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Mohr’s Circle and more circles
Rebecca Brannon

Warning: this document is rather rough. I wrote it as a self-study guide for stu-
dents who wanted a refresher on Mohr’s circle and for more advanced students 
who are ready to learn about extending Mohr’s circle to non-symmetric matrices 
(and to see Mohr’s circle be used for something more interesting than simple 
coordinate transformations). 

Mohr’s circle was extremely popular in its day, so the vast majority of these 
results are not new -- it is baffling our community continues to publish papers 
about Mohr’s circle to “report” information that was known even in the early 1900s!
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ABSTRACT
Traditionally, Mohr’s circle has been used as a graphical method for performing 
coordinate transformations for stress, but the technique applies equally well to any 

 tensor matrix. Mohr’s circle also provides rapid graphical estimations for 
eigenvalues and eigenvectors, which is extremely useful for verifying analytical 
results. Mohr’s circle is not just for stress tensors, but it is typically taught in only that 
context in introductory materials mechanics courses. For stress tensors, Mohr’s circle 
can be used to visualize and to determine graphically the normal and shear stresses 
acting on a plane of any given orientation. For symmetric tensors, Mohr’s circle can 
be generalized to  matrices for a graphical depiction of the set of all possible 
normal and shear components. The traditional definition of Mohr’s circle for 
symmetric matrices is presented with numerous examples for performing coordinate 
transformations, finding the plane(s) of maximum shear, and identifying eigenvalues 
and eigenvectors. An important but little-known enhancement to Mohr’s circle 
(called the Pole Point) is shown to rectify counter-intuitive factors of 2 when 
converting angles in physical space to angles in the Mohr diagram. The extension of 
Mohr’s circle to  matrices is presented with application to the Mohr-Coulomb 
theory of material failure. The basic construction of Mohr’s circle is shown to apply 
with only minor modification to nonsymmetric matrices, in which case the circle no 
longer remains symmetric about the normal axis. Applications of nonsymmetric 
Mohr’s circle include rapid eigenvalue/eigenvector determination and fast polar 
decompositions for deformation matrices. A numerical exploration is presented that 
suggests there is no simple extension of Mohr’s circle to  nonsymmetric 
matrices.
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1. Introduction
In a first course on mechanics of materials, you were probably introduced to the appli-

cation of Mohr’s circle to perform coordinate transformations on two-dimensional stress 
states, but did you ever look at it closer? Mohr’s circle is more than just a tool to analyze 
stress. It can be applied to any 2×2 symmetric matrix, such as strain or moments of inertia. 
As a matter of fact, the matrix doesn’t even have to be symmetric! 

Mohr’s circle does nothing that you can’t do using 
purely analytical methods, so why is it useful? Mohr’s cir-
cle is extremely valuable as a quick graphical estimation 
tool to double-check your analytical work. As shown in 
Section 2, you can use it to determine eigenvalues of a 
matrix or to estimate the orientation of a reference frame in 
which the shear stresses are maximized. More recently, as 
depicted in Fig. 1.1, Mohr’s circle has been “re-discov-
ered” for visualizing tensor fields. The upper part of that 
figure shows a spherical salt body embedded in a large 
expanse of rock. The overburden at a point (i.e., the weight 
of rock above) increases linearly with depth. Unlike fluids, 
solids (like rock) can have both normal and shear stresses 
(maximum shearing, in this problem, occurs on planes  
off-vertical). The small diagram at the bottom of Fig. 1.1
(called a Mohr diagram) shows a collection of circles that 
are cross-matched in color to the computational domain. 
The horizontal axis represents normal stresses and the ver-
tical axis represents shear stresses. At any given location in 
space, the normal and shear stresses depend on the plane 
on which they act. For example, there are no shear stresses on horizontal planes (except 
near the salt body). On the other hand, shear stresses do act on differently oriented planes. 
Otto Mohr proved that the set of all possible shear-normal stress pairs acting on planes of 
various orientations at a point will always fall within or on a circle (Mohr’s circle). As you 
move deeper below the rock surface, the circles translate to the left (indicating increasing 
levels of compressive — negative — stress). The circles also increase in radius (indicating 
increasing levels of shearing). The “bumps” you see in the profile indicate how much the 
presence of the salt sphere perturbs the lithostatic stress field.

In this tutorial, we will review the basic instructions for constructing and interpreting 
Mohr’s circles. Those who already know Mohr’s circle may recall that an angle gets dou-
bled when portrayed in Mohr’s circle, which can be very confusing. Section 2 introduces a 
little known enhancement to Mohr’s circle (namely, the Pole Point) that rectifies this prob-
lem. Some engineering applications of the 2D Mohr’s circle are provided.

 

Figure 1.1. Application of Mo-
hr’s circle to visualization of a spatial-
ly varying stress field.   Ref: Crossno, 
Rogers, and Brannon (2003).

45°
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As shown in Section 3, you can generalize Mohr’s circle for nonsymmetric 
matrices. With the nonsymmetric Mohr’s circle, you can graphically determine whether 
there are real eigenvalues and whether the algebraic multiplicity of an eigenvalue equals 
its geometric multiplicity, and you can graphically determine right and left eigenvectors. 
When the nonsymmetric Mohr’s circle is applied to the deformation gradient tensor from 
continuum mechanics, you can quickly determine the polar decomposition rotation and 
stretch.

