT = 0 uTh =T sTh -P vTh
sag = 1 / asg Thu = 1 / hTu uTP =T sTP -P vTP
sah = 1 / ash Thv = 1 / hTv uTs = -P vTs

saP = 1 / asP TPa = - aPT / aTP uTT = Infinity
sas = 0 TPg = - gPT / gTP uTu = 0

saT = 1 / asT TPh = - hPT / hTP uTv =T sTv

sau = 1 / asu TPP = Infinity uua = 1

sav = 1 / asv TPs = TPs uug = 1

sga = 1 / gsa TPT = 0 uuh = 1

sgg = Infinity TPu = - uPT / uTP uuP = 1

sgh = 1 / gsh TPv = 1 / PTv uus = 1

sgP = 1 / gsP Tsa = - asT / aTs uuT = 1

sgs = 0 Tsg = - gsT / gTs uuv = 1

sgT = 1 / gsT Tsh = - hsT / hTs uva =T sva -P
sgu = 1 / gsu TsP = TsP uvg =T svg -P
sgv = 1 / gsv Tss = Infinity uvh =T svh -P
sha = 1 / hsa TsT = 0 uvP =T svP -P
shg = 1 / hsg Tsu = - usT / uTs uvs = -P

shh = Infinity Tsv = Tsv uvT =T svT -P
shP = 1 / hsP TTa = 1 uvu = 0

shs = 0 TTg = 1 uvv = Infinity
shT = 1 / hsT TTh = 1 vaa = Infinity
shu = 1 / hsu TTP = 1 vag = 1 / avg

shv = 1 / hsv TTs = 1 vah = 1 / avh

sPa = - aPs / asP TTu = 1 vaP = 1 / avP

sPg = - gPs / gsP TTv = 1 vas = 1 / avs

sPh = - hPs / hsP Tua = 1 / uTa vaT = 1 / avT

sPP = Infinity Tug = 1 / uTg vau = 1 / avu

sPs = 0 Tuh = 1 / uTh vav = 0

sPT = sPT TuP = 1 / uTP vga = 1 / gva

sPu = - uPs / usP Tus = 1 / uTs vgg = Infinity
sPv = 1 Psv TuT = 0 vgh = 1 / gvh

ssa = 1 Tuu = Infinity vgP = 1 / gvP

ssg = 1 Tuv = 1 / uTv vgs = 1 / gvs

ssh =1 Tva = - avT / aTv vgT = 1 / gvT

ssP =1 Tvg = - gvT / gTv vgu = 1 / gvu

ssT = 1 Tvh = - hvT / hTv vgv = 0

ssu = 1 T™vVP = 1 / VTP vha = 1 / hva

ssv = 1 Tvs = Tvs vhg = 1 / hvg

sTa = - aTs / asT TvT = 0 vhh = Infinity
sTg = - gTs / gsT Tvu = - uvT / uTv vhP = 1 / hvP

sTh = - hTs / hsT Tvv = Infinity vhs = 1 / hvs

sTP = sTP uaa = Infinity vhT = 1 / hvT

sTs = 0 uag =T sag -P vag vhu = 1 / hvu

sTT = Infinity uah =T sah -P vah vhv = 0

sTu = - uTs / usT uaP =T saP -P vaP vPa = - aPv / avP
sTv = sTv uas = -P vas vPg = - gPv / gvP
sua = 1 / usa uaT =T saT -P vaT vPh = - hPv / hvP
sug = 1 / usg uau = 0 vPP = Infinity
suh = 1 / ush uav =T sav vPs = vPs

suP = 1 / usP uga =T sga -P vga vPT = vPT

sus = 0 ugg = Infinity vPu = - uPv / uvP
suT = 1 / usT ugh =T sgh -P vgh vPv = 0

suu = Infinity ugP =T sgP -P vgP vsa = - asv / avs
suv = 1 / usv ugs = -P vgs vsg = - gsv / gvs
sva = - avs / asv ugT =T sgT -P vgT vsh = - hsv / hvs
svg = - gvs / gsv ugu = 0 vsP = vsP

svh = - hvs / hsv ugv =T sgv vss = Infinity
svP = 1 / wvsP uha =T sha -P vha vsT = 1 / svT
svs = 0 uhg =T shg -P vhg vsu = - usv / uvs
svT = svT uhh = Infinity VSV =

svu = - uvs / usv uhP =T shP -P vhP vTa = - aTv / avT
svv = Infinity uhs = -P vhs vIlg = - gTv / gvT
Taa = Infinity uhT =T shT -P vhT vTh = - hTv / hvT
Tag = 1 / aTg uhu = 0 vTP = VTP

