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This is a slightly modified version of the paper by the same title that appears in
Acta Mech, Vol. 129, No. 1–2, 1998.
In this version, the tensor order of a variable equals the number of underlines beneath it.
Caveats concerning conjugate stress and strain
measures for frame indifferent anisotropic elasticity

R. M. Brannon, Albuquerque, New Mexico

Summary. Small-distortion constitutive laws are often extemporaneously generalized to large deformatio
merely applying them in the unrotated material frame or, equivalently, by using polar rates. This approac
render the resulting constitutive model indifferent to large superimposed rigid rotations, but it may le
incorrect predictions for both the magnitude and direction of stress whenever there is significant m
distortion. To demonstrate this claim, an exact large-deformation solution is derived for the stress in an ide
fiber-reinforced composite. This example shows that the Cauchy tangent stiffness tensor (corresponding
conjugate pair of Cauchy stress and the symmetric part of the velocity gradient) must evolve in both mag
and direction whenever the material distorts. Volume changes necessarily lead to a loss of major-symmetry
Cauchy tangent stiffness tensor, which can be rectified by instead using specific or Kirchhoff stress. A pr
work that correctly pointed out the need for the Cauchy stiffness tensor to distort is shown to have overloo
additional contribution from the rate of distortion. Some of the anomalous properties of the Cauchy sti
tensor are eradicated by instead using the second Piola-Kirchhoff stress or, equivalently, convected coor
Such an approach, however, demands accurate measurements of large-distortion material response, no
obtain physically realistic results, but also to avoid potential instabilities in numerical computations.

1 Introduction

This paper explores some counterexamples that remind us why a sensible

large-distortion (or even moderate-distortion) constitutive law cannot be

constructed from a small-distortion law by merely applying the small-distortion

law in the unrotated configuration. Satisfying the principle of material frame

indifference does not guarantee an accurate large-deformation constitutive law.

This fact is, of course, well-known and acknowledged within the academic

research community (especially in the fluid mechanics literature), but is

nevertheless occasionally ignored amidst pressures to solve complete problems.

Alternative stress-strain measures or approaches such as convected coordinates

can improve results, but can be difficult to implement and still do not liberate the

researcher from actually measuring material response at large distortions.

Within the solids field, popular conjugate stress and strain rate measures are

the Cauchy stress and the symmetric part of the velocity gradient, D. To satisfy

the principle of material frame indifference, relations involving these two

variables are often phrased in terms of the “unrotated” Cauchy stress,

, (1)

and the “unrotated” symmetric part of the velocity gradient,

σ
˜

σij Rip
T R jq

T σpq≡
1



. (2)

Here, repeated indices are summed from 1 to 3, a superscript “T” denotes the

transpose (i.e., ), and is the proper rotation from the polar

decomposition of the deformation gradient ,

(i.e., ), (3)

where (more commonly denoted ) is the symmetric positive-definite “right”

stretch. A deformation involves “small distortions” if . A deformation is

“arotational” if .

Throughout this paper, an overbar denotes an operation that “unrotates” the

basis of any spatial tensor back to the reference configuration, leaving the

components unchanged. Thus,

If is a vector, . (4)

If is a second-order tensor, . (5)

If  is a fourth-order tensor, , (6)

and so on. The polar rate  of any second-order tensor A is defined by

, (7)

where is the polar spin and a superposed dot denotes the usual

material rate. The more general definition of the polar rate (applicable for tensors

of any order),

, (8)

may be used to prove that any linear constitutive relation phrased in terms of

polar rates of spatial tensors is equivalent to the same relation phrased in terms

of material rates of the associated unrotated tensors.

The second Piola-Kirchhoff (PK2) stress is a commonly-used alternative

stress measure defined by . In indicial notation,

, (9)
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where the Jacobian J is the ratio of the initial mass density  to final density ρ:

. (10)

The Lagrange strain , defined by

, (11)

is conjugate to the PK2 stress .

