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Rebecca Brannon (c) July 16, 2015
Recursion tables for thermostatic derivatives

Any person working on thermodynamics must eventually master the skill of converting thermody-
namic derivatives into expressions involving only measurable material state variables and tabulated
material properties. However, a systematic means of doing so is rarely presented in thermodynamics
textbooks. Most students take a “random walk” through various nebulous identities, hoping to even-
tually stumble upon the answer. This document makes the process systematic (guaranteed success).

Classical reversible thermostatics is mostly math, not physics. It is a grand application of the cal-
culus of functions of two variables, founded on the constitutive* assumption that the internal energy
per unit mass  is expressible as a function of the specific volume  (i.e., volume per mass, which is
1/density) and the entropy . This function  is called a fundamental potential because all other
quantities of interest in thermodynamics can be determined from it. For example, as explained in any
undergraduate thermodynamics textbook, the temperature  and pressure  can be found by

and (1)

To be a fundamental potential, the internal energy must be expressed as a function of  and , so we
call these two independent variables the “natural” variables for the internal energy. 

Equation (1a) implies that T is a function of s and v. In principle, this equation could be solved for
s as a function of T and v. You could then substitute  into  to obtain . Sadly, the
function  is not a fundamental potential. It has lost information content. Having only ,
you will no longer be able to uniquely determine all thermodynamic quantities. The fact that 
embodies less information than  is not obvious — the proof and further information can be
found in most advanced thermodynamics textbooks.† Fortunately, all is not lost. Even though 
is not a fundamental potential, there is a different energy measure that is a fundamental potential
when it is expressed as a function of T and v. If you seek a fundamental potential for which  and 
are the independent natural variables (instead of  and ), then you must use a “contact” (Legendre)
transformation to introduce an alternative energy measure, called the Helmholtz free energy:

(2)

As outlined in any good thermodynamics textbook, this new variable is a fundamental potential func-
tion when it is expressed in terms of  and . With it, you may compute entropy and pressure by

and (3)

Similar strategies and introductions of new energies (potentials) can be applied to permit construction
of fundamental potentials in terms of any convenient pair of thermomechanical state variables. The
process leaves us with so many formulas, that mnemonics and executive summary tables are needed
to keep everything organized and useful.

* The word “constitutive” means “relating to a particular material or class of materials, possibly further restricted 
to certain constraints on service conditions.” For example, many materials can be regarded to be elastic under 
strict conditions on, say, the magnitude and/or duration of loading. In classical thermostatics, we consider mate-
rials and service conditions for which only two independent variables, perhaps entropy and volume, are needed 
to fix the values of all other quantities of interest (such as pressure and temperature). This constitutive assump-
tion is broadly applicable to gases and inviscid fluids and also applicable to isotropic solids when the deforma-
tions are constrained to allow changes in size but not changes in shape.

† e.g. Thermodynamics and an Introduction to Thermostatistics (1985) by H.B. Callen.
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Thermodynamic square
The thermodynamic square is a mnemonic device that helps you recall the nat-
ural variables associated with the energies, as well as many other things such
as the Legendre transformations and Maxwell’s relations. The square is con-
structed by placing the state variables on the corners and the energies on the
edges, along with two arrows as shown.

State variables (corners of the thermodynamic square):

 = specific volume (= , where  is mass density) m3/kg
 = temperature K
 = pressure N/m2 = J/m3

 = specific entropy J/(kg•K)

Energies* (edges of the thermodynamic square):

a = Helmholtz free energy = natural function of  and J/kg
g = Gibbs free energy = natural function of  and J/kg
h = enthalpy = natural function of  and J/kg
u = specific internal energy = natural function of  and J/kg

The Legendre transformations (i.e., the relationships between the energies) are inferred from the ther-
modynamic square by subtracting energies in the off-diagonals in the same directions as the arrows:

 and (4)

In the thermodynamic square, the energies are surrounded by their natural variables. Looking at
the square, for example,  is a fundamental potential because u is surrounded by s and v. Gibbs
free energy is a fundamental potential when it is written in the form . Similarly, according to
the thermodynamic square,  and  are fundamental potentials. With a fundamental
potential, you can get “everything else.” For example, the Gibbsian relations give

(5a)

(5b)

These equations apply when differentiating with respect to an energy’s natural variable, holding the
other natural variable constant. The final result is found by moving diagonally across the square, set-
ting the  sign based on whether you move with or against the arrow. If  denotes any of the ener-
gies  and if  and  are the natural variables associated with e, then

(6)

where  is the variable diagonally opposite from  on the thermodynamic square multiplied by +1 if
traversing the diagonal moves with the arrow, or –1 if opposing the arrow. Specifically, 

, , , and  . (7)

The formulas listed explicitly in Eq. (5) are specific instances of the generic Eq. (6).

* The energies are also “state variables” in the sense that they return to their original value for any closed path of 
variations in the other state variables.
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The thermodynamic square can also be used to recall Maxwell’s relations:

These formulas all involve derivatives of a state variable with respect to another state variable on the
same edge of the thermodynamic square. The variable held constant can be either of the two state
variables on the other side of the square. An edge derivative like this is equated to its mirror-image
edge derivative across the square with the  sign assigned to be “+” if the symmetry of the edges is
the same as that of the arrows or “–” otherwise. For example, in Maxwell’s relations,

 involves variables v and s, which are on a vertical edge

uses the corresponding “mirror-image” variables on the other vertical edge

In this case, we are talking about vertical edges. The arrows are also symmetric about the vertical. 
Therefore a positive sign is used in the Maxwell relation.

involves variables v and T, which are on a horizontal edge

uses the corresponding “mirror-image” variables on the other horizontal edge

In this case, we are talking about horizontal edges, but the arrows are symmetric about the 
vertical. Therefore a negative sign is used in the Maxwell relation.

IMPORTANT: what is being held constant in the derivative matters. Maxwell relations involve only
state variables (corners of the thermodynamic square). Moreover, not only are the major players in the
derivative following edge symmetry, but the thing being held constant is too. For example

, but (8)

In thermodynamics, partial derivatives are almost always of the form , which quanti-
fies how some variable “A” changes in response to changes of “B” during processes that hold “C”
fixed. Changing the constraint (i.e., changing the thing held constant) will change the meaning of the
partial derivative. A partial derivative  that fails to indicate what is being held constant is
meaningless. There are 336 ways to form derivatives of the form  using the eight thermo-
dynamics variables . Of these, some will have reasonably intuitive physical
meanings. As a rule, derivatives that involve only corner state variables  can be readily
interpreted physically, and are most likely to be measured in the lab and tabulated in handbooks. We
call these material properties (they are functions of the thermodynamic state, not constants). For
example, the derivative  represents the volume change produced in a gas if the temperature
is increased while holding the pressure constant. Similarly,  is the local slope of a pressure-
volume curve measured under isothermal conditions. Of the 336 possible derivatives, the ones that
involve energies often lack apparent meaning. For example,  is bizarre and incomprehensi-
ble. We need a way to transform the derivatives involving energies into expressions that involve more
easily interpreted elements. “Distilling” is the process of converting any derivative into a form
involving only state variables  and material property derivatives (which are meaningful
and often tabulated in handbooks). Simplifying the distilling process is the goal of this document.

v a T

u

s h P

g

∂v
∂s
----- 
 

P

∂T
∂P
------ 
 

s
=

∂v
∂T
------ 
 

P

∂s
∂P
------ 
 

T
–=

∂s
∂v
----- 
 

T

∂P
∂T
------ 
 

v
=

∂T
∂v
------ 
 

s

∂P
∂s
------ 
 

v
–=

∂v
∂s
----- 
 

T

∂T
∂P
------ 
 

v
=

∂v
∂T
------ 
 

s

∂s
∂P
------ 
 

v
–=

∂s
∂v
----- 
 

P

∂P
∂T
------ 
 

s
=

∂T
∂v
------ 
 

P

∂P
∂s
------ 
 

T
–=

 ±

∂v
∂s
-----

∂T
∂P
------

∂v
∂T
------

∂s
∂P
------

∂v
∂s
----- 
 

P

∂T
∂P
------ 
 

s
= ∂v

∂s
----- 
 

P

∂T
∂P
------ 
 

v
≠

∂A ∂B⁄( )C

∂A ∂B⁄
∂A ∂B⁄( )C

P v s T u a h g, , , , , , ,( )
P v s T, , ,( )

∂v ∂T⁄( )P
∂P ∂v⁄( )T

∂s ∂h⁄( )a

P v s T, , ,( )
3



A
ut

ho
r:

 R
eb

ec
ca

 M
. B

ra
n

no
n.

