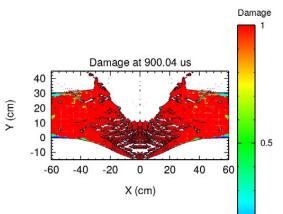


MPM Workshop 2013

Shane C. Schumacher Kevin P. Ruggirello Sandia National Laboratories

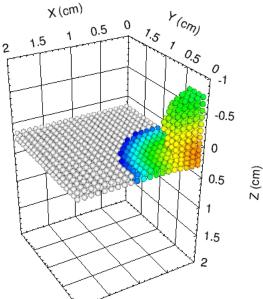
Byran Kashiwa Los Alamos National Laboratory

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



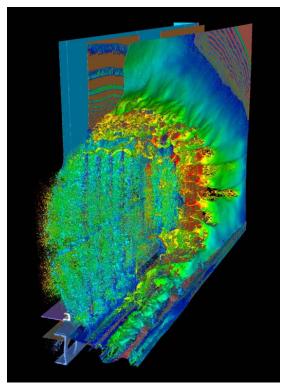
Project Goals

- Add full Lagrangian capability into CTH
- Fully coupled fluid-structure interactions
 - Numerical method integrated into CTH
 - Common input between CTH and Lagrange method
 - Coupled to Adaptive Mesh Refinement (AMR)
 - Dynamic load balancing between CTH and Lagrange method
- Improve strength and failure mechanics
 - Lagrangian fracture mechanics
 - Reduce advection errors in damage and failure
- Fast, Robust and Easy to use



Challenges

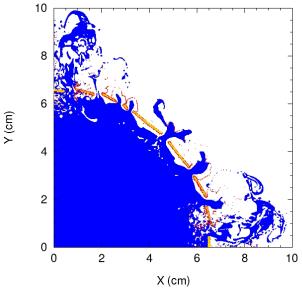
- Interface existing CTH data structure
 - Create new data structure for Lagrangian capabilities using Fortran 90
 - Interface new data structure to CTH
- Interface existing CTH models
 - EOS, strength and failure models
 - New material interface for Lagrangian materials
 - Lagrangian fracture coupled to CTH
 - Material switching and void insertion
- Visualization
 - Using Spymaster for on-the-fly and post visualization
 - Interface new data structure to Spymaster



CTH Overview

CTH is a massively-parallel shock-physics code.

- Eulerian shock wave physics computer code solving conservation equations of mass, momentum, and energy for up to 98 simultaneous materials including gases, fluids, solids, and reactive materials
 - Analytic & Tabular Equation-of-State representations
 - Advanced Strength & Fracture models
 - Adaptive Mesh Refinement
- Applications (partial list):
 - National Missile Defense (NMD), Nuclear
 Emergency Response (NEST), Weapon effects & vulnerability
 - Armor, Anti-Armor, Munitions Design, Blast Effects
 - Planetary Science, Asteroid Impact & Planetary Defense
- CTH licensed to hundreds of external DOE & DoD agencies and their subcontractors
 - 600+ users



32,000 processor Cielo calculation showing nearby blast on aluminum and steel structure

Fluid-Structure Interaction

- Applications
 - Blast on target
 - Ballistics
 - Biomechanics
 - Damage and failure mechanics
- History
 - Charles S. Peskin
 - Immersed boundary method Heart valve modeling
 - Los Alamos National Lab (LANL)
 - Notables: F. Harlow, J.U. Brackbill, H.M. Ruppel, B.A. Kashiwa, R.M. Rauenzahn, M.W. Lewis and D. Zhang
 - Sandia National Laboratories (SNL)
 - Notables: S. W. Attaway, G. C. Bessette, D. A. Crawford, R. L. Bell

Lagrangian Numerical Method to Use?