The unrotated symmetric part of the velocity gradient (Eq. (2)) is related to

the stretching rate  and the Lagrange strain rate  by

. (12)

Constitutive laws phrased in terms of the PK2 stress and the Lagrange

strain satisfy the principle of material frame indifference, as do those that use

the unrotated Cauchy stress and unrotated rate-of-deformation , though the

two approaches do not give identical results. Importantly, merely satisfying the

principle of material frame indifference is not sufficient to make a model sensible

for high-distortion problems such as penetration. Many so-called large-

deformation constitutive laws are in fact valid only for large rotations, not large

distortions. When users or developers apply such a model beyond its applicability,

the model itself might be wrongly blamed for the incorrect results. More seriously,

material constants might be inappropriately “tuned” to match experimental

results for deformations that lie beyond the model’s capability, thereby marring

the model’s credibility for any other loading paths.

To illustrate these points, an exact stress-strain relation will be derived for a

microstructure consisting of thin idealized fibers embedded in a negligibly stiff

matrix (air). For very thin fibers, the Cauchy stress must always be uniaxial in the

fiber direction. However, even for pure stretch deformations, the fiber direction

generally changes with time, so the rate of the unrotated Cauchy stress is not

uniaxial. This directional rate effect (negligible for small distortions without

residual stress) is rarely captured in modern large-deformation constitutive laws

and can be naturally accommodated by phrasing the constitutive law in terms of
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the PK2 stress, though the magnitude of the result must still be governed by high-

distortion experimental data.

For our fibers-in-air example, will be shown to be linear in . That is, there

does exist a fourth-order tensor such that . However, we show

here that will not be major-symmetric (that is, ) if there are

dilatation rates. Major symmetry may be recovered, however, if the stress

measure is replaced by the thermodynamically consistent specific stress (stress

divided by density), or equivalently by the Kirchhoff stress, (which may

explain its increased use in modern constitutive models).

2 Exact solution for an idealized fiber-reinforced material

Consider a material consisting of stiff fibers uniformly distributed in a very

weak matrix (air). Single fibers are presumed well-characterized. That is, if a

single fiber is stretched so that its current length divided by its initial length is λ,

then the force in that fiber is given by some known function F (λ) satisfying F (1)=0.

Suppose all the fibers have an initial orientation parallel to a unit vector ,

and they are distributed uniformly with fibers per unit initial cross-sectional

area. Then the representative volume element sketched in Fig. 1 contains a total

of fibers. A homogeneous deformation will distort those fibers to a new

orientation parallel to

. (13)

The fiber stretch λ is just the magnitude of :

. (14)

In Fig. 1, the initial cross-sectional area has a unit normal . By Nanson’s

relation [1], this initial area deforms to a new orientation parallel to

. (15)

Also by Nanson’s relation, the magnitude of the deformed area is .

Figure 1 depicts the deformed element as seen in the plane containing and

where it is clear that the new cross-sectional area (i.e., the area normal to the
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uniaxial fiber force) is simply , where γ is the angle between

and . Hence, . Noting that and recalling

that , we find that .

The Cauchy stress must be uniaxial in the fiber direction. The force per

fiber is F (λ). The number of fibers is νoAo. Thus, the uniaxial stress is the total

force F (λ)νoAo divided by the area currently normal to the fiber direction, JAo/λ.

Recalling that the magnitude of is λ, the exact solution (valid for any

deformation ) for the Cauchy stress tensor  is

, where . (16)

Hence, the exact solution for the unrotated Cauchy stress is

where . (17)

Substituting Eq. (17) into Eq. (9) shows that the exact solution for the PK2 stress

is

. (18)

These exact solutions demonstrate that the stress is a nonlinear function of

strain even if the fiber force function F (λ) is linear (affine). In other words,

nonlinearity of large-distortion material response can arise as much from

kinematics as from inherent material nonlinearities. An implicit goal of stress

and strain measures is to (approximately) capture these kinematic contributions.