 C
op

yr
ig

ht
 is

 r
es

er
ve

d.
 C

o
pi

es
 m

ay
 b

e 
m

ad
e 

fo
r 

in
di

vi
du

a
l u

se
, b

ut
 n

o
t f

or
 p

ro
fit

. L
as

t u
pd

a
te

d 
Ju

ly
 1

6,
 2

01
5 

10
:5

9 
am

.
C

O
M

M
E

N
T

S
?

 S
en

d
 y

o
u

r 
fe

ed
b

a
ck

 (
es

p
ec

ia
lly

 t
y

p
o

 a
le

rt
s)

 t
o

co
m

p
u

ta
ti

o
n

al
so

lid
m

ec
h

an
ic

s@
g

m
ai

l.c
o

m

Thermostatic material properties:

The state variables  are regarded as easily measurable or easily controllable in the lab. In
any process, only two state variables can be independently controlled at any time. Standard experi-
ments will vary one state variable while holding a second state variable constant (thus controlling
exactly two variables). The resulting variation of the other two state variables is recorded. Suppose,
for example, that an experiment is conducted in which the volume is varied under thermally insulated
(AKA, adiabatic, constant entropy, isentropic*) conditions. Then the data record how the dependent
state variables (pressure and temperature) change in response to this adiabatic volume change. The
isentropic bulk modulus (a material property) is determined from the adiabatic pressure-volume
curve. The adiabatic temperature-volume curve leads to a lesser-known material property called the
Grüneisen parameter. You can perform different experiments that vary different state variables, hold-
ing different state variables constant. In every case, the slopes of the response functions are propor-
tional to material properties. Properties that can be measured in this way are listed below:

 = Bulk modulus at constant temperature J/m3 = N/m2

 = bulk modulus at constant entropy J/m3 = N/m2

 = compressibility at constant temperature = m3/J

 = compressibility at constant entropy = m3/J

 = specific heat at constant volume J/(kg•K)

 = specific heat at constant pressure J/(kg•K)

 = change in pressure with respect to temperature at constant volume J/(m3•K)

 = change in pressure with respect to temperature at constant entropy J/(m3•K)

 = volumetric thermal expansion coefficient at constant pressure 1/K

 = the Grüneisen parameter dimensionless

Material properties are defined equal to (or proportional to) the derivative of one state variable
 with respect to a second state variable, holding a third state variable constant. In light of

the relationships listed in Eq. (5), only three of the above ten material properties are independent —
all of the others can be computed from them. A goal of this document is to show you how to perform
these conversions between properties. Specifically, if you have a handbook that lists three properties
but you really want a different property, then you can compute it. Material properties are sometimes
defined in terms of second derivatives of the energies with respect to their natural variables. For
example, since the isentropic bulk modulus is defined to be proportional to the slope of the isentropic
pressure-volume curve, we know it is proportional to , which (using the first expression in
Eq. 5a) is equivalent to . Each energy is expressible as a function of its two natural vari-
ables. Any function of two variables has exactly three independent second-partial derivatives. There-
fore natural groupings of three independent material properties correspond to the second-partial
derivatives of an energy. Since there are four energies , material property triplets found in
handbooks usually correspond to second-partials of one of the energy functions.

* In general, adiabatic means “no heat flow is permitted into our out from the system,” while isentropic means “no 
entropy is generated.” For general materials, these terms mean different things because, even under adiabatic 
conditions, it is still possible to generate entropy via irreversible material dissipation (which is like internal heat-
ing from friction, as opposed to external heating supplied directly from an outside source). This effect can be 
modeled only by permitting the energy function to depend on more than just two state variables — it must addi-
tionally depend on other “internal state variables.” Even without material dissipative mechanisms, you can still 
generate entropy under adiabatic conditions by applying the load dynamically. This document covers only classi-
cal thermostatics in which material dissipation is zero and loads are applied very slowly. In this case, adiabatic 
and isentropic are synonymous.
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Material properties are proportional to (not always identical to) derivatives of one state variable
holding a third state variable constant. The proportionality factors are introduced merely as a conve-
nience. For example, the derivatives that define material properties often contain negative signs to
ensure that the definition will be positive for most materials. Material property definitions involving
differentials of specific volume  usually contain a normalizing factor of the specific volume itself,
which alters the meaning slightly from being an increment in volume to an increment in volumetric
strain, defined *. Here,  is any constant reference volume; which goes away in dif-
ferential form (i.e.,  is independent of ). With this logarithmic definition of volumetric
strain, the expression  is equivalent to . Material property definitions involving the differ-
ential of entropy  are likewise usually multiplied by T because Tds is the heat increment (for
reversible processes). This said, the mathematical definitions of the above thermodynamic properties
are listed below, categorized according to whether they characterize mechanical effects, thermal
effects, or thermo-mechanical coupling effects.

Mechanical material properties (pressure-volume relationships): units

= J/m3

= J/m3

= m3/J

= m3/J

Thermal material properties (temperature-entropy relationships):

= J/(kg•K)

= J/(kg•K)

Thermomechanical (coupling) material properties:

= 1/K

= J/(m3•K)

= J/(m3•K)

= dimensionless

* For small volume changes,  and therefore . Thus, the logarithmic strain 
reduces to engineering strain in this case. The logarithmic strain is ideal for generalization to large volume 
changes because it goes to  at full expansion and  at full compression (zero volume). Engineering strain 
does not obey this nice property.
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These expressions show how each material property is related to second derivatives of energy poten-
tials. The physically meaningful (practical) definitions, which are cited first, would be used to set up
laboratory experiments to measure the properties. The volumetric expansion coefficient  is the
increment in volumetric strain [ ] induced per unit change in temperature, measured
while holding the pressure constant. Similarly, since “ ” equals the increment  in volumetric
strain, the isothermal bulk modulus  is the slope of the pressure vs. strain curve that is measured
under constant temperature conditions. The definition of  uses a negative because, for most mate-
rials, an increase in volume usually corresponds to a decrease in pressure, making . For a
reversible process, heat flow is proportional to the entropy production. Consequently, any derivative
that holds  constant may be regarded as a measurement taken under quasistatic insulated conditions.
For example,  is the (negative) slope of the pressure-strain curve that is measured without permit-
ting heat to flow into or away from the system. For reversible thermoelasticity, the increment of heat
(per unit mass) added to a system equals ; therefore, the specific heats (  and ) can be
regarded as the amount of heat needed to induce a unit change in temperature in a unit mass — the
result depends on whether the heat is added at constant volume or at constant pressure, which is why
there are two specific heats.

Distilling derivatives

The goal of this document is to outline a “never-fail” procedure for you to convert any partial
derivative of the form  into an expression that involves only state variables and material
properties. If you encounter a derivative  in which one of the letters of the alphabet

 is repeated, then you would apply one of the following

(9)

You will never see all three letters in a derivative repeated. Specifically,   is meaningless. 

Most of the time, you won’t be so lucky to have the same variable appearing twice in a derivative,
so simplification is more arduous. Recall that all of the material property definitions involve the
derivative of one state variable with respect to a second state variable, holding a third state variable
constant. In other words, none of the material property derivatives explicitly involves an energy

. Consequently, the first task is to eliminate energies from a partial derivative. Given a
derivative of the form , suppose that “A” is an energy. If the independent variables (B and
C) happen to be the same as the energy’s natural variables, then you can simply apply Eq. (6), and
you’re done. Equation (6) holds only when differentiating with respect to one of the energy’s natural
state variables, holding the other natural variable constant. Suppose that the natural variables associ-
ated with an energy  (i.e., either , ,  or ) are  and , and you wish to simplify a derivative of
the form , where  and/or  are not natural variables for that energy. In this case, you
would use the chain rule so that you can implicitly introduce the natural variable function

. Specifically

(10)

Now that we have derivatives involving natural variables, Eq. (6) may be used to write

(11)

This process has eliminated the energy e from being explicitly present. If  and  are state variables,
then the remaining derivatives in this expression can be equated to material properties (or the deriva-
tives can be simplified using Eq. 9 if two variables happen to match each other), and you will have
succeeded in fully distilling your original derivative into a form involving readily measurable quanti-

αp
dεv dv( ) v⁄=

dv v⁄ dεv
KT

KT
KT 0>

s
Ks

TΔs cv cp

∂A ∂B⁄( )C
∂A ∂B⁄( )C

A B or C, ,( )

∂A
∂A
------ 
 

C
1=

∂A
∂B
------ 
 

A
0=

∂A
∂B
------ 
 

B
∞=

∂A ∂A⁄( )A

u a g h, , ,( )
∂A ∂B⁄( )C

e a g h u x y
∂e ∂p⁄( )q p q

e e x y,( )=

∂e
∂p
------ 
 

q

∂e
∂x
----- 
 

y

∂x
∂p
------ 
 

q

∂e
∂y
----- 
 

x

∂y
∂p
------ 
 

q
+=

∂e
∂p
------ 
 

q
x∗ ∂x

∂p
------ 
 

q
y∗ ∂y

∂p
------ 
 

q
+=

p q
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ties. On the other hand, if  and/or  is an energy, then more work remains. For each of the remain-
ing derivatives, you must use multivariable calculus to recast them into a form that puts the energy in
the “numerator”, at which point you can apply a version of Eq. (11) for each energy you wish to
remove. Given a generic partial derivative of the form  two key calculus identities are
used at this stage. To change things so that “B” (instead of “A”) is differentiated, use