In the trailing part of Section 2 we will review how Mohr’s circle generalizes for  
symmetric matrices. The trailing part of Section 3 also explores whether there exists a 
similar generalization for non-symmetric  matrices. A clear generalization from 2D 
to 3D Mohr diagrams in this case of nonsymmetric tensors is not readily apparent. How-
ever, some publications have been recently brought to our attention that purport to address 
this problem, so look back at this tutorial at a later date to see if we have any more news 
on that front.
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What is Mohr’s circle?
Suppose that you know the components of a 2D stress matrix,

.  (1.1)

These components are referenced to some particular basis — 
probably the fixed laboratory basis . If you look at the 
same stress state from some other orientation, then the components 
will be different. The formula for the reoriented stress components 
is given in the Appendix, but the formula is awkward and lacks physical or mnemonic 
insight. Otto Mohr (1835-1918) developed Mohr’s circle as an easily-remembered tech-
nique to graphically determine new stress components with respect to any rotated basis.* 

The fundamental idea behind Mohr’s circle is that the 
normal and shear stresses on a plane depend on the orienta-
tion of that plane. Suppose that we slice the above stress ele-
ment with a plane whose outward normal makes an angle  
with the horizontal. There are two values of  (namely,  
and ) where we already know the normal and shear 
stress. Consider the orientation where the plane’s outward 
normal is parallel to the  laboratory base vector; in other words, suppose that . 
Then comparing the above two sketches, we know that the normal stress  must equal 

 and the shear stress  must equal . There’s a negative sign because we arbi-
trarily decided to show  such that it tended to shear the stress element in a clockwise 
direction, but the first figure shows  in the opposite direction. As the orientation of the 
plane is varied, the normal and shear stresses will vary smoothly until eventually . 
At this orientation, the outward normal of the cutting plane will be aligned with  and a 
comparison of the above two drawings shows that  and  when .

Noting that  and  are functions of , we can imagine parametrically plotting  vs. 
 for various values of . It is proved in the Appendix that the resulting plot will always 

turn out to be a circle — Mohr’s circle. We will show that moving by an amount  in the 
physical plane will correspond to moving an angular distance  on Mohr’s circle. Con-
sequently, Mohr’s circle may be used to perform coordinate transformations. For symmet-
ric matrices such as stress, Mohr’s circle will always be centered about the -axis. For 
nonsymmetric matrices, it will lie off the -axis. Now let’s cover these concepts in greater 
detail.

* Original work: Mohr, O. (1900) Welche Umsta_umlaut Finish citation from 
Jaeger and Cook Rock Mechanics book (mohr 1900 
and~1915)
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2. Mohr’s Circle for symmetric matrices
Consider a generic  2×2  symmetric matrix:

.  (2.1)

This does not have to correspond to a stress state, but, 
for constructing Mohr’s circle, it is nevertheless use-
ful to “pretend” that the matrix is a stress state where 

, , and . This stress 
state is sketched at right.

To construct Mohr’s circle, you examine the nor-
mal and shear stresses on each face to construct a pair 
of numbers for each face. 

The face whose outward unit normal is horizontal 
will be called the “H” face and the face whose out-
ward normal is vertical will be called the “V” face. For the stress state shown above, the 
normal stress on the H-face equals a, and the normal stress on the V-face equals c. The 
normal stress is considered positive if it is in tension, and negative if it is in compression.

For the purpose of Mohr’s circle, the shearing stress on a face will be given a numeri-
cal sign according to a left-hand rule. In other words, the shearing stress on a face is posi-
tive if it tends to torque the stress element in the clockwise direction. The shearing stress is 
negative if it torques the stress element in the counter-clockwise direction. Thus, the 
shearing stress on the H-face equals  while the shearing stress on the V-face equals . 
For symmetric matrices, the shearing stresses on the two faces always “balance” each 
other so that there is no net torque. Later on, when we discuss non-symmetric matricies, 
the torques will not balance, but we will find that most of the discussion covered here for 
symmetric matrices also holds true for nonsymmetric matrices. The reason for the left-
hand rule will become apparent later. Many authors* use a right-hand rule, which might 
feel more familiar to some, but precludes several extremely appealing properties of 
Mohr’s circle (especially the pole point). The direction of shearing is only a choice, and 
you can convert from one convention to another by merely changing a sign. In a loose 
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b c
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Figure 2.1. The H and V faces of the “stress” element.   The outward 
normal of the H face is horizontal and the outward normal of the V face is 
vertical.
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sense, a counter-clockwise (right-handed) rotation of a stress tensor itself (holding your 
own orientation fixed) is equivalent to a clockwise (left-handed) rotation of yourself (leav-
ing the stress element untouched), so the issue of sign conventions for rotations will 
always be there, no matter what route you take. With our left-handed convention, the key 
thing that you need to remember is that the stress matrix will always use a convention for 
which a positive off-diagonal component corresponds to a counterclockwise shear on the 
1-face and, to balance torques, a clockwise shear on the 2-face.