- Finite Element versus Particles
- Long history of both methods being used for Lagrangian Numerics
 - Los Alamos National Laboratories
 - Many projects over the past 50+ years looking at coupling methods
 - Finite element versus finite volume versus particles
 - Los Alamos National Laboratories Particle-In-Cell (PIC)
 - Los Alamos National Laboratories Fluid Implicit Particle (FLIP)
 - Sandia National Laboratories Zapotec (1998)
 - Sandia National Laboratories Fortissimo (2008)
 - Sandia National Laboratories Zapotec II (2011)
 - NAVSEA DYSMAS (DYNA-GEMINI)
 - Others, Material Point Method, Smooth Particle Hydrodynamics, etc.
- Mesh objects versus material insertion
- Adaptability to future numerical methods in Hydrodynamics

Eulerian/Lagrangian coupling using separate codes

Choice: Particles (Markers) Why?

- Material Point Method (MPM) and material tracking
 - MPM (Sulsky, D., Chen Z. and Schreyer, H. L.)
 - Both use structured background grid for gradient computations (no neighbor searching)
- History of working well in a finite volume shock hydrocode
 - Challenges in finite elements in a finite volume
 - Integration into a finite volume numerical framework by Bryan Kashiwa at Los Alamos National Laboratory
- Next generation failure mechanics
 - No element boundaries
 - Lagrangian fracture mechanics in a finite volume shock code
- No unstructured meshing
- Massively parallel
 - Dynamic load balancing based on marker count on processors
- Adaptive Mesh Refinement
 - Marker combining and splitting

Marker Methods

- 1D, 2D and 3D
- Interface into existing material insertion capability in CTH
 - Diatom insertion of marker fields
- Strength
 - Track material behavior through grid to marker differences (Material tracking)
 - Compute stress and accelerations on markers and update to grid (MPM)
- Boundary Conditions
 - Symmetric, outflow, inflow and outflow
- Failure
 - Material switch from shear supporting to hydrodynamic
 - Void insertion based on marker failure
 - No failure
- Massively parallel marker capability with/without AMR
 - Ghost markers
 - Combining and splitting
- All existing CTH material models have been integrated
 - All EOS models
 - Full stress tensor or deviatoric tensor options (except GEFFS and PSDAM)
 - All failure models

Marker Methods - cont.

- Composite model integration with markers
 - Initializing marker with material direction using existing layering techniques
 - Separate strain rates for markers in layers
 - With multifield can track layer interaction for delamination and other failure processes
- Plate, shell and beam theories added to CTH
 - Implemented existing plate theory from Los Alamos National Laboratory
 - Working with Los Alamos National Laboratory to add new shell theory
- Discard
- New mass footprint of marker fields
 - Second order accurate and sharp object interfaces
- New material models
 - Full-stress tensor with MPM
 - Integration of deformation tensor
 - Hyperelastic Models
 - Mooney-Rivlin
 - Transverse-Isotopic Mooney Rivlin
 - Stochastic models
 - Research on stochastic energetic ignition models

Using Markers

• Sample Input:

Marker start

Material (field) number

mark mmat 1 6 mmat 2 4 stren 3 endmark

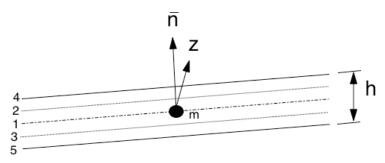
Markers in linear direction

Strength option

Marker end

Using Markers Select Options

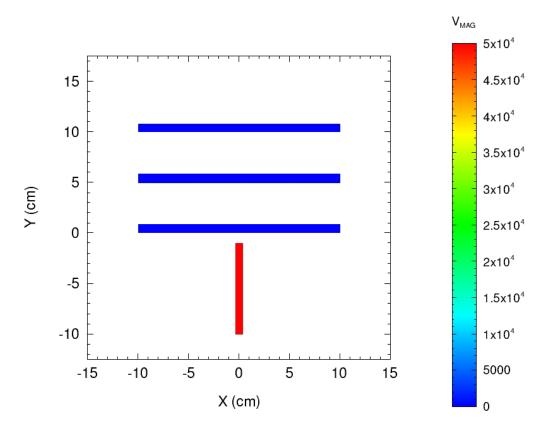
- Strength options
 - Material tracking (stren 1)
 - Material Point Method (MPM) (stren 3)
- Energy options
 - Irreversible energy only (senrg 1)
 - Add only irreversible energy from stress power
 - Total energy, classical CTH, (senrg 2)
 - Total and irreversible energy from stress power
 - Controlled release of energy during fracture (reversible)
- Failure options
 - No failure (fail 10)
 - Reduce deviatoric stress (fail 2)
 - Field switching (fail 1)
 - Marker (fmat 0) or CTH type material (fmat 1)