. (12)

To change things so that “C” (instead of “A”) is differentiated, use

. (cyclic identity) (13)

Sidebar: The presence of the negative sign in Eq. 13 might be confusing to readers who are rusty in

multivariable calculus. After all, for ordinary single variable calculus, “everyone” knows that

. There is no negative in this equation, so why is there one in Eq. 13? The answer

revolves around what is being held constant in derivatives. Suppose that  is a function of a second

variable  so that . It is definitely true that . This equation has no

negative sign because  is held constant in all derivatives, so this formula is effectively making a

statement about a world in which  is always constant in every derivative (so your favorite formulas

from single-variable calculus still apply). Contrast this result with Eq. 13, which has different things

held constant in all three derivatives. To get Eq. 13, you first note that the very act of writing

 implies that, at least in some local neighborhood, . Imagine locally inverting

this relationship to obtain  so that . In a world where  is

constant, we know that  and this incremental equation may be solved for  to give the

right-hand-side of Eq. 13, negative sign and all. To emphasize that the result applies when  is held

constant, you must note that  is really .

To reiterate, if an energy is the thing being differentiated, your first task is always to apply Eq. (11) to
get rid of it! If the remaining derivatives involve no energies, then you are done because they must be
expressible in terms of material properties and/or state variables. Otherwise, if you still have partial
derivatives involving energies, then you need to use Eq (12) or (13) to move those energies so that
they become the things being differentiated, after which Eq. (11) can be applied to eliminate them.
Always follow the sequence (first eliminate from “numerator”, then “denominator”, then the “held
constant” part) to produce an expression that involves only measurable quantities (material state vari-
ables and material properties). Deviating from the sequence will get you nowhere.

The derivative distilling process is essentially recursive. To expedite this stage of the work, we
have provided computer-generated recursion tables that show you which partial derivative identities
[Eqs. 9, 11, 12 or 13] you need to use. The recursion tables provide formulas for every possible deriv-
ative of the form  that can be made using the eight thermodynamics variables

.

p q

∂A ∂B⁄( )C

∂A
∂B
------ 
 

C

1
∂B ∂A⁄( )C

--------------------------=

∂A
∂B
------ 
 

C

∂C ∂B⁄( )A

∂C ∂A⁄( )B
--------------------------–=

dy
dx
------ dz dx⁄

dz dy⁄
---------------=

y

α y y x α,( )=
∂y
∂x
----- 
 

α

∂z ∂x⁄( )α
∂z ∂y⁄( )a

-----------------------=

α

α

∂A ∂B⁄( )C A A B C,( )=

C C A B,( )= dC
∂C
∂A
------- 
 

B
dA

∂C
∂B
------- 
 

A
dB+= C

dC 0= dA dB⁄

C

dA
dB
------- ∂A

∂B
------ 
 

C

∂A ∂B⁄( )C
P v T s u a g h, , , , , , ,( )
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Instructions for using the recursion tables:

In the tables to follow, any three-character symbol of the form “ABC” is a short-hand notation for
, which is the derivative of  with respect to  holding  constant. 

The three-column computer-generated recursion table (spanning pages 9 and 10) permits you to
reformulate any thermodynamic derivative of the form  so that it is ultimately phrased
only in terms of state variables and material property derivatives (i.e., in terms of “measurable
things”). The first step is to recursively apply this three-column table until it provides no further sim-
plification. Then the “Material property recursion table” on page 11 is applied to express the result in
terms of whatever set of material properties you have available in a handbook.

A worst-case scenario. Recall that distilling derivatives requires using identities and thermody-
namic relationships to re-write a derivative into a form that involves no explicit presence of energies.
Therefore, the most difficult derivative to distill would be the partial derivative of an energy with
respect to an energy, holding an energy constant. Suppose, for example, you wish to express the
derivative  in terms of state variables and material properties. First write this derivative in
our shorthand notation as “agh”. The first table tells you that “agh” equals “-s Tgh -P vgh”, which
translates into more conventional notation as . This entry is simply
applying Eq. (11) to eliminate the Helmholtz free energy “a” from being explicitly present. Your new
expression still involves some different energies (  and ) in the derivatives Tgh and vgh, so you
must go back to the table and look them up. You will find that the table cites entries that apply
Eq. (12) to move the energy  so that it becomes the thing being differentiated. Again applying the
table leads to yet another application of Eq. (11), this time to remove the Gibbs function “g” from
being explicitly present. At this stage, you will have derivatives involving the enthalpy  held con-
stant. Looking up these derivatives in the table gives entries that apply Eq. (13) to move  so that it
becomes the thing differentiated. Applying the table one last time gives entries that apply Eq. (11),
after which the three-column computer-generated table produces no further changes. By back substi-
tution, you will have succeeded in expressing the original derivative in terms of state variables and
“primitive” material property derivatives.

Example 1

Suppose that you wish to distill the derivative of the Helmholtz free energy with respect to
entropy holding pressure constant, . In other words, suppose that you desire to express this
derivative in terms of measured material properties and the thermodynamic state. This derivative,

, is denoted “asP” in our notation. The first table (starting on page 9) says

asP =  -s TsP  -P vsP

TsP = TsP

vsP = vsP

The first table provides no alteration of either TsP or vsP. Hence, they are “primitive” material deriv-
atives, and they may be looked up in the second table on page 11, which says that

TsP = 

vsP = 

Thus, by back substitution,

(14)

With this, we have achieved our goal of expressing the original derivative in terms of state variables
(s, T, and P) and material properties (  and ). 