Tah = 1 / aTh uhv =T shv vIis = 1 / Tvs
TaP = 1 / aTP uPa =T sPa -P vPa vIT = Infinity
Tas = 1 / aTs uPg =T sPg -P vPg vTu = - uTv / uvT
TaT = 0 uPh =T sPh -P vPh vIv = 0

Tau = 1 / aTu uPP = Infinity vua = 1 / uva

Tav = 1 / aTv uPs = -P vPs vug = 1 / uvg

Tga = 1 / gTa uPT =T sPT -P VvPT vuh = 1 / uvh
Tgg = Infinity uPu = 0 vuP = 1 / uvP

Tgh = 1 / gTh uPv =T sPv vus = 1 / uvs

TgP = 1 / gTP usa =T -P vsa vuT = 1 / uvT

Tgs = 1 / gTs usg =T -P vsg vuu = Infinity
TgT = 0 ush =T -P vsh vuv = 0

Tgu = 1 / gTu usP =T -P vsP vva = 1

Tgv = 1 / gTv uss = Infinity vvg = 1

Tha = 1 / hTa usT =T -P vsT vvh = 1

Thg = 1 / hTg usu = 0 vvP = 1

Thh = Infinity usv =T vvs = 1

ThP = 1 / hTP uTa =T sTa -P vTa vvT = 1

Ths = 1 / hTs uTg =T sTg -P vTg vvu = 1
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Material property recursion table

Helmholtz Gibbs Enthalpy Energy
(v, T) (T.P) (sP) (V.9
K+, ¢, B, K, Cp, O Kg Cp B, Ks Cpr Y
o= [ PVvI/svT 1/SPT ~TSP/IPs PSV-PVS*TSV/
Tvs
Psv= PTv/sTv 1/sPv -vsP/vPs 2
_ 04U
VT/v = _(ava
PTs= PTv-PvT*sTv/svT -sTP/sPT 1/TPs Pvs/Tvs
PTv= 2 -vTP/vPT 1/TPv Psv/Tsv
B — _(a a)
v ovoT
Pvs= PvT-PTv*svT/sTv 1/vPs 1/vPs 2
—Kg/v = (Y
ov¥ s
PvT= _ 923 1/vPT 1/vPT Pvs-Psv*Tvs/
_KT/V - 8_\/2)T Tsv
sPT= svT/PvT 2 -TPs/TsP 1/PsT
~vo, = {22
p JdToP.
= sTv/PTv sPT-sTP*vPT/vTP | -vPs/vsP 1/Psv
sTP= sTv-svT*PTv/PvT 2 1/TsP 1/TsP
c/T = _{Q_g
P oT?p
sTv= 2 sTP-sPT*vTP/vPT | 1/Tsv 1/Tsv
c,/T = H{%3
0T v
svP= svT-sTv*PvT/PTv sTP/vTP 1/vsP -Pvs/Psv
VT= B = 92a sPT/vPT 1/vsT -Tvs/Tsv
v _(GVBT)
TPs= 1/PTs -sPT/sTP _ oh Tvs/Pvs
1/Bs = (asap)
TPv= ] 1/PTv -vPT/VvTP TPs-TsP*vPs/vsP | Tsv/Psv
TsP= 1/sTP 1/sTP _ (32h Tsv-Tvs*Psv/
T/¢, = (Q)p Pvs
Tsv= 1/sTv 1/sTv TsP-TPs*vsP/vPs 2
T/¢, = (&)
0s%’ v
TvP= -PvT/PTv 1/vTP TsP/vsP Tvs-Tsv*Pvs/
Psv
Tvs= -svT/sTv 1/vTs TPs/vPs - /92
—YT/v = (asav)
vPs= 1/Pvs vPT-vTP*sPT/sTP (aZh 1/Pvs
S 0P“s
vPT= | 1/PvT 2 vPs-vsP*TPs/TsP | 1/PvT
Ry (8_9
IPZT
vsP= 1/svP vTP/sTP 7 9h -Psv/Pvs
1/B; = (5p5,
vsT= 1/svT vPT/sPT vsP-vPs*TsP/TPs | -Tsv/Tvs
vTP= -PTv/PvT 2 vsP/TsP 1/TvP
Vo, = (—13 )
p 0POT
VTs= -sTv/svT vTP-vPT*sTP/sPT | vPs/TPs 1/Tvs

