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Outline of the derivation of Cauchy Equations of Motion

Euler’s 1st and 2nd laws   These integral equations apply to any sub-body :

Net force = rate of linear momentum:   . (1)

Net torque = rate of angular momentum:  . (2)

Utilize conservation of mass   Noting that , conservation of mass permits
the time derivative to be brought inside the integrals, so that

. (Generalizes Newton’s 2nd law, F=ma) (3)

, (4)

where , and Eq. (4) also employed the fact that  so that .

Stress principle of Euler and Cauchy:   The effect of an external body can be represented
through a traction (force per area) vector . Then, letting  denote the body force per unit
mass (e.g. gravity), and assuming no point forces, no point moments, and no distributed
moments (e.g. no dipoles in an electric field), the net force and net torque may be written:

(5)

(6)

Cauchy’s fundamental stress theorem   Begin with a key assumption that, in addition to
varying in space and time, the traction  is also a function of the unit normal  of the surface.
Cauchy’s fundamental theorem states that this dependence is linear and consequently there
exists a tensor  such that . Outline of proof:

i. Start with a small tetrahedron with sides labeled 1 through 4.

ii. Put  in Eq. (5), and this into Euler’s 1st law, Eq. (1).
As the size of the tetrahedron goes to zero, the surface integral
dominates (it is of order  with respect to the tetrahedron’s
characteristic length L, whereas volume integrals are of order

). As the tetrahedron shrinks to a point, Euler’s 1st law requires that the
vector sums of the forces (traction times area) on the faces must equilibrate:
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, and therefore  where . (7)

iii. For any body B, . Applying this fact to the tetrahedron gives

(8)

iv. Putting (8) into (7) shows that , which holds for

any proportions of the tetrahedron, and therefore the dependence on

the unit normal must be linear1, completing the proof of existence of .

Cauchy’s first law.   Putting  into (5) and applying the divergence theorem,
Euler’s 1st law becomes:

(9)

This must hold for all , so the integrands must be equal. This gives the local form of bal-
ance of linear momentum, AKA “Cauchy’s 1st law”:

(10)

Cauchy’s second law.   Similarly putting  into Eq. (6), applying the divergence
theorem leads to the opportunity to apply the product rule ,
Then Euler’s 2nd law becomes

(11)

The right hand side is zero due to Cauchy’s 1st law. This must hold for all  and therefore
the left integrand  must be zero, which is possible only if  is symmetric. This simple con-
clusion is the local form of balance of angular momentum, AKA Cauchy’s 2nd law:

   Beware: this would not be true if there were distributed moments! (12)

Incidentally, this result allows us to write  as , which will probably be more famil-
iar to your readers.

1. By positivity of area, the  coefficients are always negative, so it might seem that linearity has been proved only for 

negative coefficients. However, by applying Euler’s 1st law to a thin wafer of material in the limit as the wafer’s thickness 
goes to zero, we obtain Newton’s 3rd law that every action has an equal and opposite reaction; that is, .
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BOUNDARY VALUE PROBLEMS

There are 25 equations and 25 unknowns. Constitutive equations are necessary to close the system of equa-
tions. The body force is presumed known (if unknown, it may be related to other fields which are governed by
further equations. For example, an electrical repulsive force is dictated by the response of a charge density to an
electric field, which is in turn governed by Maxwell’s equations). Above, the time rates are material rates — they
hold the reference position  constant. However the gradients in the above equations are with respect to the
spatial position . To convert the above system to only two independent variables,  and t, the material deriva-
tives must be converted (e.g., ). After making these substitutions, it becomes clear that
these equations are highly nonlinear and must be solved numerically (except for highly simplified geometries or
constitutive equations). For such boundary value problems, initial values for the dependent variables are usually
be specified. The spatial boundary conditions can be expressed in several possible forms:

1. Prescribed displacement:  on . For example, a fixed end has zero displacement.

2. Prescribed traction:  on . For example, a free surface has zero traction.

3. Single components: On a surface you can have one traction component specified and a different component of displace-
ment specified. For example, a frictionless surface has zero traction components in the plane and zero displacement 
components normal to the plane.

4. Most generally, B.C.s are of the form . For example, a spring boundary condition would make traction 
proportional to displacement.

TABLE 1. Governing equations (independent variables are time and position)

Description Equation number of
independent 
equations

Unknown
dependent 
variables

Conservation of mass
(AKA continuity)

1 single scalar , 

three 

Balance of linear momen-
tum

3 three , 

nine 

Balance of angular 
momentum

3

Kinematical relation 3 three 

Kinematical relation 3

Strain-displacement rela-
tion , where 

.

6 six 

Constitutive law. Varies 
depending on the material. 
Generally relates stress to 
strain gradients and/or 
velocity gradients.

Elasticity: , or 

Viscous: , where 
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