∂A ∂B⁄( )C A B C

∂A ∂B⁄( )C

∂a ∂g⁄( )h

∂a ∂g⁄( )h s ∂T ∂g⁄( )h– P ∂v ∂g⁄( )h–=

g h

g

h
h

∂a ∂s⁄( )P

∂a ∂s⁄( )P

T cp⁄
1 Bs⁄

∂a
∂s
------ 
 

P

sT
cp
------– P

Bs
-----–=

cp Bs
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 aag = 1  
 aah = 1  
 aaP = 1  
 aas = 1  
 aaT = 1  
 aau = 1  
 aav = 1  
 aga = 0  
 agg = Infinity 
 agh =  -s Tgh  -P vgh 
 agP =  -s TgP  -P vgP 
 ags =  -s Tgs  -P vgs 
 agT =  -P vgT
 agu =  -s Tgu  -P vgu 
 agv =  -s Tgv
 aha = 0  
 ahg =  -s Thg  -P vhg 
 ahh = Infinity 
 ahP =  -s ThP  -P vhP 
 ahs =  -s Ths  -P vhs 
 ahT =  -P vhT
 ahu =  -s Thu  -P vhu 
 ahv =  -s Thv
 aPa = 0  
 aPg =  -s TPg  -P vPg 
 aPh =  -s TPh  -P vPh 
 aPP = Infinity 
 aPs =  -s TPs  -P vPs 
 aPT =  -P vPT
 aPu =  -s TPu  -P vPu 
 aPv =  -s TPv
 asa = 0  
 asg =  -s Tsg  -P vsg 
 ash =  -s Tsh  -P vsh 
 asP =  -s TsP  -P vsP 
 ass = Infinity 
 asT =  -P vsT
 asu =  -s Tsu  -P vsu 
 asv =  -s Tsv
 aTa = 0  
 aTg =  -s  -P vTg  
 aTh =  -s  -P vTh  
 aTP =  -s  -P vTP  
 aTs =  -s  -P vTs  
 aTT = Infinity 
 aTu =  -s  -P vTu  
 aTv =  -s 
 aua = 0  
 aug =  -s Tug  -P vug 
 auh =  -s Tuh  -P vuh 
 auP =  -s TuP  -P vuP 
 aus =  -s Tus  -P vus 
 auT =  -P vuT
 auu = Infinity 
 auv =  -s Tuv
 ava = 0  
 avg =  -s Tvg  -P  
 avh =  -s Tvh  -P  
 avP =  -s TvP  -P  
 avs =  -s Tvs  -P  
 avT =  -P 
 avu =  -s Tvu  -P  
 avv = Infinity 
 gaa = Infinity 
 gag = 0  
 gah =  -s Tah  +v Pah 
 gaP =  -s TaP
 gas =  -s Tas  +v Pas 
 gaT =v PaT
 gau =  -s Tau  +v Pau 
 gav =  -s Tav  +v Pav 
 gga = 1  
 ggh = 1  
 ggP = 1  
 ggs = 1  
 ggT = 1  
 ggu = 1  
 ggv = 1  
 gha =  -s Tha  +v Pha 
 ghg = 0  
 ghh = Infinity 
 ghP =  -s ThP
 ghs =  -s Ths  +v Phs 
 ghT =v PhT
 ghu =  -s Thu  +v Phu 
 ghv =  -s Thv  +v Phv 
 gPa =  -s TPa  +v  
 gPg = 0  
 gPh =  -s TPh  +v  
 gPP = Infinity 
 gPs =  -s TPs  +v  
 gPT =v 
 gPu =  -s TPu  +v  
 gPv =  -s TPv  +v  
 gsa =  -s Tsa  +v Psa 
 gsg = 0  
 gsh =  -s Tsh  +v Psh 
 gsP =  -s TsP
 gss = Infinity 
 gsT =v PsT
 gsu =  -s Tsu  +v Psu 
 gsv =  -s Tsv  +v Psv 
 gTa =  -s  +v PTa  
 gTg = 0  
 gTh =  -s  +v PTh  
 gTP =  -s 
 gTs =  -s  +v PTs  
 gTT = Infinity 
 gTu =  -s  +v PTu  
 gTv =  -s  +v PTv  
 gua =  -s Tua  +v Pua 
 gug = 0  
 guh =  -s Tuh  +v Puh 
 guP =  -s TuP
 gus =  -s Tus  +v Pus 
 guT =v PuT
 guu = Infinity 
 guv =  -s Tuv  +v Puv 
 gva =  -s Tva  +v Pva 
 gvg = 0  
 gvh =  -s Tvh  +v Pvh 
 gvP =  -s TvP
 gvs =  -s Tvs  +v Pvs 
 gvT =v PvT
 gvu =  -s Tvu  +v Pvu 
 gvv = Infinity 
 haa = Infinity 
 hag =T sag  +v Pag 
 hah = 0  
 haP =T saP
 has =v Pas
 haT =T saT  +v PaT 
 hau =T sau  +v Pau 
 hav =T sav  +v Pav 
 hga =T sga  +v Pga 
 hgg = Infinity 
 hgh = 0  
 hgP =T sgP
 hgs =v Pgs
 hgT =T sgT  +v PgT 
 hgu =T sgu  +v Pgu 
 hgv =T sgv  +v Pgv 
 hha = 1  
 hhg = 1  
 hhP = 1  
 hhs = 1  
 hhT = 1  
 hhu = 1  
 hhv = 1  
 hPa =T sPa  +v  
 hPg =T sPg  +v  
 hPh = 0  
 hPP = Infinity 
 hPs =v 
 hPT =T sPT  +v  
 hPu =T sPu  +v  
 hPv =T sPv  +v  
 hsa =T  +v Psa  
 hsg =T  +v Psg  
 hsh = 0  
 hsP =T 
 hss = Infinity 
 hsT =T  +v PsT  
 hsu =T  +v Psu  
 hsv =T  +v Psv  
 hTa =T sTa  +v PTa 
 hTg =T sTg  +v PTg 
 hTh = 0  
9

 hTP =T sTP
 hTs =v PTs
 hTT = Infinity 
 hTu =T sTu  +v PTu 
 hTv =T sTv  +v PTv 
 hua =T sua  +v Pua 
 hug =T sug  +v Pug 
 huh = 0  
 huP =T suP
 hus =v Pus
 huT =T suT  +v PuT 
 huu = Infinity 
 huv =T suv  +v Puv 
 hva =T sva  +v Pva 
 hvg =T svg  +v Pvg 
 hvh = 0  
 hvP =T svP
 hvs =v Pvs
 hvT =T svT  +v PvT 
 hvu =T svu  +v Pvu 
 hvv = Infinity 
 Paa = Infinity 
 Pag = 1 / aPg  
 Pah = 1 / aPh  
 PaP = 0  
 Pas = 1 / aPs  
 PaT = 1 / aPT  
 Pau = 1 / aPu  
 Pav = 1 / aPv  
 Pga = 1 / gPa  
 Pgg = Infinity 
 Pgh = 1 / gPh  
 PgP = 0  
 Pgs = 1 / gPs  
 PgT = 1 / gPT  
 Pgu = 1 / gPu  
 Pgv = 1 / gPv  
 Pha = 1 / hPa  
 Phg = 1 / hPg  
 Phh = Infinity 
 PhP = 0  
 Phs = 1 / hPs  
 PhT = 1 / hPT  
 Phu = 1 / hPu  
 Phv = 1 / hPv  
 PPa = 1  
 PPg = 1  
 PPh = 1  
 PPs = 1  
 PPT = 1  
 PPu = 1  
 PPv = 1  
 Psa = - asP / aPs 
 Psg = - gsP / gPs 
 Psh = - hsP / hPs 
 PsP = 0  
 Pss = Infinity 
 PsT =  1  /  sPT
 Psu = - usP / uPs 
 Psv = Psv
 PTa = - aTP / aPT 
 PTg = - gTP / gPT 
 PTh = - hTP / hPT 
 PTP = 0  
 PTs =  1  /  TPs
 PTT = Infinity 
 PTu = - uTP / uPT 
 PTv = PTv
 Pua = 1 / uPa  
 Pug = 1 / uPg  
 Puh = 1 / uPh  
 PuP = 0  
 Pus = 1 / uPs  
 PuT = 1 / uPT  
 Puu = Infinity 
 Puv = 1 / uPv  
 Pva = - avP / aPv 
 Pvg = - gvP / gPv 
 Pvh = - hvP / hPv 
 PvP = 0  
 Pvs = Pvs
 PvT = PvT
 Pvu = - uvP / uPv 
 Pvv = Infinity 
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 saa = Infinity 
 sag = 1 / asg  
 sah = 1 / ash  
 saP = 1 / asP  
 sas = 0  
 saT = 1 / asT  
 sau = 1 / asu  
 sav = 1 / asv  
 sga = 1 / gsa  
 sgg = Infinity 
 sgh = 1 / gsh  
 sgP = 1 / gsP  
 sgs = 0  
 sgT = 1 / gsT  
 sgu = 1 / gsu  
 sgv = 1 / gsv  
 sha = 1 / hsa  
 shg = 1 / hsg  
 shh = Infinity 
 shP = 1 / hsP  
 shs = 0  
 shT = 1 / hsT  
 shu = 1 / hsu  
 shv = 1 / hsv  
 sPa = - aPs / asP 
 sPg = - gPs / gsP 
 sPh = - hPs / hsP 
 sPP = Infinity 
 sPs = 0  
 sPT = sPT
 sPu = - uPs / usP 
 sPv =  1  /  Psv
 ssa = 1  
 ssg = 1  
 ssh = 1  
 ssP = 1  
 ssT = 1  
 ssu = 1  
 ssv = 1  
 sTa = - aTs / asT 
 sTg = - gTs / gsT 
 sTh = - hTs / hsT 
 sTP = sTP
 sTs = 0  
 sTT = Infinity 
 sTu = - uTs / usT 
 sTv = sTv
 sua = 1 / usa  
 sug = 1 / usg  
 suh = 1 / ush  
 suP = 1 / usP  
 sus = 0  
 suT = 1 / usT  
 suu = Infinity 
 suv = 1 / usv  
 sva = - avs / asv 
 svg = - gvs / gsv 
 svh = - hvs / hsv 
 svP =  1  /  vsP
 svs = 0  
 svT = svT
 svu = - uvs / usv 
 svv = Infinity 
 Taa = Infinity 
 Tag = 1 / aTg  
 Tah = 1 / aTh  
 TaP = 1 / aTP  
 Tas = 1 / aTs  
 TaT = 0  
 Tau = 1 / aTu  
 Tav = 1 / aTv  
 Tga = 1 / gTa  
 Tgg = Infinity 
 Tgh = 1 / gTh  
 TgP = 1 / gTP  
 Tgs = 1 / gTs  
 TgT = 0  
 Tgu = 1 / gTu  
 Tgv = 1 / gTv  
 Tha = 1 / hTa  
 Thg = 1 / hTg  
 Thh = Infinity 
 ThP = 1 / hTP  
 Ths = 1 / hTs  
 ThT = 0  
 Thu = 1 / hTu  
 Thv = 1 / hTv  
 TPa = - aPT / aTP 
 TPg = - gPT / gTP 
 TPh = - hPT / hTP 
 TPP = Infinity 
 TPs = TPs
 TPT = 0  
 TPu = - uPT / uTP 
 TPv =  1  /  PTv
 Tsa = - asT / aTs 
 Tsg = - gsT / gTs 
 Tsh = - hsT / hTs 
 TsP = TsP
 Tss = Infinity 
 TsT = 0  
 Tsu = - usT / uTs 
 Tsv = Tsv
 TTa = 1  
 TTg = 1  
 TTh = 1  
 TTP = 1  
 TTs = 1  
 TTu = 1  
 TTv = 1  
 Tua = 1 / uTa  
 Tug = 1 / uTg  
 Tuh = 1 / uTh  
 TuP = 1 / uTP  
 Tus = 1 / uTs  
 TuT = 0  
 Tuu = Infinity 
 Tuv = 1 / uTv  
 Tva = - avT / aTv 
 Tvg = - gvT / gTv 
 Tvh = - hvT / hTv 
 TvP =  1  /  vTP
 Tvs = Tvs
 TvT = 0  
 Tvu = - uvT / uTv 
 Tvv = Infinity 
 uaa = Infinity 
 uag =T sag  -P vag 
 uah =T sah  -P vah 
 uaP =T saP  -P vaP 
 uas =  -P vas
 uaT =T saT  -P vaT 
 uau = 0  
 uav =T sav
 uga =T sga  -P vga 
 ugg = Infinity 
 ugh =T sgh  -P vgh 
 ugP =T sgP  -P vgP 
 ugs =  -P vgs
 ugT =T sgT  -P vgT 
 ugu = 0  
 ugv =T sgv
 uha =T sha  -P vha 
 uhg =T shg  -P vhg 
 uhh = Infinity 
 uhP =T shP  -P vhP 
 uhs =  -P vhs
 uhT =T shT  -P vhT 
 uhu = 0  
 uhv =T shv
 uPa =T sPa  -P vPa 
 uPg =T sPg  -P vPg 
 uPh =T sPh  -P vPh 
 uPP = Infinity 
 uPs =  -P vPs
 uPT =T sPT  -P vPT 
 uPu = 0  
 uPv =T sPv
 usa =T  -P vsa  
 usg =T  -P vsg  
 ush =T  -P vsh  
 usP =T  -P vsP  
 uss = Infinity 
 usT =T  -P vsT  
 usu = 0  
 usv =T 
 uTa =T sTa  -P vTa 
 uTg =T sTg  -P vTg 
10
 uTh =T sTh  -P vTh 
 uTP =T sTP  -P vTP 
 uTs =  -P vTs
 uTT = Infinity 
 uTu = 0  
 uTv =T sTv
 uua = 1  
 uug = 1  
 uuh = 1  
 uuP = 1  
 uus = 1  
 uuT = 1  
 uuv = 1  
 uva =T sva  -P  
 uvg =T svg  -P  
 uvh =T svh  -P  
 uvP =T svP  -P  
 uvs =  -P 
 uvT =T svT  -P  
 uvu = 0  
 uvv = Infinity 
 vaa = Infinity 
 vag = 1 / avg  
 vah = 1 / avh  
 vaP = 1 / avP  
 vas = 1 / avs  
 vaT = 1 / avT  
 vau = 1 / avu  
 vav = 0  
 vga = 1 / gva  
 vgg = Infinity 
 vgh = 1 / gvh  
 vgP = 1 / gvP  
 vgs = 1 / gvs  
 vgT = 1 / gvT  
 vgu = 1 / gvu  
 vgv = 0  
 vha = 1 / hva  
 vhg = 1 / hvg  
 vhh = Infinity 
 vhP = 1 / hvP  
 vhs = 1 / hvs  
 vhT = 1 / hvT  
 vhu = 1 / hvu  
 vhv = 0  
 vPa = - aPv / avP 
 vPg = - gPv / gvP 
 vPh = - hPv / hvP 
 vPP = Infinity 
 vPs = vPs
 vPT = vPT
 vPu = - uPv / uvP 
 vPv = 0  
 vsa = - asv / avs 
 vsg = - gsv / gvs 
 vsh = - hsv / hvs 
 vsP = vsP
 vss = Infinity 
 vsT =  1  /  svT
 vsu = - usv / uvs 
 vsv = 0  
 vTa = - aTv / avT 
 vTg = - gTv / gvT 
 vTh = - hTv / hvT 
 vTP = vTP
 vTs =  1  /  Tvs
 vTT = Infinity 
 vTu = - uTv / uvT 
 vTv = 0  
 vua = 1 / uva  
 vug = 1 / uvg  
 vuh = 1 / uvh  
 vuP = 1 / uvP  
 vus = 1 / uvs  
 vuT = 1 / uvT  
 vuu = Infinity 
 vuv = 0  
 vva = 1  
 vvg = 1  
 vvh = 1  
 vvP = 1  
 vvs = 1  
 vvT = 1  
 vvu = 1  
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Material property recursion table