P a o ¢

= internal energy

= Helmholtz free energy

= Gibbs free energy

= enthalpy

v = specific volume

T

entropy

P = pressure

temperature

Remember these rel ationships:

kr = 1/Kq

K = 1/Kq

11



Example 2

Suppose you wish to distill the derivative of the temperature with respect to internal energy, hold-
ing volume constant, (dT/du),,, or Tuv in our table notation. The first table (starting on page 9) says

Tuv = 1 / uTv
uTv =T sTv

sTv = sTv
Back substitution gives
Tuv = 1 / (T sTv)
Theline“sTv=sTv" triggers moving to the material property table on page 11, which lists

sTv = CV/T.

Thus, back substitution gives the final result:

@"DV - Clv (15)

Example 3

Suppose you wish to distill the derivative of the temperature with respect to internal energy, hold-
ing enthal py constant, (dT/du),,, or Tuh in our table notation. The first table (starting on page 9) says

Tuh = 1/uTh.
Using the table again gives uTh =T sTh -P vTh.
Using the table again gives sTh = - hTs / hsT
and
vTh = - hTv / hvT.
One more time gives...
hTs=v PTs, hsT=T+v PsT, hTv=T sTv + v PTv, and hvT=T svT+v PvT

The first table now gives no further simplification because al energies (u and h) have been removed
from al derivatives. Back substitution gives

Tuh = 1/(-T v PTs / (T+v PsT) + P (T sTv +v PTv)/(T svT + v PvT))

Thisresult is rather ugly because the starting derivative, Tuh, involved two energies. Nevertheless, by
using the first table, we have converted to a form that involves no energies. Using the second table,

each of the “energy-free derivatives’ may be expressed in terms of material properties. For example,
PTs = 1/TPs = Bq.

Similarly applying the table on page 11 for the remaining “energy-free” derivatives leads to the final
expression of (dT/du),, interms of state variables and properties.

12
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Relationships between properties

Recall that the result in Eq. (14) was expressed in terms of the material properties ¢, and B,. The
specific heat at constant pressure might be available from some materials handbooks, but other hand-
books are likely to list values for ¢, instead. The isentropic thermal stress coefficient B is a quirky
material property that isnot likely to be listed in any handbooks. Even though we have defined a total
of ten material propertiesin this document, only three are independent. Materials handbooks will tab-
ulate three properties, and it will be your job to compute other (dependent) properties as needed.

How do you assign values to the material properties o and By, that appear in Eq. (14) if you
have a handbook that tabulates only the isothermal bulk modulus K, the specific heat at constant
volume ¢, and the linear expansion coefficient o,j"?  The answer is

Cp = C,+ VT (") 2K (16)
B. = 3alinearK + L a7
s P T vTBag“ear'

The process used to derive such formulasis the subject of this section.

More often than not, the three properties listed in your favorite handbook will all belong to one of
the four groupingsin the material property recursion table. If, for example, your handbook lists values
for the expansion coefficient Oy, the constant pressure specific heat Cp and the isothermal compress-
ibility w1, then your handbook supports the Gibbs group of properties (second column in the property
recursion table). If you seek the value for a property in adifferent column, then you need to equate the
entry for that property to the entry in the Gibbs column of the property recursion table. Thereafter,
you stay in the Gibbs column, recursively simplifying until your non-Gibbs property is expressed in
terms of the Gibbs properties available in your handbook.