For coordinate transformations, we 
desire to know what the normal and 
shear stresses would be for a stress ele-
ment that is oriented at some known 
angle  to our stress element (see fig-
ure). Recalling that the shearing stress is 
positive on one face and negative on the 
other, it stands to reason that the shear-
ing stress must transition smoothly from 
one sign to the other, so there exists a 
special element orientation (the princi-
pal orientation) for which the shearing 
stress is zero. A common engineering 
problem involves determining this spe-
cial shear-free orientation. This task is 
tantamount to doing an eigenvalue analysis on the original stress matrix. For boundary 
value problems, we might need to know the traction (i.e., the normal and shear stresses) 
exerted on a surface of known orientation. Mohr’s circle is helpful for all these practical 
applications.

If we find a method for determining the normal and shear stresses on a face whose nor-
mal makes an angle  with the horizontal, then we have also found a means of determin-
ing the normal and shear stresses on the other faces. In the above figure, the face whose 
normal stress is    is at angle , so we can just apply our formulas using this 
angle to obtain the shearing and normal stresses on that face.

* For example,  
Nutbourne & Martin (1988, p171), Differential Geometry. Addison-Wesley, Reading, MA. 
Reismann, H. & Pawlik, P.S. (1980), Elasticity: Theory and Applications, Krieger Publishing 
Co., Malabar, FL 
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Mohr diagram
We seek a method of computing the normal and shear 

stresses on a plane whose normal makes an angle  with 
the horizontal. These shearing and normal stresses depend 
on the orientation of the plane. On any given plane, we will 
say that the normal stress  is positive if it is tensile. We 
will say that the shearing stress  is positive if it tends to 
rotate the face in a clockwise direction. In other words, the 
numerical sign for the shearing stress is assigned by using a 
left-hand rule. Although it is not obvious now, a left-hand 
rule is adopted in order to make certain properties of 
Mohr’s circle more appealing.

Recall that the normal and shearing stresses depend on the orientation of the plane. 
They must transition smoothly from their values on the H-face to those on the V-face. 
Comparing Fig. 2.2 with Fig. 2.1, we observe that

On the H-face ( ):     and    . 

On the V-face ( ):       and      .  (2.2)

Henceforth, we will make such statements more compactly by simply writing the ordered 
pairs (normal stress, shearing stress) for each face:

H:  
V:  (2.3)

The value of  on the H-face is negative of the value of  on the V-face. This property 
always holds for symmetric matrices — the shearing stresses must balance. Of course, you 
can always forego drawing a stress element by directly noting the correspondence:

.  (2.4)

We are interested in the values of  and  on a plane of arbitrary orientation . These 
quantities vary with . We can imagine a graph in which the smoothly varying shearing 
stress  is plotted parametrically against the corresponding normal stress  for 
various values of the orientation angle . Naturally the points on such a graph must begin 
repeating themselves (due to periodicity of the angle ). Hence, we expect the family of 

 points to form some sort of closed path in the  vs.  space. It is proved in the 
Appendix that this closed path will in fact be a circle, which is called Mohr’s circle. 
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The H-face corresponds to . Hence Eq. (2.3) tells us that Mohr’s circle must pass 
through the H-point . It must also pass through the V-point  when . 
Consequently, we have deduced two points that must lie on the circle. Ordinarily, it takes 
three points to uniquely define a circle, but the Appendix provides a proof of the following 
very important property of any Mohr’s circle:

Consequently, not only are the H and V points from Eq. (2.3) located somewhere on 
Mohr’s circle, they are also on opposite sides of Mohr’s circle! This added restriction 
uniquely defines the Mohr’s circle. To construct Mohr’s circle, simply plot H and V, and 
then draw a circle such that the line connecting H and V is a major diameter of the circle 
(see figure).

Keep in mind: Mohr’s circle is a parametric plot of the shear and normal stresses on a 
plane as a function of the plane’s orientation angle . Thus, when you read the  
coordinates of a particular point on Mohr’s circle, then you know that there exists a plane 
on which the normal and shear tractions are given by those values. At this point, you do 
not know the orientation of the plane. Later on, we will show that the orientation of the 
plane is exactly half of the angular distance from the H-point on the Mohr’s circle to the 

 point of interest. For now, let’s focus on how to draw Mohr’s circle and how to 
draw general conclusions from the Mohr’s circle.

θ=0
a b–,( ) c b,( ) θ=π 2⁄
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EXAMPLE 1.   Use Mohr’s circle to quickly decide if the following matrix has any 
negative eigenvalues.

.  (2.5)

SOLUTION: First, please note that Mohr’s circle is not the easiest way to answer this ques-
tion. You can simply check the signs of the invariants. The first invariant is

.  (2.6)

The second invariant is

.  (2.7)

The invariants are not both positive, so the matrix does indeed have at least one negative 
eigenvalue. Now, for the purpose of illustration, let’s solve the problem using Mohr’s cir-
cle.

Imagine that this matrix represents a “stress element” as 
shown here. The shearing stress is labeled as “2” instead of “-
2” because the negative sign is already reflected accurately in 
the drawing. The question now becomes: Does this stress ele-
ment have any plane on which the normal stress is compres-
sive?

