MPM Simulation of Acoustic Behavior

Edward Le

7th MPM Workshop

March 14-15

University of Utah

Motivations & Approach

Motivations:

- A building/assembly wall needs to meet mechanical requirements and also to be good in acoustic performance (reducing noise attenuation)
- Typically it is too late once a structure is already built (in buildings, typically can only add carpet on the floor)
- Simulation tools can help to predict noise attenuation in building materials (design)

Approach:

- Use MPM to simulate acoustic (stress wave) behavior and compare to exited typical assembly wall data (as standard for wood construction)
 - Need for both solid and air
- Simulate MPM structures (structures with rooms--solid members and air) and compare with exited data

Solid Wood Properties (Strand)

(Previous MPM workshop)

- 1. Orthotropic material, plane strain
- Hill plasticity criterion, and power-law work 2. hardening term

$$f = \sqrt{\left(\frac{\sigma_x}{\sigma_x^Y}\right)^2 + \left(\frac{\sigma_y}{\sigma_x^Y}\right)^2 + \left(\frac{\sigma_z}{\sigma_z^Y}\right)^2 - F\sigma_y\sigma_z - G\sigma_x\sigma_z - H\sigma_x\sigma_y + \left(\frac{\tau_{xy}}{\tau_{xy}^Y}\right)^2 - (1 + K\varepsilon_p^n)$$

- •where σ_i and τ_{xy} are the normal and shear stresses • σ_i^Y is the tensile yield stress • τ_{xy}^Y is the shear yield stress in the material's x-y plane,
- \mathcal{E}_p is plastic strain
- n and K are hardening parameters

$$F = \frac{1}{(\sigma_y^Y)^2} + \frac{1}{(\sigma_z^Y)^2} - \frac{1}{(\sigma_x^Y)^2}, \quad G = \frac{1}{(\sigma_z^Y)^2} + \frac{1}{(\sigma_x^Y)^2} - \frac{1}{(\sigma_y^Y)^2}, \text{ and } H = \frac{1}{(\sigma_x^Y)^2} + \frac{1}{(\sigma_y^Y)^2} - \frac{1}{(\sigma_z^Y)^2}$$

> Yielding occurs when f = 0

Solid Wood Property Values (Strand)

(Previous MPM workshop)

Property in MPa	Unmodified Strands	VTC Strand
EL	9936	24311
E _R	914	2153
E _T	427	1005
G _{RL}	745	1616
G _{TL}	686	1486
G _{RT}	109	235
μ _{RL}	0.028	0.028
μ _{τι}	0.017	0.017
μ _{TR}	0.33	0.33
σ _L (yield)	8	8
σ _R (yield)	5	5
σ _T (yield)	5	5
σ _{RT} (yield)	2.5	10

VTC: Viscoelastic Thermal Compression (densified wood for higher properties)

Reflecting Pulse for Two Materials

Reflecting pulse by square wave for identical isotropic materials at an imperfect interface

See John A. Nairn, "Numerical Implementation of Imperfect Interfaces," *Computational Materials Science*, **40**, 525-536 (2007) and J.A. Nairn, "Modeling Imperfect Interfaces in the Material Point Method using Multimaterial Methods," *Computer Modeling in Eng. & Sci.*, in press (2013).

Movement of Stress Wave

Reflecting pulse by square wave for isotropic materials

Movement of Stress Wave (Cont'n)

Square wave of stress versus distance at different time

Analytical Validation

Reflecting Pulse for Two Materials

Reflecting pulse by square wave for identical orthotropic materials (wood) at an imperfect interface

Movement of Stress Wave

Reflecting pulse by square wave for orthotropic materials (wood)

Movement of Stress Wave

Reflecting pulse by square wave for orthotropic materials (wood)

Constitutive Equation

Ideal gas, as an isotropic hyperelastic material, plane strain

PV=nRTP is pressureT temperature in KPV/V=mkRT/V $P = \rho TkR$ P=P_0(ρ / ρ_0)(T/T_0)

 $P=J^{-1}P_0 T/T_0 J=V/V_0$ J is determinant of the deformation tensor P is stored in the normal stresses $\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = -P$

Constitutive Equation (Cont'n)

Small Strain:

 $PV=P_{0}V_{0} P/P_{0}=V_{0}V P_{0}/P=V/V_{0}=(V_{0}+del V)/V_{0}=1+(del V/V_{0})=1+ \varepsilon V$ $P=P_{0}\{1/(\varepsilon_{11}+\varepsilon_{22}+\varepsilon_{33})\}^{*}(T/T_{0})$

➤ Large Strain: V/V0=J=det F F deformation gradient F_{n+1}=f F_n P_{n+1}=P₀[(T_{n+1})/T₀]J_{n+1}

Constitutive Equation (Cont'n)

The possible input properties are:

<P0>0.1013</P0>The reference pressure (in MPa) at reference temperature and reference density.

<T0>273.15</T0>The reference temperature (in Kelvin)

<rho>0.0013</rho>
The reference density (in g/cm³) at reference temperature.

Movement of Pulse in Solid and Air Isotropic and air in middle section

Moving much slower in air

Movement of Stress Wave Isotropic and air in middle section Stress (MPa) -200 -400 -600 └─ -20 Distance (mm) Moving much slower in air

Movement of Stress Wave Isotropic with wave wrapping around air gas Stress (MPa) -50 -100 -150 -200 L Distance (mm)

Movement of Pulse for Isotropic Isotropic and air in center with applying wave at corner edge for 3D

Movement of Pulse for Orthotropic Materials

Orthotropic materials with wave wrapping around air gas

Wave transmission in wood is much more complex

Movement of Stress Wave for Orthotropic Materials

Orthotropic materials with wave wrapping around air gas

Conclusions

- New material developed that mimics air gas is possible to simulate acoustic (stress wave) behavior in 2D and 3D
- Simulations are possible to show incident, transmitted and reflected waves
- Incident, transmitted, and reflected waves in MPM were comparable to analytical solution (isotropic)
- Wave transmission in wood is much more complex than other isotropic materials
- Simulation tools are very important for predicting noise attenuation/wave movement (for inclusion problems)

Acknowledgements

Prof. John Nairn
Prof. Peter Mackenzie-Helnwein

Thank you for your attention