Suppose, for example, you seek the value of ¢, expressed in terms of Gibbs properties. First go
to the material property recursion table and locate any expression involving c,,. Then equate it to the
expression in the Gibbs column. For example, the property recursion table says

sTv = C,/T intheHelmholtz column (18)

sTv = sTP-sPT*vTP/vPT iNthe Gibbs column. (19)

Staying in the Gibbs column (because Gibbs properties are presumed to be available), the property
tabletellsus

STP = Cp/ T (20)
sPT = —Vocp (21)
vTP = VOLp (22)
vPT = —VK7. (23)

Back substituting these four resultsinto Eqg. (19) gives

c, Vvo? .
STv = #_9 — —2L from the Gibbs column. (24)
Kt

Equating this result with Eq. (18) and solving for c,, gives

Tvo?
c, = ¢,——=> JikgeK (25)
P

13



NOTE: specific heat has been defined in this document to equal the amount of heat needed to induce
a unit temperature change in a unit mass. Similarly, the specific volume is the volume per unit mass.
For afinite volume V of mass M, v = V/M, so you might see the above result expressed as

TVa2
c, = cp——Q. (26)
Mx

CAUTION: Many books define specific heat to be the amount of heat needed to induce a unit tem-
perature increase in a unit mole of material, not a unit mass as we have done. Let x be one of our “per
unit mass’ properties. Let an asterisk denote the analogous “molar” (per unit mole) property. Then
X" = xm/Ny, where N isthe number of molesand M isthe mass. Multiplying both sides of Eq. (26)
by m/N converts the specific heats per unit mass to specific heats per unit mole, and the last term that
involved division by M changesto division by N. Hence, Eq. (26) might appear in some textbooks as

TVo.2
v = C S JimoleK (27)
Nkt

where, as mentioned, an asterisk denotes the “per mole” version of the property. The key is to pay
very close attention to how your reference books define a material property. You might need slight
adjustments like these to use the handbook properties. Checking unitsis essential.

The thermal expansion coefficient is another example of a “differently defined” property. In this
document, we defined the volumetric thermal expansion coefficient o, to be the volumetric strain
resulting from a unit temperature change, holding pressure constant. Many books will instead tabul ate
the linear expansion coefficient ocg”eaf , which isthe length strain per unit temperature change at con-
stant pressure. Consider a cube with dimensions L, x L, x L, that isthen heated under constant pres-
sure so that it expands to new cube dimensions L x L x L. The volumetric strain is the log of the
volumeratio

3
g, = InM = InL— = 3In£. (28)
V, L3 Lo

Thelinear strainisthe log of the length ratio

L
gin = In—. (29)
n Lo
Therefore,
ey = €. (30)

In other words, a given linear strain will produce a volumetric strain that’s three times as large if the
same linear strain occursin all three spatial directions. Therefore, if you have a handbook that lists the
linear expansion coefficient, you can convert it to the volumetric expansion coefficient by tripling:

= linear
oy = Socp 1/K (31)

Some other useful property relationships can be readily deduced from the property recursion
table. The compressibilities k1 and kg are not as popular as the bulk moduli K; and K. How are
these related? This question is again answered by finding x; and K in the property recursion table
and performing cross-correlations. That table says

vPT = —VKk;  inthe Gibbs column (32)
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vPT =1/pvT inthe Helmholtz column (33)
Staying in the Helmholtz column the table says

pvT = —K;/V. (34)

Thus, by back substitution, the above three equations imply

1
K = K_T (35)
Similarly,
1
Kg = E (36)
S

Another less-common material property isthe thermal pressure coefficient B,,. According to its defi-
nition, this parameter measures the pressure increase induced by a unit temperature change performed
under constant volume conditions. How is B,, related to more commonly available properties? The
property table says

prv = B, intheHelmholtz column (37)

pTv = -vTP/vPT inthe Gibbs column (38)
Staying in the Gibb’s column, the table says

VTP = VO, in the Gibbs column (39)

vPT = —VK; inthe Gibbs column (40)

Back substituting these relationships leads to the formula

o
B, = -2, (41)
Kt
or
B, = KTocp. (42)

In other words, the thermal pressure coefficient is simply the volumetric expansion property timesthe
isothermal bulk modulus. This makes a lot of sense because, under a unit temperature change, you
can imagine letting a sample first expand at constant pressure (producing a strain ocp), and then
recompressing isothermally (so that the temperature change will be the same) back to the original vol-
ume. The pressure required to do thisis the isothermal bulk modulus times the strain, as indicated in
Eq. (42). Going back to the original volume is needed because the B,, is defined to be the pressure
change holding volume constant.