To answer this question, first we construct the Mohr’s cir-
cle. Consider the face with a horizontal normal. The normal 
stress on this H-face is 1, and the left-hand rule says the shearing stress on the H-face 
equals +2. Hence, the H-point on Mohr’s circle is (1,2). On the face with a vertical normal, 
the normal stress is 3, and (again by the left-hand rule) the shearing stress is –2. Thus we 
have our two points that define the Mohr’s circle. Namely

H: (1,2) 
V: (3,-2).  (2.8)

An alternative way to obtain the H and V points is to apply Eq. (2.4). Namely, we write

,  (2.9)

from which we directly note that , , , and , in agreement with 
Eq. (2.8).

1 2–
2– 3

trace sum of diagonals 1 3+ 3= = =

determinant 1( ) 3( ) 2–( ) 2–( )– 1–= =
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3
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We must plot the H and V points in  vs.  space, and 
draw a circle such that the line connecting H and V is a 
major diameter. The final result is shown at right.

Getting back to the original question, we want to know 
if there are any planes on which the normal stress  is 
compressive. Recall that points on the Mohr’s circle corre-
spond to the normal and shear stresses on planes of various 
orientations. Noting that this circle does indeed have some 
points where , we conclude that there do exist planes on which the normal stress is 
compressive. Therefore, the original matrix of Eq. (2.5) does have a negative eigenvalue. 

As a matter of fact, the eigenvalues are identically equal to the two values of  where 
. Let  denote the value of  at the center of Mohr’s circle. Let  denote the 

radius of Mohr’s circle. Inspecting the geometry of the circle, we see that the circle is cen-
tered at  and the circle’s radius is . Hence the two eigen-
values of the matrix in Eq. (2.5) are

.  (2.10)

Notice that we were able to assert the existence of at least one plane on which the nor-
mal stress was compressive, and we did this without having to find the actual orientation 
of a suitable plane. It will soon be shown that Mohr’s circle may also be used to find the 
orientations of planes with desired properties (or, conversely, to find the stresses on a 
plane of known orientation). For now, however, let’s focus on further practice with con-
structing Mohr’s circle.

Exercise 1.  Demonstrate graphically (i.e., by accurate drawings, not by using trigo-
nometry) that the Mohr’s circles for all of the following matrices are identical to the 
Mohr’s circle in Example 1. The key (and only) distinguishing feature is the location of 
the H (and V) point. Marking the H and V points will later be crucial for you to interpret a 
Mohr’s circle. The H and V points tell you the connection between the stress element and 
its orientation relative to the laboratory coordinates.

.  (2.11)
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EXAMPLE 2.   The following matrix and stress element correspond 
to pure shear of magnitude 5:

.  (2.12)

Referring to the stress element (remembering to apply the left-hand rule 
for shearing stresses), the H and V points are

H:  
V: .  (2.13)

The corresponding Mohr’s circle is shown at right. For pure shear, 
the Mohr’s circle will always be centered at the origin. Conversely, 
if the Mohr’s circle is centered at the origin, then the stress element 
is in a state of pure shear. The matrix of Eq. (2.12) is fairly obvi-
ously in a state of pure shear, but Exercise 2 shows that the same 
stress state might appear radically different when viewed from 
some other perspective.

Exercise 2.  Show that the following matrix corresponds to a state of pure shear that is 
identical to that of Example 2; the only difference is the locations of the H and V points. In 
other words, this matrix corresponds to the same stress state as seen by a differently-ori-
ented observer.

.  (2.14)

Exercise 3.  Construct a matrix that corresponds to the same stress state as in Eqs. 
(2.12) and (2.14) except as seen from a perspective in which there are no shearing trac-
tions on the H and V planes. What are the eigenvalues of the matrices in Eqs. (2.12) and 
(2.14)? How do these eigenvalues compare to those of the matrix that you just con-
structed? 
Hint: locate the only two points on the Mohr’s circle where . Take the H-point to be one of these and the V-point to 

be the other. There are only two possible answers to this question, depending on where you decide to place the H and V 

points. At this point, we do not know the angle that an observer would have to be at to make the shear stresses go away 

— we only know that such an orientation exists.
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EXAMPLE 3.   Consider an isotropic symmetric 2×2 matrix 
(i.e., a matrix that is simply a multiple of the 2×2 identity matrix). 
The following represents a state of hydrostatic tension of magnitude 
3:

.  (2.15)

The H and V points for this matrix turn out to be identical:

H:  
V: .  (2.16)

The H and V points will always be identical for any isotropic 
matrix. Conversely, if the H and V points coincide, then the matrix 
must be isotropic. 

In this special case, the Mohr’s circle degenerates to a single 
point. This means that, no matter how you look at this stress state, 
the matrix will always be given by Eq. (2.15). This is a highly 
exceptional situation given that matrix components normally 
change upon a change in reference frame. 

By the way, noting that the shearing stress is zero on any plane, we conclude that any 
vector is an eigenvector of the matrix in Eq. (2.15), and the associated eigenvalue 
equals 3.