u = internal energy v = specific volume Remember these relationships: 
a = Helmholtz free energy T = temperature

g = Gibbs free energy s = entropy

h = enthalpy P = pressure

Helmholtz
(v, T)

Gibbs
(T,P)

Enthalpy
(s,P)

Energy
(v,s)

PsT= PvT/svT 1/sPT -TsP/TPs Psv-Pvs*Tsv/
Tvs

Psv= PTv/sTv 1/sPv -vsP/vPs

PTs= PTv-PvT*sTv/svT -sTP/sPT 1/TPs Pvs/Tvs

PTv= -vTP/vPT 1/TPv Psv/Tsv

Pvs= PvT-PTv*svT/sTv 1/vPs 1/vPs

PvT= 1/vPT 1/vPT Pvs-Psv*Tvs/
Tsv

sPT= svT/PvT -TPs/TsP 1/PsT

sPv= sTv/PTv sPT-sTP*vPT/vTP -vPs/vsP 1/Psv

sTP= sTv-svT*PTv/PvT 1/TsP 1/TsP

sTv= sTP-sPT*vTP/vPT 1/Tsv 1/Tsv

svP= svT-sTv*PvT/PTv sTP/vTP 1/vsP -Pvs/Psv

svT= sPT/vPT 1/vsT -Tvs/Tsv

TPs= 1/PTs -sPT/sTP Tvs/Pvs

TPv= 1/PTv -vPT/vTP TPs-TsP*vPs/vsP Tsv/Psv

TsP= 1/sTP 1/sTP Tsv-Tvs*Psv/
Pvs

Tsv= 1/sTv 1/sTv TsP-TPs*vsP/vPs

TvP= -PvT/PTv 1/vTP TsP/vsP Tvs-Tsv*Pvs/
Psv

Tvs= -svT/sTv 1/vTs TPs/vPs

vPs= 1/Pvs vPT-vTP*sPT/sTP 1/Pvs

vPT= 1/PvT vPs-vsP*TPs/TsP 1/PvT

vsP= 1/svP vTP/sTP -Psv/Pvs

vsT= 1/svT vPT/sPT vsP-vPs*TsP/TPs -Tsv/Tvs

vTP= -PTv/PvT vsP/TsP 1/TvP

vTs= -sTv/svT vTP-vPT*sTP/sPT vPs/TPs 1/Tvs

KT cv Bv, , κT cp αp, , κs cp Bs, , Ks cv γ, ,

γT v⁄ ∂2u
∂v∂s
------------ 
 –=

Bv
∂2a

∂v∂T
------------- 
 –=

Ks v⁄– ∂2u

∂v2
--------- 
 

s
=

KT v⁄– ∂2a

∂v2
--------- 
 

T
–=

vαp– ∂2g
∂T∂P
-------------- 
 –=

cp T⁄ ∂2g

∂T2
--------- 
 

P
–=

cv T⁄ ∂2a

∂T2
--------- 
 

v
–=

Bv
∂2a

∂v∂T
------------- 
 –=

1 Bs⁄ ∂h
∂s∂P
------------- 
 =

T cp⁄ ∂2h

∂s2
--------- 
 

P
=

T cv⁄ ∂2u

∂s2
--------- 
 

v
=

γT v⁄– ∂2u
∂s∂v
------------ 
 =

vκs– ∂2h

∂P2
---------- 
 

s
=

vκT– ∂2g

∂P2
--------- 
 

T
=

1 Bs⁄ ∂h
∂P∂s
------------- 
 =

vαp
∂2g

∂P∂T
-------------- 
 =

κT 1 KT⁄=

κs 1 Ks⁄=
11
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Example 2

Suppose you wish to distill the derivative of the temperature with respect to internal energy, hold-
ing volume constant, , or Tuv in our table notation. The first table (starting on page 9) says

Tuv = 1 / uTv 

uTv =T sTv

sTv = sTv

Back substitution gives

Tuv = 1 / (T sTv) 

The line “sTv=sTv” triggers moving to the material property table on page 11, which lists

sTv = .