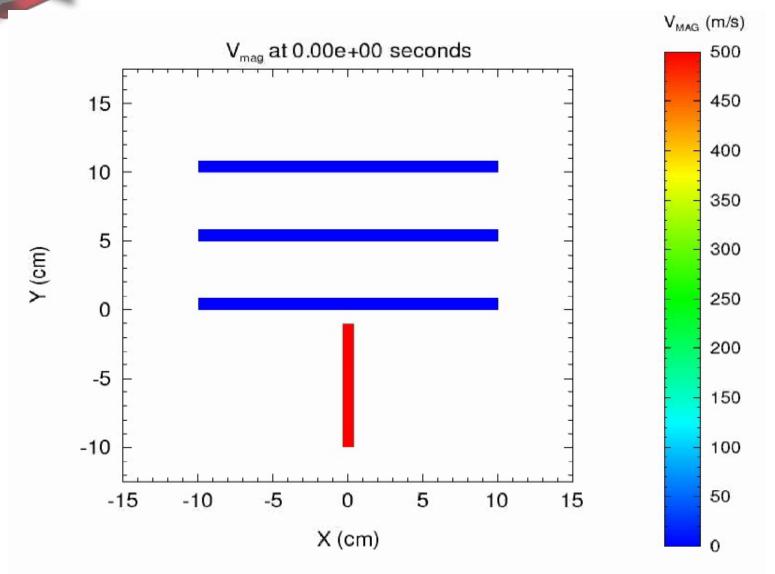


Using Markers Select Options cont.

• Split and Combine

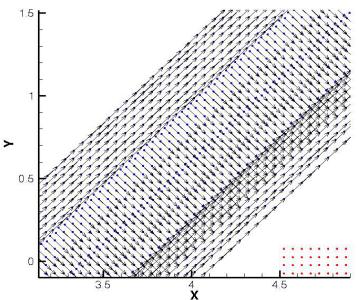
- Momentum conserving techniques
- AMR or non-AMR problems
- Set limit number of markers in one cell to combine (mcomb #)
- Set lower limit number of markers in one cell to split (msplit #)
- Plates, shells and beams
 - Plate option from LANL
 - Set by field (mplate "field #" "h" "integration")
 - Shells and beams to be added in the future