Coordinate transformations using Mohr’s circle
Recall that the Mohr’s circle represents a parametric plot of normal and shear stresses 

as they vary for different plane orientations. The following important property is proved in 
the Appendix:

The circled statement on page 9 is a special application of this statement. This property 
is the motivation for using a left-hand rule for signing the shear stresses; if a right-hand 
rule had been used, then an angle measured one way in the physical plane would be mea-
sured in the opposite way on Mohr’s circle.

You can use the above property of Mohr’s circle to perform coordinate transforma-
tions, as we will now illustrate via several examples.

3
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σ

τ
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2 31

Whenever a plane is oriented at an angle  mea-
sured counterclockwise from the laboratory horizon-
tal, then the corresponding point on Mohr’s circle will 
be at an angle  measured in the same direction 
from the H-point on Mohr’s circle.

θ
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EXAMPLE 4.   Con-
sider the following stress 
matrix referenced to the lab-
oratory basis:

.  (2.17)

We wish to use Mohr’s circle to determine the stress matrix for this stress state as seen by 
an observer who is rotated  counterclockwise from the laboratory orientation. In other 
words, we want to determine values for the question marks in the above figure.

SOLUTION: The matrix of Eq. (2.17) corresponds to the following H and V points:

 
,  (2.18)

from which Mohr’s circle is constructed as shown. To find the 
stress state corresponding to  measured counterclockwise 
from the horizontal, we must measure  counterclockwise 
from the H-point on Mohr’s circle. If you have a protractor, this is a 
relatively easy task to do graphically, which explains why Mohr’s 
circle was such a popular tool in the days before calculators.

Let’s do this one analytically. From the known coor-
dinates of the points H and V, we observe that the center 
of the Mohr’s circle is located at

.  (2.19)

The radius of the Mohr’s circle is

.  (2.20)

We also need the two angles marked  and . Based on 
the coordinates of H, we see that

.  (2.21)

Referring to the figure,  differs from  by , so that

.  (2.22)

A simple geometrical inspection of the preceding figure shows that the coordinates of the 
points A and B are
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.  (2.23)

Consequently, the stress matrix and stress element as 
seen by an observer who is rotated  counterclockwise 
from the horizontal are now known. First we draw the 
stress element and, from there, we construct the matrix:

.  (2.24)

Even though this result was derived analytically, the 
Mohr’s circle nevertheless provides an excellent means of visually verifying that analyti-
cal results are indeed reasonable. You can look at the drawing to see that the computed 
coordinates for A and B appear to be accurate.

Exercise 4.  Again con-
sider the stress state of Eq. 
(2.17):

.  (2.25)

This time, use Mohr’s circle 
to determine the stress matrix as seen by an observer who is rotated  clockwise from 
the laboratory orientation. In other words, determine values for the question marks in the 
above figure.

A:   CM R+ M βcos R– M βsin,( ) 5.598 1.964–,( )=
B:   CM RM βcos– RM βsin,( ) 3.598– 1.964,( )=
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Eigensystem of a 2x2 matrix
The eigenvalues of a matrix are just the  values 

at the two “eigenpoints” where Mohr’s circle 
crosses the  axis. If an analytical solution is desired 
for the eigenvalues and eigenvectors of a  
matrix, there is a very easy formula. Specifically, 
suppose that the matrix is

.  (2.26)

The eigensystem of the above  matrix can be quickly determined by the follow-
ing sequence of calculations:

Define: . 

Center of Mohr’s circle: . 

Radius of Mohr’s circle: . 

Eigenvalues: . 

Corresponding eigenvectors: , where the “^” indicates that the 

eigenvector must be normalized if so desired.

One disadvantage of the above procedural method is its lack of physical insight. You can 
use Mohr’s circle to graphically check your calculations. Finding eigenvectors via Mohr’s 
circle is done as a simple coordinate transformation in which the angle to the eigenvector 
is half of the angle from the H-point to the eigenpoint. This method is illustrated in the 
next example.

σ

τ
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σ

σ
2 2×

a b
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2 2×

d a c–
2

-----------≡
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------------≡
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EXAMPLE 5.   Consider the stress state of Eq. (2.17). Namely

 (2.27)

(a) Find the orientations of the two planes on which the shear stress is maximized and 
determine the normal stress on those planes. 
(b) Use Mohr’s circle to find the eigenvalues and eigenvectors of the matrix.
SOLUTION:

 (a) The points of maximum shear stress are marked C 
and D in the figure at right. Recall from the preceding 
example that

,  (2.28)

Inspecting the geometry of the circle, point C is at an 
angle  measured counterclockwise from H. 
Recall that an angle measured from the H-point on 
Mohr’s circle corresponds to half as large of an angle in 
the physical plane. Hence, the physical plane corresponding to point “C” must be at an 
angle

,  (2.29)

measured counterclockwise from the horizontal. Notice that we measured in the same 
direction (counterclockwise) from “H” in both the physical plane and on Mohr’s circle. 
The coordinates of point C are (1,5). Hence, the shear stress on this plane is of magnitude 
5 and the normal stress at that orientation equals 1. The shear at point C is positive 5, so 
the shear on the “C-face” (oriented at ) must be drawn positive by the left- hand rule. 