The Grineisen parameter might be new to you. This material property and the other “energetic”
properties (i.e., those listed in the “energy” column of the property table) are often used in acoustics.
The energetic properties are important in acoustic wave motion because sound waves travel so fast
that there is not sufficient time for heat to conduct away from the system (i.e., entropy is constant”).
Two different property sets (enthalpic and energetic) both have entropy as a natural variable. Then

* Acoustic waves are low amplitude waves. Hence, even though they are dynamic, they disturb the material only
very dlightly and the associated entropy production is negligible. High amplitude (shock) waves, on the other
hand, produce considerable entropy even though they are adiabatic.

15



why are energetic properties more commonly used in acoustics? The answer is that volume is treated
as the independent variable in most wave mechanics codes. In other words, most material model s take
the volume change as input and predict the pressure change as output. Thus, the controlled state vari-
ables are the internal energy’s natural variables, v and s. Getting back to the meaning of the Gri-
neisen parameter y, note that the property table tells us that
psv=7T/v inthe(interna) energy column (43)
pPsv = PTv/sTv inthe Helmholtz column (44)

Staying in the Helmholtz column, the property table says

pTv = B, inthe Helmholtz column (45)

\'
sTv = C,/T intheHelmholtz column (46)

Thus, these equations imply

vB, : i
== dimensionless (47)

or, noting that v = 1/p, where p isthe mass density, and also using Eq. (42),

y = p| dimensionless (48)

Note from the property table that

-2, =43, = Girrs. )

where p isthe mass density, while T, and p, arereference values (at the beginning of an experiment
or at a standard state). The Grineisen parameter quantifies sensitivity of temperature to volume
changes under isentropic conditions. The fact that the Griineisen parameter is defined in terms of log-
arithms suggests that, for real materials, the isentropic temperature-density relationship tends to be a
straight line on log-log scales. If the relationship is not a straight line, it merely means that the Gri-
neisen parameter (i.e., the local slope in thislog-log plot) isn't a constant. The value of the Griineisen
parameter is typically in the neighborhood of 1.0.

Using the recursion property table, you can prove the following mixed property relationships:

K C
K—S = f (mnemonic: subscripts alphabetical in each ratio) (50)
T v
B K
V=11 (51)
BS KS
B, = Kyo, (52)
C
B, = P (53)
Tocp

For quick reference, the following page summarizes formulas that allow you to compute all ten mate-
rial propertiesif you have a handbook citing three properties.
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Given Helmholtz properties K, ¢, B, :

Ky = Bulk modulus at constant temperature Jim3
c, = specific heat at constant volume J/kgeK
B, = changein pressure with respect to temperature at constant volume J/m3eK
Theother (non-Helmholtz) propertiesare found by
B2T B2T
K, = Kq+—— Ky = = K, = 1/K, Ds o oq4 v
_ oK _ B _ £S, _B
¢ = Sk op = % BS—T Y=
T OCp pCy
Given Gibbs properties kv, Cp Ol
kr = compressibility at constant temperature = 1/ K+ m3/J
¢ = specific heat at constant pressure J/kgeK
o, = volumetric thermal expansion coefficient at constant pressure 1/K
The other (non-Gibbs) propertiesarefound by
Ta2 K Ta2
KT:i Ky = Kp——2P Kszl Do %
KT PCh K K PCHKT
K C
T P v
c, = C| — B, = Ko B.= —2 Y= —
v p( ) % T™p S
Given enthalpic properties Cp Bs:
ks = compressibility at constant entropy = 1/ Kg m3/J
Cp = gpecific heat at constant pressure JikgeK
B, = changein pressure with respect to temperature at constant entropy Jim3eK
Theother (non-enthalpic) propertiesarefound by
C K c, 11
KS:_]; KT:KS+B—EZ KT:i _I:|: +_E_2.E_:|
KS TBS KT Ks TBSKS
K C B
T p \
CV=C—-) o, = = B, = Ko y=—
PAK P TBg P pPCy
Given energetic (internal energy) properties K, ¢, v:
K,  =bulk modulusat constant entropy J/ms
c, = specific heat at constant volume JikgeK
Y = the Griineisen parameter dimensionless
Theother (non-energetic) properties found by
K 2Tc, 71
KT = Ks_p'YZTCV Kt = i KS = i S = |:1_py V:|
K+ Ks Ky Ks
K K B
= -3 = = S = v
Cp = CV(K) B, = pYc, B, T oL, K,
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Thermodynamic consistency and inconsistency