Thus, back substitution gives the final result:

(15)

Example 3

Suppose you wish to distill the derivative of the temperature with respect to internal energy, hold-
ing enthalpy constant, , or Tuh in our table notation. The first table (starting on page 9) says

Tuh = 1/uTh. 

Using the table again gives uTh =T sTh  -P vTh.
Using the table again gives sTh = - hTs / hsT

and

vTh = - hTv / hvT.

One more time gives...

hTs=v PTs, hsT=T+v PsT, hTv=T sTv + v PTv, and hvT=T svT+v PvT

The first table now gives no further simplification because all energies (u and h) have been removed
from all derivatives. Back substitution gives

Tuh = 1/(-T v PTs / (T+v PsT) + P (T sTv +v PTv)/(T svT + v PvT))

This result is rather ugly because the starting derivative, Tuh, involved two energies. Nevertheless, by
using the first table, we have converted to a form that involves no energies. Using the second table,
each of the “energy-free derivatives” may be expressed in terms of material properties. For example,

PTs = 1/TPs = .

Similarly applying the table on page 11 for the remaining “energy-free” derivatives leads to the final
expression of  in terms of state variables and properties.

∂T ∂u⁄( )v

cv T⁄

∂T
∂u
------ 
 

v

1
cv
----=

∂T ∂u⁄( )h

Bs

∂T ∂u⁄( )h
12
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Relationships between properties
Recall that the result in Eq. (14) was expressed in terms of the material properties  and . The

specific heat at constant pressure might be available from some materials handbooks, but other hand-
books are likely to list values for  instead. The isentropic thermal stress coefficient  is a quirky
material property that is not likely to be listed in any handbooks. Even though we have defined a total
of ten material properties in this document, only three are independent. Materials handbooks will tab-
ulate three properties, and it will be your job to compute other (dependent) properties as needed.

How do you assign values to the material properties  and , that appear in Eq. (14) if you
have a handbook that tabulates only the isothermal bulk modulus , the specific heat at constant
volume  and the linear expansion coefficient ? The answer is

(16)

. (17)

The process used to derive such formulas is the subject of this section.

More often than not, the three properties listed in your favorite handbook will all belong to one of
the four groupings in the material property recursion table. If, for example, your handbook lists values
for the expansion coefficient , the constant pressure specific heat , and the isothermal compress-
ibility , then your handbook supports the Gibbs group of properties (second column in the property
recursion table). If you seek the value for a property in a different column, then you need to equate the
entry for that property to the entry in the Gibbs column of the property recursion table. Thereafter,
you stay in the Gibbs column, recursively simplifying until your non-Gibbs property is expressed in
terms of the Gibbs properties available in your handbook. 

Suppose, for example, you seek the value of , expressed in terms of Gibbs properties. First go
to the material property recursion table and locate any expression involving . Then equate it to the
expression in the Gibbs column. For example, the property recursion table says

sTv =  in the Helmholtz column (18)

sTv = sTP-sPT*vTP/vPT in the Gibbs column. (19)

Staying in the Gibbs column (because Gibbs properties are presumed to be available), the property
table tells us

sTP = (20)

sPT = (21)

vTP = (22)

vPT = . (23)

Back substituting these four results into Eq. (19) gives

sTv =  from the Gibbs column. (24)

Equating this result with Eq. (18) and solving for  gives

J/kg•K (25)

cp Bs

cv Bs

cp Bs
KT

cv αp
linear

cp cv 9vT αp
linear( )2KT+=

Bs 3αp
linearKT

cv

vT3αp
linear

------------------------+=

αp cp
κT

cv
cv

cv T⁄

cp T⁄

vαp–

vαp

vκT–

cp

T
-----

vαp
2

κT
---------–

cv

cv cp

Tvαp
2

κT
-------------–=
13
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NOTE: specific heat has been defined in this document to equal the amount of heat needed to induce
a unit temperature change in a unit mass. Similarly, the specific volume is the volume per unit mass.
For a finite volume  of mass , , so you might see the above result expressed as

. (26)

CAUTION: Many books define specific heat to be the amount of heat needed to induce a unit tem-

perature increase in a unit mole of material, not a unit mass as we have done. Let x be one of our “per

unit mass” properties. Let an asterisk denote the analogous “molar” (per unit mole) property. Then

, where  is the number of moles and  is the mass. Multiplying both sides of Eq. (26)

by  converts the specific heats per unit mass to specific heats per unit mole, and the last term that

involved division by M changes to division by N. Hence, Eq. (26) might appear in some textbooks as

, J/mol•K (27)

where, as mentioned, an asterisk denotes the “per mole” version of the property. The key is to pay
very close attention to how your reference books define a material property. You might need slight
adjustments like these to use the handbook properties. Checking units is essential.

The thermal expansion coefficient is another example of a “differently defined” property. In this
document, we defined the volumetric thermal expansion coefficient  to be the volumetric strain
resulting from a unit temperature change, holding pressure constant. Many books will instead tabulate
the linear expansion coefficient , which is the length strain per unit temperature change at con-
stant pressure. Consider a cube with dimensions  that is then heated under constant pres-
sure so that it expands to new cube dimensions . The volumetric strain is the log of the
volume ratio

. (28)

The linear strain is the log of the length ratio

. (29)

Therefore,

. (30)

In other words, a given linear strain will produce a volumetric strain that’s three times as large if the
same linear strain occurs in all three spatial directions. Therefore, if you have a handbook that lists the
linear expansion coefficient, you can convert it to the volumetric expansion coefficient by tripling:

1/K (31)

Some other useful property relationships can be readily deduced from the property recursion
table. The compressibilities  and  are not as popular as the bulk moduli  and . How are
these related? This question is again answered by finding  and  in the property recursion table
and performing cross-correlations. That table says

vPT =  in the Gibbs column (32)

V M v V M⁄=

cv cp
TVαp

2

MκT
--------------–=

x* x M N⁄( )= N M

M N⁄

cv* cp*
TVαp

2

NκT
--------------–=

αp

αp
linear

Lo Lo Lo××
L L L××

εv
V
Vo
------ln L3

Lo
3

------ln 3 L
Lo
-----ln= = =

εlin
L
Lo
-----ln=

εv 3εlin=

αp 3αp
linear=

κT κs KT Ks
κT Ks

vκT–
14
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vPT = 1/PvT in the Helmholtz column (33)

Staying in the Helmholtz column the table says

PvT = . (34)

Thus, by back substitution, the above three equations imply

(35)

Similarly,

(36)

Another less-common material property is the thermal pressure coefficient . According to its defi-
nition, this parameter measures the pressure increase induced by a unit temperature change performed
under constant volume conditions. How is  related to more commonly available properties? The
property table says

PTv =  in the Helmholtz column (37)

PTv = -vTP/vPT in the Gibbs column (38)

Staying in the Gibb’s column, the table says

vTP = in the Gibbs column (39)

vPT = in the Gibbs column (40)

Back substituting these relationships leads to the formula

, (41)

or

. (42)

In other words, the thermal pressure coefficient is simply the volumetric expansion property times the
isothermal bulk modulus. This makes a lot of sense because, under a unit temperature change, you
can imagine letting a sample first expand at constant pressure (producing a strain ), and then
recompressing isothermally (so that the temperature change will be the same) back to the original vol-
ume. The pressure required to do this is the isothermal bulk modulus times the strain, as indicated in
Eq. (42). Going back to the original volume is needed because the  is defined to be the pressure
change holding volume constant.

The Grüneisen parameter might be new to you. This material property and the other “energetic”
properties (i.e., those listed in the “energy” column of the property table) are often used in acoustics.
The energetic properties are important in acoustic wave motion because sound waves travel so fast
that there is not sufficient time for heat to conduct away from the system (i.e., entropy is constant*).
Two different property sets (enthalpic and energetic) both have entropy as a natural variable. Then

* Acoustic waves are low amplitude waves. Hence, even though they are dynamic, they disturb the material only 
very slightly and the associated entropy production is negligible. High amplitude (shock) waves, on the other 
hand, produce considerable entropy even though they are adiabatic.

KT v⁄–

κT
1

KT
------=

κs
1
Ks
-----=

Bv

Bv

Bv

vαp

vκT–

Bv

αp

κT
------=

Bv KTαp=

αp

Bv
15
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why are energetic properties more commonly used in acoustics? The answer is that volume is treated
as the independent variable in most wave mechanics codes. In other words, most material models take
the volume change as input and predict the pressure change as output. Thus, the controlled state vari-
ables are the internal energy’s natural variables,  and . Getting back to the meaning of the Grü-
neisen parameter , note that the property table tells us that

Psv =  in the (internal) energy column (43)

Psv = PTv/sTv in the Helmholtz column (44)

Staying in the Helmholtz column, the property table says

PTv = in the Helmholtz column (45)

sTv = in the Helmholtz column (46)

Thus, these equations imply

, dimensionless (47)

or, noting that , where  is the mass density, and also using Eq. (42),

. dimensionless (48)

Note from the property table that

, (49)

where  is the mass density, while  and  are reference values (at the beginning of an experiment
or at a standard state). The Grüneisen parameter quantifies sensitivity of temperature to volume
changes under isentropic conditions. The fact that the Grüneisen parameter is defined in terms of log-
arithms suggests that, for real materials, the isentropic temperature-density relationship tends to be a
straight line on log-log scales. If the relationship is not a straight line, it merely means that the Grü-
neisen parameter (i.e., the local slope in this log-log plot) isn’t a constant. The value of the Grüneisen
parameter is typically in the neighborhood of 1.0.