Similarly, the point D on Mohr’s circle is located at an angle , measured clock-
wise from H. Consequently, the physical plane corresponding to point D must be at half
that angle:

,  (2.30)

This angle is to be measured clockwise from the horizontal 
because that’s how we measured from the H-point on 
Mohr’s circle. Notice that you may choose to measure 
clockwise or counterclockwise as you see fit — you only 
need to be consistent.
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The points C and D are diametrically opposite each other on Mohr’s circle, so (recall-
ing the circled statement on page 9) it should come as no surprise that the two planes of 
maximum shear differ from each other by exactly  in the physical plane. The stress 
element at right shows both of these planes of maximum shear.

 (b) For this part of the question, we seek the eigen-
vectors of the matrix. When viewed as a stress matrix, 
this means we seek the orientation of planes on which the 
shear stress is zero. The points marked E and F on the 
Mohr’s circle at right correspond to zero shear stress. The 
normal stresses at these points must therefore be the 
eigenvalues of the matrix; namely,

Eigenvalue for point E:  
Eigenvalue for point F: .  (2.31)

Point F is located at an angle  measured counterclockwise from the H point 
on Mohr’s circle. Therefore, the plane corresponding to point F has an outward unit nor-
mal that makes an angle half as large: . This angle is measured from the 
physical horizontal in the same direction that it was measured from the H-point on Mohr’s 
circle, namely counterclockwise. The physical plane associated with the point F has an 
outward unit normal that makes an angle of  with the horizontal. This unit normal is 
the eigenvector associated with the eigenvalue . Thus, the eigenvector corresponding to 
point F is

.  (2.32)

The point E is diametrically opposite F on Mohr’s circle, so the eigenvector for E must be 
perpendicular to that for F. Hence, the eigenvector associated with point E must be

.  (2.33)

The stress element at right is oriented in the principal 
directions. Of course, we could have alternatively computed 
the second eigenvector in exactly the same way as we did the 
first eigenvector. To do this, it is probably easiest to measure 
the angle counterclockwise. Specifically, the second eigen-
value (at point E) is at an angle  measured counter-
clockwise from the H-point on Mohr’s circle. Hence, in the physical plane, the second 
eigenvector makes an angle  measured counterclockwise from 
the physical horizontal. Thus, the second eigenvector (corresponding to point E) is

,  (2.34)

90°

σ

τ

H

V

α

FE

λE 4–=
λF 6=

α 53.13°≈

α 2⁄ 26.6°=

26.6°
λF

26.6°( )cos
26.6°( )sin 

 
  0.894

0.447 
 
 

=

4
6

26.6°

116.6°

63.4°

26.6°( )sin–
26.6°( )cos 

 
  0.447–

0.894 
 
 

=

α 180°+

α 180°+( ) 2⁄ 116.6°=

116.6°( )cos
116.6°( )sin 

 
  0.447–

0.894 
 
 

=

18
Copyright is reserved. Individual copies may be made for personal use. No part of this document may be reproduced for profit.



October 29, 2003 6:19 pm
Mohr’s Circle for symmetric matrices D R A F TR e b e c c a  B r a n n
 o n
which is identical to Eq. (2.33), as it should be. 

It is perfectly legitimate to measure angles in a clockwise direction rather than coun-
terclockwise. For example, the point E is at an angle of  measured clockwise
from point H. Thus, the physical plane associated with E must be oriented at an angle of 

 which must also be measured clockwise from the horizontal, as 
shown in the above figure. The result for the eigenvector is the same.

Finally, note that one could alternatively measure angles from the V-point on Mohr’s 
circle. The corresponding physical plane would have an orientation at half as large of an 
angle, measured from the vertical in the same direction.

As a final check, let’s apply the procedural method given on page 16 to see if we 
obtain the same eigensystem.

Comparing Eq. (2.26) with (2.27) we set  and therefore identify 

    ,     ,    and    .

Define: . 

Center of Mohr’s circle: . 

Radius of Mohr’s circle: . 

Eigenvalues: , giving  and . 

Corresponding eigenvectors: .

So the first eigenvector is , which agrees 

with the result in Eq. (2.32). Likewise, the second eigenvector is

 in agreement with Eq. (2.34) with the 

exception of the multiple of –1, which is inconsequential since eigenvectors can be 
multiplied by –1 without loss in generality.
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The fabulous Pole Point
In this age of readily-available scientific computers, the usefulness of Mohr’s circle 

mostly lies in its ability to give you quick graphical estimates. You might, for example, be 
sitting in a technical seminar and need to quickly determine whether a matrix has any neg-
ative eigenvalues, or you may need an estimate of the maximum shear stress. For such 
purposes, Mohr’s circle can’t be beat.

One drawback with the classical version of Mohr’s circle is that angles in physical 
space map to twice the angle on Mohr’s circle. Furthermore, the angle on Mohr’s circle is 
measured from the H-point, which itself might be at an awkward or difficult-to-visualize 
location. The pole point* is a little-known extension to Mohr’s circle that rectifies these 
problems.