Thermodynamic consistency means that a theoretica model (good
or bad) isimplemented in such away that all thermodynamic derivative
identities hold. To illustrate the concept, we will consider a contrived
example of amodel that is thermodynamically inadmissible.

P

Suppose that laboratory experiments conducted at constant tempera-
ture suggest that pressure is a linear function of strain, where (recall)
strainisdefined as € = In(vy/Vv). Further suppose that the slope of the
pressure-strain plot depends on the temperature at which the experiment
is conducted. In other words, the isothermal bulk modulus,

£

Pressure-strain response at
various temperatures.

Ky = (aa—DT, (54

is a function of temperature, but not a function of strain. If a numerical thermoelasticity model is
aready available in which the all material properties (K, op, Cp) are constants, handling atempera-
ture-dependent bulk modulus might seem to be a simple matter of modifying the model to set the
value of K according to the current temperature. It might seem that no further code revisions would
be required. However, such amodel would be thermodynamically inadmissible, as we will now show.

Using Eq. (54), the dependence of the bulk modulus on temperature is quantified by the following
mixed partial derivative:

dK; _ 92p _ 92p _ (an) (55)

dT ~ 9e0T 9Toe \ae/7’
where

= (29) -

Noting from the material property tablethat B, = K op, and recalling that K, depends only on tem-
perature in our contrived example, Eq. (55) becomes

d—KT = K (%) . (for this contrived example) (57)
dT N oe/1
Equivaently,

0
(%)T - Kded_}fl'T

The right hand side is nonzero by premise. Therefore, the left hand side must be nonzero as well. In
other words, temperature dependence of the bulk modulus requires strain dependence of the thermal
expansion coefficient. Using aconstant o, would result in a thermodynamically inadmissible model.

The division by K+ in Eg. (58) might make it seem that (doip/de); is negligible, but one must
inspect the governing equations, where it can be seen that terms involving strain dependence of o
are comparable in order of magnitude to terms involving temperature dependence of K.

(for this contrived example) (58)
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Finding fundamental energy potentials

We have mentioned that u(s, v) is a fundamental potential function. Determining this function
from laboratory data usualy entails performing experiments in which state variables (not energies)
are controlled. Changes in state variables (not energies) are measured. In other words, u(s V) is
never measured directly — instead, it must be inferred from tractable data. You might, for example,
measure how pressure P varies with specific volume v under insulated conditions. You might addi-
tionally have measurements of the temperature history induced by heating in constant volume condi-
tions, which (because the heat increment = Tds for reversible thermoel asticity) is essentially afamily
of relationships between entropy s and temperature T for each fixed volume. These individual |abora-
tory-measured relationships between state variables are called equations of state (EOS). For gen-
eralized material models that include shear stress, practitioners often use “EOS’ to mean the
relationships between pressure, volume, temperature, and entropy, while relationships between shear
stress and shear strain (aswell asyield, fracture, etc.) are referred to as the * constitutive model.” This
is an unfortunate corruption of terminology because it assumes that deviatoric (shear) response can be
decoupled from isotropic (pressure-volume-temperature) response. If an anisotropic material such as
a fiber-reinforced composite is subjected to an isotropic increase in size (with no change in shape),
the stress change is not isotropic — there is a larger stress required in the fiber direction. We prefer
that “EOS’ means any relationship between measurable state variables, with no explicit presence of
an energy. For inviscid fluids, a fundamental potential function can be found whenever you have two
independent EOS equations involving the four state variables (P, T, s, v) :

Given a system of two independent equations (usually laboratory data), involving
the four state variables (P, T, s, v), the fundamental potentials are found as follows:

To get u(s, v), solvethesystem for T and P asfunctions of sand v. Then integrate
%) ouy _ _
(8 , = T(s,Vv) and (av)s = —P(s,Vv)