3 Exact tangent modulus tensors.

We now verify that each exact stress rate can be written as a fourth-order

“tangent modulus” operating on the respective conjugate strain rate, as is

generally assumed a priori in the literature. The PK2 tangent modulus (i.e., the

modulus associated with the PK2 stress) possesses many of the properties usually

assumed about modulus tensors. However, we will show that the Cauchy tangent

modulus strongly depends on the deformation and is not even major-symmetric.
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Differentiating Eq. (14), the material time rate of the fiber stretch is

. (19)

The rate of the Jacobian is

. (20)

Differentiating Eq. (18) using Eq. (19) shows that

, where . (21)

For small distortions (where ), the PK2 tangent modulus tensor is

← valid for λ≈1. (22)

Referring to Eq. (21), the exact large-distortion PK2 tangent modulus is not

generally equal to the small-distortion PK2 modulus except for the highly

nonphysical case that F (λ) is proportional to λ(λ2-1). Since this function has a zero

slope at , cavalierly using a constant PK2 modulus could lead to

compression instabilities in numerical calculations. On the other hand, the small

distortion PK2 modulus does possess an appealing feature of being in the same

direction as the exact large-distortion modulus. Such is not true for the unrotated

Cauchy stress, as shown below.

Deriving an exact solution for the Cauchy stress rate is straightforward but

moderately complicated and, as it happens, not necessary. The quantities λ, J and

are all functions of . Consequently, their rates are all linear in .

Equation (12) may be solved to give as a linear function of (invertibility

follows by considering the equation in the principal basis of ). Thus the chain

rule may be applied to Eq. (17) to show that the exact rate of the unrotated Cauchy

stress is linear in , i.e., there does exist a (complicated) fourth-order Cauchy

tangent tensor — which is a function of the stretch , but is independent of

— such that the exact solution for the unrotated Cauchy stress may be written

. (23)
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The existence of a Cauchy tangent tensor is often presumed in the literature,

and this result validates such an assumption for our fiber material, However, its

complicated dependence on the state of deformation adulterates its usual

interpretation as a material property. Furthermore, another common assumption

about the nature of (namely, that it is major-symmetric) is generally

inappropriate, as discussed in Section 4.

We now examine the structure of the tensor in more detail. The exact

solution, Eq. (17), for the unrotated Cauchy stress may be written

, (24)

where

and . (25)

Here, is simply a unit vector in the direction of and h is a scalar function of

the stretch λ and the Jacobian J (also note that h=0 if and only if λ=1). Recalling

Eqs. (19) and (20),

where . (26)

Hence, the exact solution for the rate of the unrotated Cauchy stress is of the form

. (27)

Noting that is always perpendicular to , the stress rate is not uniaxial even

though the stress itself is uniaxial.

The rate of  is given by

, where . (28)

Here , where is the unrotated spin (= ) and is the

unrotated vorticity. Dienes [2] showed that can be expressed as a linear

function of and, hence, so can , thereby again demonstrating that the entire

right-hand side of Eq. (27) may be expressed in the form of Eq. (23). However,
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p
˜
˙ p

˜

p
˜
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describes a class of “proportional stretching” deformations not uncommon in

laboratory experiments and useful in subsequent examples.

Below, we confirm Zheng’s assertion [3] that the tensor in Eq. (23) must be

transversely isotropic about a privileged direction parallel to , not . We show,

however, that has an unexpected structure. Since the fibers are all parallel to

, and because the material has no resistance to shear along the fiber directions,

it would seem natural to take , where E is a material constant.

If this conjecture were true, however, the unrotated stress rate would be

proportional to — that is, it would be uniaxial, in contradiction to the exact

solution Eq. (27) except for small fiber stretches (so that h≈0) or for deformations

that do not distort the fibers from their initial orientation (so that ).