To construct the pole point, all you do is draw a horizontal line through the H-point 
and a vertical line through the V-point. These two lines will always intersect the Mohr’s 
circle at the same location. This special point is called the “pole point” and is labeled “P.”

The remarkable property of the pole point is that you can draw a line from the pole 
point to some other point on Mohr’s circle and the orientation of that line will exactly 
coincide with the actual orientation of the associated plane in physical space — it won’t 
differ by a factor of 2, and (just like the angle in physical space) it will be measured rela-
tive to the horizontal in the Mohr diagram rather than relative to the H-point. You can then 
draw stress elements with the proper orientation directly on Mohr’s circle. These concepts 
are best explained via examples.

* See, for example,  
Allison, I. (1984) The pole of the Mohr diagram. J. Struct. Geol. 6, 331-333.  
Lisle, R.J. (1992) Strain analysis by simplified Mohr Circle construction. Annals Tectonicae 5, 102-
117.
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EXAMPLE 6.   Rework example 4 using the pole point.
SOLUTION: Recall the matrix and Mohr’s circle from Example 

4:

.  (2.35)

The pole point P is constructed by drawing a horizontal line 
through H and a vertical line through V, as shown in the figure.

Recall that example 4 asked for the expression of the stress matrix as seen by an 
observer who is rotated  from the horizontal. 

To solve this problem graphically, you use a protractor to draw a line that passes 
through the pole point P at an angle of  from the horizontal. As long as your drawing 
is moderately accurate, you can estimate the coordinates of the point “A” where this line 
passes through Mohr’s circle. This point “A” is exactly the same as the point A in Exam-
ple 4! Point A corresponds to the normal/shear stress pair on the plane whose normal is at 

 from the physical horizontal! We simply “eyeball” the drawing to estimate the coor-
dinates of point A as roughly

A: .  (2.36)

Recalling Eq. (2.23), the exact solution for the normal and shear stresses on this face were 
, we conclude that the pole point is indeed a very powerful estimation 

tool. Of course point “A” corresponds only to the face of the stress element whose normal 
is at . To draw the full stress element, we again recall that the stresses on other face are 
determined by reading the coordinates of point “B” diametrically opposite from point A:

B: .  (2.37)

The normal stress on this face is negative, so it is shown as compressive in the stress ele-
ment. The shear stress at point B is positive, so it is drawn to be positive by the left-hand 
rule. 
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By the way, we would have ended up with the same stress element if we had instead 
drawn a line from the pole point to point B in the figure. The resulting sketch would then 
look like this:

Exercise 5.  Rework exercise 4 using the pole point. Use graphical methods only — 
make an accurate drawing on grid paper and read off the relevant coordinates from your 
figure. Don’t use trigonometry.
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EXAMPLE 7.   Consider the matrix of Eq. (2.12):

.  (2.38)

This matrix is interesting because, if you draw a hori-
zontal line through the H-point and a vertical line 
through the V-point, it turns out that the pole point P is in 
the same spot as the H-point. There is nothing wrong 
with this situation. All the previous comments about the 
pole point remain valid. For example, you could immedi-
ately observe that the principal directions for this matrix 
are oriented at  relative to the physical laboratory 
basis. You can draw both the original stress element of 
Eq. (2.38) and the principal stress element (on which 
shear stresses are zero) directly on the Mohr’s circle as 
shown. The max eigenvalue equals 5, and we elected to 
draw the line from P through this point on Mohr’s circle. Hence, the normal stress on this 
line equals . The normal stress on the other face of the stress element is , which 
comes from looking at the diametrically opposite point on Mohr’s circle.

Exercise 6.  Using only a straight-edge and a protractor, graphically solve the prob-
lem of Example 5 by using the pole point. Show the pole point and the two stress elements 
(max shear and zero shear) directly on your drawing (as was done in the examples 6
and 7).
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Application of the pole point to strain rosettes
Strain is a symmetric  tensor that quantifies deformation, but it unfortunately is 

defined in many different ways by many different people. The deformation gradient tensor 
 (discussed in great detail later) is a superior measure of deformation because its defini-

tion is universally accepted and, like strain, it incorporates material size and shape 
changes, but it also characterizes overall material rotation (something a strain measure 
cannot do). The deformation gradient tensor is defined so that an infinitesimal material 
element  will deform to a new orientation and length such that

 (2.39)

The square of the initial length is  and the square of the deformed length is 
. Consequently,

, where  (2.40)

Stated differently, 

,  

where  and  is a unit vector in the direction of  (2.41)

The “reference stretch” tensor , characterizes the size and shape change associated with 
the deformation; it loses information about material rotation. All of the commonly used 
strain definitions can be expressed in terms of  by an expression of the form

 (2.42)

Here,  is called the Seth-Hill parameter. Choosing  will give the engineering strain 
analogous to the linear strain defined with respect to initial and final lengths of a uniaxial 
specimen by . Choosing  will give a strain analogous to 

. Choosing  in the limit will give the logarithmic strain analogous 
to . Evaluating  in Eq. (2.40) involves taking the square root of a tensor, 
which is an onerous task requiring an eigenvalue decomposition. However, if only the 
strain is desired, the eigenvalue decomposition can be avoided if an even nonzero Seth-
Hill parameter is used. The choice  corresponds to the Lagrange strain that is com-
monly used in numerical analysis; with this choice, . The Lagrange 
strain is easy to compute, but one should be cautioned that it is unstable under large com-
pressions if a linear elasticity model is used. The choice  also avoids the eigen-
value decomposition, and it is stable in compression but unstable in tension.* All strain 
definitions are approximately equivalent when material stretching is small.