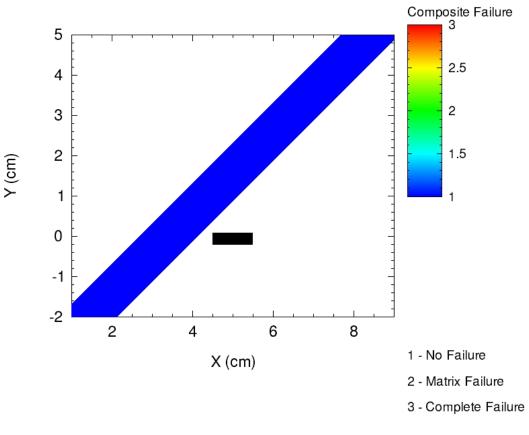



Triple Plate

- Two-dimensional cylindrical
- Rod impacting flat plates
- Velocity is 500 m/s

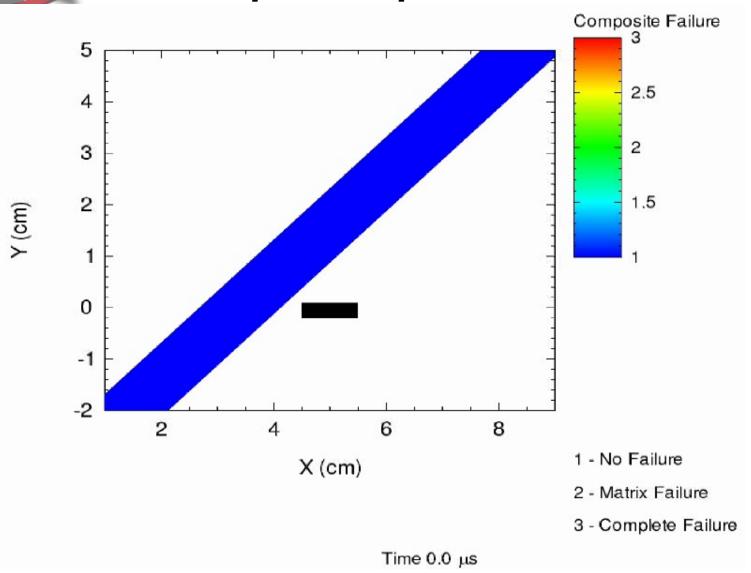
Triple Plate



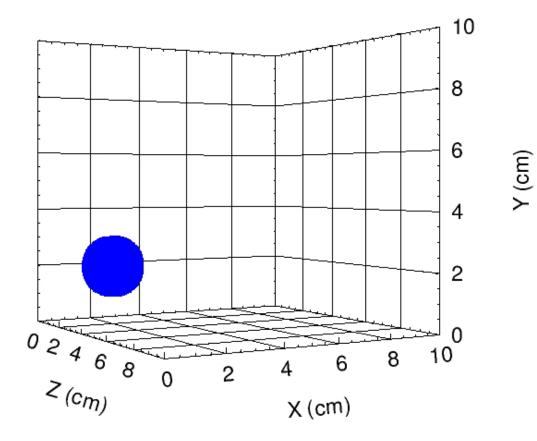


Oblique Composite Plate

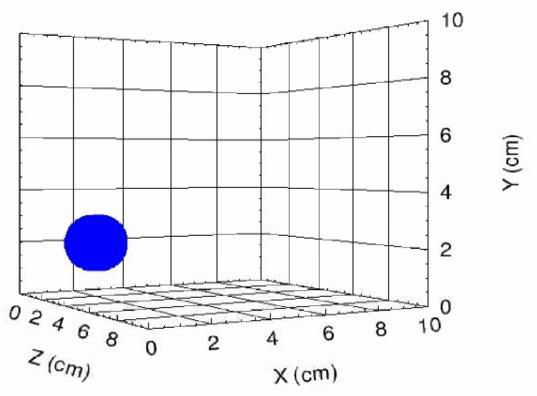
- Two dimensional rectangular
- Thin metal projectile
- Velocity of 100 m/s
- Composite
 - [0°,90°,90°,0°]


Material Vector Plot

Oblique Composite Plate



Elastic Ball


- Three dimensional rectangular
- Elastic ball
- Velocity 500 m/s

Elastic Ball

Time 0.0 µs

Future Directions

- Thin structure mechanics
 - Shock support method for membranes/shells
- Integration of Convective Particle Domain Insertion (CPDI)
 - University of Utah collaboration
 - Summer student Michael Homel and Rebecca Brannon
 - Technique developed to expand a marker domain based on deformation
- Implicit Continuous Eulerian (ICE++)
- Multifield
 - Multiple velocities for each field (material) in a finite volume
 - Momentum, energy and mass interactions
- New material models
 - Fracture and failure
 - Non-linear elasticity in shock
 - Stochastic fields

Conclusions

- Beta release of Markers in CTH version 11.0
 - March 2013
 - User manual
- Full Lagrangian method coupled into CTH
 - Reduce advection errors
 - Failure mechanics
 - Framework for new constitutive models
 - Hyperelastic constitutive models
- Marker options
 - Strength
 - Failure
 - Energy

- Failure Plot at 15.1 μs
- Robust and easy to use technique for modeling fluid-structure interaction
 - No unstructured meshing
 - Fully coupled
 - Common "look and feel" input
 - Quick "total time-to-solution"

Failure

6

5

3

2

Questions?