Recall that in Eq. (23) exists for any deformation. We now examine the

fundamental structure of for a class of deformations in which and share

the same principal axes. Then , and Eqs. (27) and (28) combine to give

, (29)

where  is a simple projection tensor defined by

. (30)

Factoring out the rate of deformation gives

, (31)

where the Voigt-Mandel components (ordered 11, 22, 33, 23, 31, 12) of in

terms of an orthonormal basis having the 1-direction aligned with  are

. (32)

The tensor is indeed transversely isotropic about , but the presence of h

makes the stress rate have nonzero shear (23 and 31) components even though the
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stress itself is always uniaxial. These components arise because the fiber axis

changes with material distortion, a contribution overlooked by Zheng [3]. If the

distortion is severe enough that , then generally (neglecting h would

be tantamount to neglecting stress itself). Put differently, it would be inconsistent

to assert that must be transversely isotropic about while not allowing its

components to include contributions from the rate of change of . It would be

wrong to generalize, say, Spencer’s small-distortion expression of stress as a

transverse function of strain [4] to large deformations in the unrotated

configuration. Doing so misses contributions like the last term in Eq. (27).

Recalling Eqs. (5) and (8), Eq. (29) may be easily converted to spatial form for

direct comparison with Zheng’s generalization of a transversely isotropic

constitutive equation from its arotational form [3]. Zheng’s Eq. (4.5) fails to

capture the last term in Eq. (31), unless (which is possible only for the

uninteresting case of unstretched fibers) or (also a very restrictive

condition). Furthermore, recall there is no comparison whatsoever without the

assumption that and share the same principal axes, representing yet

another restriction that would have to be placed on the deformation in order to

obtain good results using Zheng’s expression. It might appear at first glance that

the last term in Zheng’s Eq. (4.5) captures at least the qualitative character of the

last term in Eq. (29), but Zheng’s term arises not from the rate of rotation of the

fibers, but simply from the shear resistance of the material, which must be zero

for the idealized fiber material. As discussed in Section 5, Zheng’s approach for

generalizing arotational constitutive laws seems incapable of capturing certain

distinctions in material response that arise from the microstructure. Of course,

despite these defects, Zheng’s model is far superior to any model that takes the

reference transverse axis of symmetry to be unchanged by distortion.

4 Major-symmetry of tangent tensors

The fourth-order tensor in the second term of Eq. (31) is

transversely isotropic about , but it is not major-symmetric. Hence, in the exact

solution (Eq. 23), the tensor is not major-symmetric (i.e., ). The

existence of an elastic energy function is often used to justify an assumption of

m
˜

M
˜

≠ h 0≠

L
˜̃̃̃

* p
˜

p
˜

h 0=

Dkk 0=

V
˜̃

V
˜̃
˙

h p
i
p

j
δkl

p
˜ L

˜̃̃̃
Lijkl Lklij≠
9



.

major-symmetry. The argument is subtle for large deformations where, in the

absence of thermal power,1 the first law of thermodynamics requires that

. (33)

Here, ρ is the density and e is the internal energy per unit mass. Note that

is not the true rate of any path-independent quantity, while is a true

rate. Equivalently, is a true rate. The non-major-symmetric term in

Eq. (31) would not be present if we had instead differentiated the exact solution

for . This is, in fact, a general result as shown below.

In terms of the PK2 stress and Lagrange strain , the first law of

thermodynamics (without thermal power) is

, (34)

For a closed elastic system, the PK2 stress is taken to be a (material) function

of strain, and it follows from Eq. (34) that this function is derivable from a

potential (the energy):

. (35)

Hence, applying the chain rule noting that the material rate of  is zero,

, where . (36)

As long as the energy e is sufficiently differentiable, the fourth-order tensor

possesses major symmetry.

A similar analysis cannot be performed directly on Eq. (33) because is not

a true rate with respect to deformation.2 Instead, Eq. (36) must be rephrased in

terms of Cauchy stress.