Using the recursion property table, you can prove the following mixed property relationships:

 (mnemonic: subscripts alphabetical in each ratio) (50)

(51)

(52)

. (53)

For quick reference, the following page summarizes formulas that allow you to compute all ten mate-
rial properties if you have a handbook citing three properties.

v s
γ

γT v⁄

Bv

cv T⁄

γ
vBv

cv
--------=

v 1 ρ⁄= ρ

γ
KTαp

ρcv
-------------=

γ v
T
--- ∂T

∂v
------ 
 

s
–

ρ
T
--- ∂T

∂ρ
------ 
 

s

∂ T T0⁄( )ln[ ]
∂ ρ ρ0⁄( )ln[ ]
------------------------------- 
 

s
= = =

ρ T0 ρ0

Ks

KT
------

cp

cv
-----=

Bv

Bs
----- 1

KT

Ks
------–=

Bv KTαp=

Bs

ρcp

Tαp
---------=
16
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Given Helmholtz properties : 
= Bulk modulus at constant temperature J/m3

= specific heat at constant volume J/kg•K

= change in pressure with respect to temperature at constant volume J/m3•K

The other (non-Helmholtz) properties are found by

Given Gibbs properties : 
= compressibility at constant temperature = m3/J

= specific heat at constant pressure J/kg•K

= volumetric thermal expansion coefficient at constant pressure 1/K

The other (non-Gibbs) properties are found by

Given enthalpic properties : 
= compressibility at constant entropy = m3/J

= specific heat at constant pressure J/kg•K

= change in pressure with respect to temperature at constant entropy J/m3•K

The other (non-enthalpic) properties are found by

Given energetic (internal energy) properties : 
= bulk modulus at constant entropy J/m3

= specific heat at constant volume J/kg•K

= the Grüneisen parameter dimensionless

The other (non-energetic) properties found by

KT cv Bv, ,
KT

cv

Bv

Ks KT
Bv

2T

ρcv
----------+= κT

1
KT
------= κs 1 Ks⁄=

Ks

KT
------ 1

Bv
2T

ρcvKT
---------------+=

cp cv

Ks

KT
------ 
 = αp

Bv

KT
------= Bs

ρcp

Tαp
---------= γ

Bv

ρcv
--------=

κT cp αp, ,
κT 1 KT⁄
cp

αp

KT
1

κT
------= κs κT

Tαp
2

ρcp
----------–= Ks

1
κs
-----=

KT

Ks
------ 1

Tαp
2

ρcpκT
---------------–=

cv cp

KT

Ks
------ 
 = Bv KTαp= Bs

ρcp

αpT
---------= γ

Bv

ρcv
--------=

κs cp Bs, ,
κs 1 Ks⁄
cp

Bs

Ks
1
κs
-----= κT κs

ρcp

TBs
2

----------+= KT
1
κT
------=

KT

Ks
------ 1

ρcp

TBs
2κs

---------------+
1–

=

cv cp

KT

Ks
------ 
 = αp

ρcp

TBs
---------= Bv KTαp= γ

Bv

ρcv
--------=

Ks cv γ, ,
Ks

cv

γ

KT Ks ργ2Tcv–= κT
1

KT
------= κs

1
Ks
-----=

Ks

KT
------ 1

ργ2Tcv

Ks
-----------------–

1–
=

cp cv

Ks

KT
------ 
 = Bv ργcv= Bs

Ks

γT
------= αp

Bv

KT
------=
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Thermodynamic consistency and inconsistency
Thermodynamic consistency means that a theoretical model (good

or bad) is implemented in such a way that all thermodynamic derivative
identities hold. To illustrate the concept, we will consider a contrived
example of a model that is thermodynamically inadmissible. 

Suppose that laboratory experiments conducted at constant tempera-
ture suggest that pressure is a linear function of strain, where (recall)
strain is defined as . Further suppose that the slope of the
pressure-strain plot depends on the temperature at which the experiment
is conducted. In other words, the isothermal bulk modulus,

, (54)

is a function of temperature, but not a function of strain. If a numerical thermoelasticity model is
already available in which the all material properties  are constants, handling a tempera-
ture-dependent bulk modulus might seem to be a simple matter of modifying the model to set the
value of  according to the current temperature. It might seem that no further code revisions would
be required. However, such a model would be thermodynamically inadmissible, as we will now show.

Using Eq. (54), the dependence of the bulk modulus on temperature is quantified by the following
mixed partial derivative:

, (55)

where

. (56)

Noting from the material property table that , and recalling that  depends only on tem-
perature in our contrived example, Eq. (55) becomes

. (for this contrived example) (57)

Equivalently,

. (for this contrived example) (58)

The right hand side is nonzero by premise. Therefore, the left hand side must be nonzero as well. In
other words, temperature dependence of the bulk modulus requires strain dependence of the thermal
expansion coefficient. Using a constant  would result in a thermodynamically inadmissible model.

The division by  in Eq. (58) might make it seem that  is negligible, but one must
inspect the governing equations, where it can be seen that terms involving strain dependence of 
are comparable in order of magnitude to terms involving temperature dependence of .

P

ε
Pressure-strain response at
various temperatures. 

ε v0 v⁄( )ln=

KT
∂P
∂ε
------ 
 

T
=

KT αP cP, ,( )

KT

dKT

dT
---------- ∂2P

∂ε∂T
------------ ∂2P

∂T∂ε
------------

∂Bv

∂ε
--------- 
 

T
= = =

Bv
∂P
∂T
------ 
 

ε
=

Bv KTαP= KT

dKT

dT
---------- KT

∂αP

∂ε
---------- 
 

T
=

∂αP

∂ε
---------- 
 

T

1
KT
------

dKT

dT
----------=

αP

KT ∂αP ∂ε⁄( )T
αP

KT
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Finding fundamental energy potentials

We have mentioned that  is a fundamental potential function. Determining this function
from laboratory data usually entails performing experiments in which state variables (not energies)
are controlled. Changes in state variables (not energies) are measured. In other words,  is
never measured directly — instead, it must be inferred from tractable data. You might, for example,
measure how pressure P varies with specific volume v under insulated conditions. You might addi-
tionally have measurements of the temperature history induced by heating in constant volume condi-
tions, which (because the heat increment =  for reversible thermoelasticity) is essentially a family
of relationships between entropy s and temperature T for each fixed volume. These individual labora-
tory-measured relationships between state variables are called equations of state (EOS). For gen-
eralized material models that include shear stress, practitioners often use “EOS” to mean the
relationships between pressure, volume, temperature, and entropy, while relationships between shear
stress and shear strain (as well as yield, fracture, etc.) are referred to as the “constitutive model.” This
is an unfortunate corruption of terminology because it assumes that deviatoric (shear) response can be
decoupled from isotropic (pressure-volume-temperature) response. If an anisotropic material such as
a fiber-reinforced composite is subjected to an isotropic increase in size (with no change in shape),
the stress change is not isotropic — there is a larger stress required in the fiber direction. We prefer
that “EOS” means any relationship between measurable state variables, with no explicit presence of
an energy. For inviscid fluids, a fundamental potential function can be found whenever you have two
independent EOS equations involving the four state variables :

Keep in mind: when integrating a partial derivative, the integration “constant” is actually a func-
tion of the quantity held constant in the partial derivative. Once one of the energy potentials is found,
the other energies may be found by using Eq. (4). You must express the result in terms of natural vari-
ables for the function to be a fundamental potential.

u s v,( )

u s v,( )

Tds

P T s v, , ,( )

Given a system of two independent equations (usually laboratory data), involving
the four state variables , the fundamental potentials are found as follows:

To get , solve the system for  and  as functions of s and v. Then integrate 

and

To get , solve the system for  and  as functions of  and . Then integrate 

and

To get , solve the system for s and v as functions of T and P. Then integrate 

and

To get , solve the system for v and T as functions of P and s. Then integrate 

and

P T s v, , ,( )

u s v,( ) T P
∂u
∂s
------ 
 

v
T s v,( )=

∂u
∂v
------ 
 

s
P s v,( )–=

a v T,( ) P s v T
∂a
∂v
------ 
 

T
P v T,( )–=

∂a
∂T
------ 
 

v
s v T,( )–=

g T P,( )
∂g
∂T
------ 
 

P
s T P,( )–=

∂g
∂P
------ 
 

T
v T P,( )=

h P s,( )
∂h
∂P
------ 
 

s
v P s,( )=

∂h
∂s
------ 
 

P
T P s,( )=
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The entropic fundamental potential
Recall that . Therefore, assuming that temperature is always

positive*, the slope of u plotted as a function of s (for any fixed value of v) is
everywhere positive, implying that the relationship is globally invertible for s
as a function of u (and v). Consequently, not only is  a fundamental
potential, so is . When  is a fundamental potential, internal
energy becomes a natural independent variable. Therefore, a different ther-
modynamic square applies as shown.