Toget a(v, T), solvethe system for P and s asfunctionsof v and T. Then integrate

(g_s)T = PV, T) and (3‘?) = s

To get g(T, P), solve the system for sand v as functionsof T and P. Then integrate

(g‘?-)P = —s(T,P) and (%Fq’)r = V(T,P)

To get h(P, s), solve the system for vand T asfunctionsof P and s. Then integrate
ohy _ 3_2) -
(ap)s = v(P, s) and (a . T(P, s)

Keep in mind: when integrating a partial derivative, the integration “constant” is actually a func-
tion of the quantity held constant in the partial derivative. Once one of the energy potentialsis found,
the other energies may be found by using Eq. (4). You must express the result in terms of natural vari-
ables for the function to be a fundamental potential.
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The entropic fundamental potential

Recall that (au/as), = T. Therefore, assuming that temperature is always —a
positive’, the slope of u plotted as afunction of s (for any fixed valueof v) is | V T 1
everywhere positive, implying that the relationship is globally invertible for s T
as a function of u (and v). Consequently, not only is u(s, v) afundamental
potential, so is s(u, v). When s(u, v) is a fundamental potential, internal | S _g/ T
energy becomes a natural independent variable. Therefore, a different ther- P
modynamic square applies as shown. u u_;g =

In the previous section, we conjectured that two independent equations

(presumably lab observations) were available inter-relating (P, T, s, v), in which case you could
immediately obtain the fundamental potential for internal energy u. Now suppose that you have two
independent equations [measured or theoretical] available involving (P, T, u, v). In this case, you
should seek s(u, v) asafundamental potential. When (P, T, u, v) are the variables, the two indepen-
dent equations are called “entropic equations of state” (not because entropy appears anywhere but
because these variables imply that it is the entropic fundamental potential is most relevant). In this
case, you must solve the system for P and T as functions of u and v. Then integrate

aLs) 1 ds P(u, v)

Z2 = - ad == = 2 . 59
(8 v T(u,v) an (av)u T(u, v) 9)
Once s(u, v) isfound, it may (if desired and if tractable) be inverted to obtain the energetic funda-
mental potential u(s, v).

In practice, engineers need athermodynamically consistent model when only a a pressure-volume
curve is available. This is one equation involving P and v, but finding a fundamental potential
requires a second equation. When faced with a dearth of data like this, it is common for the constitu-
tive modeler to ssimply hypothesize that the internal energy varies in proportion to temperature, where
the constant of proportionality is regarded as a materia property (to be determined by “tuning” the
model as data later become available, although it would be unethical to tune the model differently for
each different experiment, as getting different values would invalidate the hypothesized equation).

EXAMPLE: IDEAL GAS. For anidea gas, the entropic equations of state are

Pv = RT and u = cRT . (ideal gas) (60)

Here, c isamaterial constant and R = nR,, where n = N/M is the number of moles per unit mass
and R, is the universal gas constant [R, = 8.31 J(mol<K)]. This is a system of two equations
involving (P, T, u, v) . What is the entropic fundamental potential? Solving the system for T and P as
functions of u and v, and then substituting the result into Eq. (59) gives

9s) _ cR ds) _R .
(au)v =7 and (a\)u = (ideal gas) (61)
Integrating the second equation with respect to v gives

s = RInv+f(u). (ideal gas) (62)

* Thisis sometimes regarded as an assumption rather than immutable truth because [as mentioned in afootnote of
Physics: Part |1 by Halliday and Resnick] some materials can be placed into an excited state where the quantum
definition of temperature gives negative values. This state is not reached by passing continuously through zero.
Instead, temperature jumps from positive to negative via an inversion in the quantum structure. In this state, the
other equations of macroscal e thermostatics continue to hold if they are properly rephrased to allow for negative
temperatures. In particular, the second law inequality needs to have temperature in the denominator — multiply-
ing both sides by temperature to get TAS requires changing the direction of the inequality.
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Because “u” was held constant in the partial derivative, the integration “constant” is actually an
undetermined function f(u) . Differentiating Eq. (62) with respect to u and substituting the result into
thefirst PDE in EQ. (61) gives

df cR
a - 3= 63
du u (63)

