

New Developments in Particle-Based Method for Blast Simulation of Explosives

Carlos Bonifasi Lista

Rebecca Brannon and James Wiskin Mechanical Engineering Department, University of Utah

> 7th MPM Workshop: March 14-15, 2013 University of Utah, Salt Lake City, UT

Outline of the talk

- Problem statement
- Kinematic Analysis of convected particle domain interpolation method (CPDI)
- Multi Point Query Interpolator (MPQ)
- Conclusions

Kinematics: Motivation

Simple 1D detonation simulation in Uintah software showed that particles that have been converted from solid to gas have very different values of F depending on the interpolation scheme used.

1D Analysis of Deformation Gradient

• Central difference

$$F_{p}^{n+1} = F_{p}^{n} + \frac{\Delta t}{8r_{0}} \Big[\Big(S_{i+1}(c_{3}) + S_{i+1}(c_{4}) \Big) v_{i+1}^{n+1} + \Big(S_{i}(c_{3}) + S_{i}(c_{4}) - S_{i}(c_{1}) - S_{i}(c_{2}) \Big) v_{i}^{n+1} \Big] \\ - \frac{\Delta t}{8r_{0}} \Big(S_{i-1}(c_{1}) + S_{i+1}(c_{2}) \Big) v_{i-1}^{n+1}$$

• CPDI

$$F_p^{n+1} = F_p^n + \frac{\Delta t}{2r_0} \Big[S_{i+1}(c_3) v_{i+1}^{n+1} + \big(S_i(c_3) - S_i(c_2) \big) v_i^{n+1} - S_{i-1}(c_2) v_{i+1}^{n+1} \Big]$$

Kinematics: Problem statement

- Current algorithms for updating the deformation gradient produce results that are often grossly inconsistent with the update of particle positions.
 - Problems involving very large and rapidly changing velocity gradients.
 - Implementation of Boundary conditions.

Large and rapidly changing velocity gradients

Validation: Method of manufactured solutions

- Verification of a numerical solver for some PDE.
- You manufacture an arbitrary solution for the PDE.
- The solution is substitute back into the PDE along with consistent initial and boundary conditions to determine analytically a forcing function.
- This forcing function reproduces exactly the manufactured solution.
- The forcing function is used in the numerical solver and the solution is compared with the manufactured solution.

Validation: 1D Adiabatic Gas Expansion

• Time varying constructed displacement field

$$u = \beta t X$$
 $x = X + u$

• Deformation gradient, acceleration and velocity

$$F = \frac{\partial x}{\partial X} = 1 + \beta t$$
 $a = \ddot{u} = 0$ $v = \frac{\partial x}{\partial t} = \beta X$

• Governing equation and constitutive model

$$-\frac{\partial P}{\partial x} + \rho b = \rho a \qquad P = P_0 \left(F\right)^{-\gamma} - P_{ATM}$$

• Body forces

$$b = \frac{1}{\rho} \frac{\partial P}{\partial x} = 0$$

Background nodes

http://csm.mech.utah.edu

Analysis of SPQ

THE

UNIVERSITY

$$m_{i}^{0}a_{i}^{0} = f_{\text{ext}_{i}}^{0} + f_{\text{int}_{i}}^{0} = 0 \Longrightarrow a_{i}^{0} = 0$$
$$v_{i}^{1} = v_{i}^{0} + a_{i}^{0}\Delta t = v_{i}^{0}$$

Interpolation to the particles

$$v_p^1 = v_p^0 + \sum_i \phi_{ip} a_i^0 \Delta t = v_p^0 = MS$$

http://csm.mech.utah.edu

Analysis of SPQ

IVERSITY

THE

Interpolation to the particles in boundary cells

$$\nabla v_{p1}^1 = \nabla v_{p2}^1 = \nabla v_{p5}^1 = \nabla v_{p6}^1 = \frac{5}{8}\beta \neq MS = \beta$$
 Error of 37.5%

Interpolation to the particles in inner cell

$$\nabla v_{p1}^1 = \nabla v_{p2}^1 = \nabla v_{p5}^1 = \nabla v_{p6}^1 = \frac{5}{8}\beta \neq MS = \beta$$
 No Error

Background nodes

http://csm.mech.utah.edu

Analysis of SPQ

IVERSITY

THE

$$\nabla v_p^{n+1} = \sum_i \nabla \phi_{ip} v_i^{n+1}$$
 Lack of Symmetry in Boundary Cells