In the previous section, we conjectured that two independent equations
(presumably lab observations) were available inter-relating , in which case you could
immediately obtain the fundamental potential for internal energy . Now suppose that you have two
independent equations [measured or theoretical] available involving . In this case, you
should seek  as a fundamental potential. When  are the variables, the two indepen-
dent equations are called “entropic equations of state” (not because entropy appears anywhere but
because these variables imply that it is the entropic fundamental potential is most relevant). In this
case, you must solve the system for P and T as functions of u and v. Then integrate

and . (59)

Once  is found, it may (if desired and if tractable) be inverted to obtain the energetic funda-
mental potential . 

In practice, engineers need a thermodynamically consistent model when only a a pressure-volume
curve is available. This is one equation involving  and , but finding a fundamental potential
requires a second equation. When faced with a dearth of data like this, it is common for the constitu-
tive modeler to simply hypothesize that the internal energy varies in proportion to temperature, where
the constant of proportionality is regarded as a material property (to be determined by “tuning” the
model as data later become available, although it would be unethical to tune the model differently for
each different experiment, as getting different values would invalidate the hypothesized equation).

EXAMPLE: IDEAL GAS. For an ideal gas, the entropic equations of state are

and . (ideal gas) (60)

Here,  is a material constant and , where  is the number of moles per unit mass
and  is the universal gas constant [  J/(mol•K)]. This is a system of two equations
involving . What is the entropic fundamental potential? Solving the system for T and P as
functions of u and v, and then substituting the result into Eq. (59) gives

and . (ideal gas) (61)

Integrating the second equation with respect to v gives

. (ideal gas) (62)

* This is sometimes regarded as an assumption rather than immutable truth because [as mentioned in a footnote of 
Physics: Part II by Halliday and Resnick] some materials can be placed into an excited state where the quantum 
definition of temperature gives negative values. This state is not reached by passing continuously through zero. 
Instead, temperature jumps from positive to negative via an inversion in the quantum structure. In this state, the 
other equations of macroscale thermostatics continue to hold if they are properly rephrased to allow for negative 
temperatures. In particular, the second law inequality needs to have temperature in the denominator — multiply-
ing both sides by temperature to get  requires changing the direction of the inequality. 

v

s

u

–g/T

u g–
T

------------
P
T
---

1
T
---

a–
T
------

∂u ∂s⁄( )v T=

TΔs

u s v,( )
s u v,( ) s u v,( )

P T s v, , ,( )
u

P T u v, , ,( )
s u v,( ) P T u v, , ,( )

∂s
∂u
------ 
 

v

1
T u v,( )
-----------------=

∂s
∂v
----- 
 

u

P u v,( )
T u v,( )
-----------------=

s u v,( )
u s v,( )

P v

Pv RT= u cRT=

c R nRu= n N M⁄=
Ru Ru 8.31=

P T u v, , ,( )

∂s
∂u
------ 
 

v

cR
u

------=
∂s
∂v
----- 
 

u

R
v
---=

s R vln f u( )+=
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Because “u” was held constant in the partial derivative, the integration “constant” is actually an
undetermined function . Differentiating Eq. (62) with respect to u and substituting the result into
the first PDE in Eq. (61) gives

. (63)

Solving this ordinary differential equation for  and substituting the result back into Eq. (62) gives

, (ideal gas) (64)

where k is an integration constant. Letting  denote any known reference state, this result
may be written

. (ideal gas) (65)

Note that, for an ideal gas, the change in entropy is additively separable into individual and uncoupled
contributions from volume strain and internal energy*. Some generalizations of ideal gases Upon sim-
plification, the entropic fundamental potential is

. (ideal gas) (66)

The energetic fundamental potential is found by simply solving Eq. (65) for :

. (ideal gas) (67)

As a special case, isentropic  behavior implies that . Noting from Eq. (60)
that , this may be written

, (ideal gas, isentropic) (68)

where

. (ideal gas, this CONSTANT parameter is an alternative to “c”) (69)

Hence, for an ideal gas, plotting the pressure-volume isentrope on log-log axes will produce a straight
line having slope . If a measured pressure-volume isentrope is not a straight line on log-log axes,
then you know that the gas will not be well modeled using ideal gas theory.

With the fundamental potentials available, you can use the techniques described in this document
to compute any other state variables or material properties of interest. For example, applying Eq. (5),
and using an ellipsis (...) to indicate omitted simplification steps,

, and (ideal gas) (70)

* Observations like this (i.e., about the general structure of fundamental potentials for idealized models) are often 
used as a guide for more realistic theories. For example, the equation  generalizes to solids as 

, where  is the elastic strain tensor,  is the conjugate stress, and  is the density. In anal-
ogy with ideal gases, one might postulate , where the separable potentials would be deter-
mined in the laboratory.

f u( )

df
du
------ cR

u
------=

f u( )

s R vln cR uln k+ +=

s0 vo uo, ,( )

s so– R v
vo
-----ln cR u

uo
-----ln+=

∂s ∂v⁄( )u P T⁄=
∂s ∂ε

˜̃
⁄( )

u
σ
˜̃

ρT( )⁄= ε
˜̃

σ
˜̃

ρ
s so– φ ε

˜̃
[ ] ψ u[ ]+=

s so– R
v
vo
----- 
  u

uo
----- 
  c

ln=

u s v,( )

u uo
e s so–( ) R⁄

v vo⁄
----------------------

1 c/

=

s so=( ) uv1 c/ uovo
1 c/=

u cPv=

PvΓ Povo
Γ=

Γ 1 1
c
---+≡

Γ

P
∂u
∂v
------ 
 

s
– … u

cv
----- Γ 1–( )u

v
---= = = =
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. (ideal gas) (70b)

Applying the definitions on page 5 or the table on page 11, material properties associated with an
ideal gas are

(ideal gas) (71)

(72)

(73)

. (74)

For the ideal gas, the specific heats are constant, but the other material properties are not constant.
Bulk moduli increase linearly with pressure (i.e., the material becomes stiffer with increasing com-
pression). The volumetric expansion property  varies inversely with temperature (i.e., a tempera-
ture change at constant pressure induces a much larger change in volumetric strain at low
temperatures than it does at high temperatures).

Molar forms of the ideal gas potentials: So far, we have used specific (per mass) energies. For
example, u has SI units of Joules per kilogram. Fundamental results like Eqs. (65) and (67) can be
easily converted to molar form by replacing each “per mass” variable x by 

, (75)

where (as previously mentioned)  is the number of moles per unit mass and therefore  is
a “per mole” quantity. Making these substitutions in Eqs. (65) and (67), recalling that ,
gives the molar forms for the fundamental potentials:

(ideal gas) (76)

. (ideal gas) (77)

These molar forms involve the universal gas constant  whereas the equivalent specific (mass-
based) forms involve the material-specific gas constant . Different ideal gases have differ-
ent gas constants R, but they all have the same universal gas constant. This is the primary advantage
of the molar form over the “per mass” form. The molar form involves true constants, not parameters
that vary from material to material. As far as materials modeling goes, the main thing that distin-
guishes one ideal gas from another is its value of n (i.e., the number of moles per mass).

T
∂u
∂s
------ 
 

v
… u

cR
------

Γ 1–
R

------------ 
  u= = = =

T
Γ 1–

R
------------ 
  u= P RT

v
-------=

Ks ΓP= cv
R

Γ 1–
------------= γ Γ 1–=

KT P=
Ks

KT
------ Γ=

cp

cv
----- Γ=

cp
ΓR

Γ 1–
------------= Bv

P
T
---= Bs

Γ
Γ 1–
------------ 
 P

T
---= αp

1
T
---=

αp

x nx*=

n N M⁄= x*

R nRu=

s* so
*– Ru

v*

vo
*

-----ln cRu
u*

uo
*

-----ln+=

u* uo
* e s* so

*–( ) Ru⁄

v* vo
*⁄

-------------------------

1 c/

=

Ru
R nRu=
22