Solving thisordinary differential equation for f(u) and substituting the result back into Eq. (62) gives
s = RInv+ cRInu+Kk, (ideal gas) (64)

where K is an integration constant. Letting (s, V.
may be written

, Vo, Uy) denote any known reference state, this result

s—s, = RIn¥ +cRIn< . (ideal gas) (65)
VO uO

Note that, for an ideal gas, the changein entropy is additively separableinto individual and uncoupled
contributions from volume strain and internal energy”. Some generalizations of ideal gases Upon sim-
plification, the entropic fundamental potential is

s—s, = RIn Kv%) (u%) CJ . (ideal gas) (66)

The energetic fundamental potential isfound by ssimply solving Eqg. (65) for u(s, v):

1/c

g(s—%)/R
u=u,| ——m . (ideal gas) (67)
V/V,

As a special case, isentropic (s =s,) behavior implies that uv/¢ = u vl/c. Noting from Eg. (60)
that u = cPv, thismay be written

r — r ; i i
Pvi = P.v,, (ideal gas, isentropic) (68)
where
I's1+ % . (ideal gas, this CONSTANT parameter is an alternative to “c”) (69)

Hence, for an ideal gas, plotting the pressure-volume isentrope on log-log axes will produce a straight
line having slope I". If a measured pressure-volume isentrope is not a straight line on log-log axes,
then you know that the gas will not be well modeled using ideal gas theory.

With the fundamental potentials available, you can use the techniques described in this document
to compute any other state variables or material properties of interest. For example, applying Eq. (5),
and using an ellipsis (...) to indicate omitted simplification steps,

_ (oW _  _ u _ u .
p = _(av)s = .= 4= r-nd and (ideal gas) (70)

* Observations like this (i.e., about the general structure of fundamental potentials for idealized models) are often
used as a guide for more realistic theories. For example, the equation (ds/dv), = P/T generalizesto solids as
(as/ae) = ¢/(pT), where ¢ isthe elastic strain tensor, ¢ isthe conjugate stress, and p is the density. In anal-
ogy with ideal gases, one m|ght postulate s—s, = ¢[g] + \y[u] where the separable potentials would be deter-
mined in the laboratory.
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T = (%gjv == L= (. (ideal gas) (70b)

Applying the definitions on page 5 or the table on page 11, material properties associated with an
ideal gasare

T - (F;l)u p-RI (ideal gas) (72)
R v

Ks = TP ¢, = == y=Tr-1 (72)

S V. TI'-1
K c

Kr=P S -7 P =r (73)
T Cv

_ IR _P - (—LEJE =1
%= -1 S =5 B = \ru7 % =T 7

For the ideal gas, the specific heats are constant, but the other material properties are not constant.
Bulk moduli increase linearly with pressure (i.e., the material becomes stiffer with increasing com-
pression). The volumetric expansion property o, varies inversely with temperature (i.e., a tempera-
ture change at constant pressure induces a much larger change in volumetric strain at low
temperatures than it does at high temperatures).

Molar forms of the ideal gas potentials: So far, we have used specific (per mass) energies. For
example, u has Sl units of Joules per kilogram. Fundamental results like Egs. (65) and (67) can be
easily converted to molar form by replacing each “per mass’ variable x by

X = nx", (75)
where (as previously mentioned) n = N/M isthe number of moles per unit mass and therefore x* is
a “per mole” quantity. Making these substitutions in Egs. (65) and (67), recalling that R = nR,,
gives the molar forms for the fundamental potentials:

*
*

*
*
_ v
s —s, = R,In=+cR,In

. 4 (ideal gas) (76)
V0 u0
. . e(s*—s;)/Ru Le _
u = Uy ——— . (ideal gas) (77)
vV /V,

These molar forms involve the universal gas constant R, whereas the equivalent specific (mass-
based) forms involve the material-specific gas constant R = nR,. Different ideal gases have differ-
ent gas constants R, but they all have the same universal gas constant. This is the primary advantage
of the molar form over the “per mass’ form. The molar form involves true constants, not parameters
that vary from material to material. As far as materials modeling goes, the main thing that distin-
guishes one ideal gas from another isitsvalue of n (i.e., the number of moles per mass).
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