 $F_{p}^{n+1} = (1 + \nabla v_{p}^{n+1} \Delta t) F_{p}^{n} = (1 + \nabla v_{p}^{n+1} \Delta t) (1 + \nabla v_{p}^{n} \Delta t) \dots (1 + \nabla v_{p}^{1} \Delta t) F_{p}^{0}$

• Update of stresses σ depends on updates of F.

$$\sigma = P_0 F - P_{ATM}$$

Analysis of SPQ

• Updates of position and velocity of particles are not consistent with updates of deformation gradients.

$$\mathbf{v}_{p}^{n+1} = \mathbf{v}_{p}^{n} + \sum_{i} \phi_{ip} \mathbf{a}_{i}^{n} \Delta t \qquad \mathbf{x}_{p}^{n+1} = \mathbf{x}_{p}^{n} + \sum_{i} \phi_{ip} \mathbf{v}_{i}^{n+1} \Delta t$$

$$a_i^n = \frac{\mathbf{f}_{ext_i}^n + \mathbf{f}_{int_i}^n}{m_i^n} \qquad \qquad \mathbf{f}_{int_i}^n = -\sum_p \nabla \phi_{ip} \sigma_p^n V_p$$

 $F_{p}^{n+1} = (1 + \nabla v_{p}^{n+1} \Delta t) F_{p}^{n} = (1 + \nabla v_{p}^{n+1} \Delta t) (1 + \nabla v_{p}^{n} \Delta t) \dots (1 + \nabla v_{p}^{1} \Delta t) F_{p}^{0}$

Effects of increasing the velocity gradient

Effects of increasing the velocity gradient

THE

VERSITY

Effects of increasing the velocity gradient

THE

UNIVERSITY

Effects of increasing the velocity gradient

Discrepancies between velocity, position and deformation gradient of particles

• Condition for not separation of adjacent domains of particles

$$x_{p+1}^{n} - x_{p}^{n} = (F_{p+1}^{n} + F_{p}^{n})r_{0}$$

Discrepancies between velocity, position and deformation gradient of particles

• At large velocity gradients, domains of particles start separating from each other?

$$x_{p+1}^{n} - x_{p}^{n} \neq (F_{p+1}^{n} + F_{p}^{n})r_{0}$$

$$\left(x_{p+1}^{n} - x_{p}^{n}\right)_{true} + \delta_{x error} = \left(F_{p+1}^{n} + F_{p}^{n}\right)_{true} r_{0} + \delta_{F error}$$

$$\delta_{x error} \stackrel{?}{=} \delta_{F error}$$

Effects of increasing the velocity gradient

Multi Point Query Method (MPQ)

Interpolate position and velocity from nodes to particle's corners

Algorithm of Multi Point Query (MPQ)

Update deformation gradient

THE

 $2r_0$ Initial length of particle's domain

the UN

IVERSITY

Implementation of artificial cells

• Solve the lack of symmetry for $\nabla \phi_{ip}$

• Velocity of particles in the artificial cell are extrapolated from particles in the boundary cell at time 0

MPQ: Implemented Artificial Cells

THE

UNIVERSITY

SPQ: Artificial cells implemented

THE

IVERSITY

MPQ: Artificial cells implemented

THE

UNIVERSITY

32

Kinematics: Conclusions

- SPQ:
 - Error in the update of deformation gradient:
 - Introduce through $\nabla \phi_{ip}$
 - Products of errors over time.
 - Update of stress through constitutive model: Depends on sensitivity to deformation gradient.
- MPM:
 - Central difference scheme to update deformation gradient.
 - F is consistent with the Manufactured solution.
 - F shows no discrepancies with updates of position and velocity of particles.
 - Artificial cells

THANK YOU

Simulations: Deformation Gradient

UNIVERSITY OF UTAH[™]

http://csm.mech.utah.edu

Algorithm of Multi Point Query (MPQ)

Map velocity and mass from particles center to nodes Map internal and external forces from particle's domain to nodes

Algorithm of Multi Point Query (MPQ)

Solve for acceleration of nodes and update velocity of nodes

Algorithm of Multi Point Query (MPQ)

Update position and velocity of particle center (same as SPQ) Update stress using constitutive model

Simulations: Deformation Gradient

http://csm.m<u>ech.utah.edu</u>

Simulations: Velocity at the center of particles

THE

Simulations: Position at the center of particles