Recalling that , Eq. (9) may be written

. (37)

1Including thermal power would not change our ultimate conclusions.
2There does not generally exist a tensor  that depends only on the deformation  such that
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Differentiating this expression using Eqs. (36), (12), and (10) shows that the

material rate of the specific stress is

. (38)

Recalling that is linear in , this result proves that for any deformation path

there does exist a fourth-order tensor  such that

. (39)

Noting that , this result also confirms the existence of a Cauchy

tangent tensor such that . To demonstrate the claim that is not

necessarily major symmetric, it is sufficient to consider proportional stretching

paths where and share principal axes. Then recalling the discussion

following Eq. (28), Eq. (38) becomes

. (40)

Since possesses major symmetry, so does . Noting that , Eq. (39)

may be written , where

, (41)

which is not major symmetric. This example of proportional stretching proves that

the rate of stress itself is not generally expressible as a major-symmetric tensor

operating on because volumetric contributions [second term in Eq. (41), or

second term in Eq. (31)] are not major-symmetric. Bergander [5] mentions that

Kirchhoff’s stress tensor is routinely used in modern constitutive models,

though sometimes without any justification other than convenience. The above

discussion shows that using specific stress (or Kirchhoff’s stress tensor, )

endows a major symmetry to the conjugate tangent modulus tensor, which is an

appealing and useful property for many applications. However, the fiber example

studied earlier shows that even if Kirchhoff’s stress is used, the associated tangent

modulus tensor cannot sensibly be regarded as a material property — it must

change as the material distorts.
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5 Microstructure affects macrostructure

We now mention that the Cauchy tangent tensor must “distort with the

material” in a way that depends on the microstructure. In Fig. 2, a fiber composite

and a laminate are each subjected to the same macroscopic pure stretch. Both

composites are initially transversely isotropic with the same axis of symmetry

( ). Upon distortion, the symmetry axis moves with the material in the fiber

case, but with the material planes in the laminate case. For the fiber case, Zheng

[3] correctly pointed out that a large deformation law of the form must

also depend on the distorted fiber direction , not the reference

direction . We have already shown [Eq. (27)] that it must additionally depend

on the rate . In the laminate case, the function f apparently must depend on the

distorted laminate plane normal (and its rate). To accommodate these

microstructural considerations, a numerical model (e.g., [6]) might require the

user to specify whether the material possesses a fiber or a laminate

microstructure, though such an approach might be stymied by “exotic” laminates

whose layers are fiber composites. Zheng did not discuss the alternative law of the

form , where the PK2 function g apparently depends on the undistorted

reference direction in both the fiber and laminate cases, again suggesting that the

PK2 description might be better suited for large-distortion analyses of anisotropic

materials.
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6 Conclusions

This paper has reviewed several important caveats regarding large-distortion

constitutive laws. Namely, a sensible large-distortion constitutive law generally

cannot be constructed from a small-distortion law by simply applying the small-

distortion law in the unrotated configuration, even though frame indifference is

satisfied. Any anisotropic constitutive law phrased in terms of unrotated Cauchy

stress and rate-of-deformation must account for distorted material

directions. For our fiber example, this means that the Cauchy tangent stiffness

tensor must depend not on the initial fiber orientation , but on the distorted

orientation , and its rate . Furthermore, the Cauchy stress must be replaced

by the specific stress or Kirchhoff’s stress if the associated tangent

modulus tensor is to possess major symmetry for general deformations. Comparing

a fiber composite with a laminate composite having the same transverse axis of

symmetry demonstrates that the microstructural source of the anisotropy must be

explicitly accommodated for any large-distortion problem modeled using unrotated

Cauchy stress with the unrotated rate-of-deformation. These complications

associated with distortions of the material directions can be managed by using the

second Piola-Kirchhoff stress of Eq. (9) together with the Lagrange strain of

Eq. (11). For this conjugate pair, the tangent modulus possesses major symmetry

and depends on the initial (not distorted) material directions; hence, there are no

counterintuitive contributions from material direction rates. However, to avoid

numerical instabilities, the PK2 modulus magnitude must still be determined by

high-distortion experiments.
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(not a unit vector). The right side of the figure shows the distorted shap
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