* The only choice that is stable in both compression and tension is the logarithmic strain . 
Any choice for  can be made stable if a nonlinear elasticity model is used.
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Clearly, the choice of strain measure is a murky one indeed. All of the strain defini-
tions are functions of the (well-defined) stretch, we will outline below how to compute the 
stretch tensor. Once you have that, you can compute whatever strain definition you seek. 

Recall our formula for the fiber stretch:

,  

where  and  is a unit vector in the direction of  (2.43)

This formula is the basis for linear strain gages, which are basically wires that increases 
electrical resistance when stretched.* If a gage is glued to a surface so that the gage is par-
allel to some direction , then it will move with the surface upon deformation, causing it 
to change length and change electrical resistance. Most gage manufactures will convert 
this resistance change to a linear engineering strain, , so the gage stretch can be readily 
computed by . Most gages will respond nonlinearly under large deformation, 
so an independent calibration experiment might be required to convert the strain reported 
by the gage to the actual stretch experienced by the material. For our purposes, we will 
presume that you have available to you a set of gages from which you can determine accu-
rate stretches.

Note that the gage will output only voltages associated with length change. The gage 
does not directly measure reorientation of the material. However, when measuring strain 
in a plane, the reorientation may be inferred by using a third strain gage. Typically the 
gages are glued one on top of another at a point, differing in orientation by . Let the 
first strain gage (gage “A”) point in the vertical-direction. Let the second (gage “B”) point 

 above the horizontal and let the third (gage “C”) point  below horizontal. Equa-
tion (2.43) tells us that  equals the normal component of . There is no information 

* To amplify the effect, the wire is typically arranged in a zig-zag pattern, with most of the wire being 
parallel. 
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about the shear components. We wish to construct the Mohr circle for  given only the 
three gage stretches and no direct information about shear strains (the information is there, 
but not measured explicitly). If we did know the shear components of , then the Mohr’s 
circle might look like this:

By the nature of the pole point, we know that a straight line emanates from the pole 
point to each point on the Mohr’s circle with a slope given by the gage orientation (verti-
cal,  above horizontal, and  below horizontal).

Unfortunately, the gages do not give us any values for shear components. From the 
geometry of the Mohr’s circle, though, we can determine the values of  relative to the 
pole point. A temporary origin is set up to coincide with the pole point so that the above 
drawing becomes:
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In this drawing, the horizontal width of the black triangle equals , and the ver-
tical height of this triangle is determined by intersecting with the line angled at . The 
horizontal width of the gray triangle is , and its vertical height may be found by 
intersecting with the line angled at . These two intersection points, together with the 
pole point itself, constitute a set of three points that must lie on the Mohr’s circle. Any cir-
cle is fully determined by three points. Graphically, the center of the circle can be found 
the intersection of bisectors of chords connecting the points like this:

Once the center of Mohr’s circle has been found in this manner, the temporary origin 
can be discarded and the genuine origin of Mohr’s circle may be placed such that the hori-
zontal passes through the circle’s center. The vertical axis in Mohr’s diagram is deter-
mined from the reading of gage “A.” From there, the coordinates of the principal values 
can be read off of the graph in the ordinary manner.

EXAMPLE 8.   Suppose that the three gages of a strain rosette output engineering 
strains of , , . Find the engineering and logarithmic strain 
tensors with respect to a basis for which the 2-direction is aligned with gage “A.” 

SOLUTION: The gages output engineering strains. The associated stretches are

, therefore,  (2.44)

, therefore,  (2.45)

, therefore,  (2.46)

Consequently, the width of the “black” triangle will be

 (2.47)
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λB εB 1+ 1.2= = λB
2 1.44=

λC εC 1+ 1.5= = λC
2 2.25=

λB
2 λA

2– 0.23=
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 (2.48)

Drawing these two triangles with a common acute ver-
tex gives the picture shown at right.

Three points on the Mohr’s circle (the pole point P 
and the points associated with gages B and C) are iden-
tified by the acute vertices of the triangles as shown.

The black and gray triangles can now 
be discarded leaving only the points 
behind. Chords connecting the points can 
be drawn as shown:

λC
2 λA

2– 1.04=

0.23

1.04

30°

30°–

B

C

P

B

C

P
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Bisectors of the chords are constructed. 
The three bisectors will always intersect at 
the same location.

The chords and bisectors can now be 
discarded, leaving behind only the three points P, B, 
and C and the center of Mohr’s circle. Draw the circle 
to pass through the three points. 

Now that the center is known, the horizontal axis 
of Mohr’s diagram can be drawn to pass through the 
center of the circle as shown below. The vertical axis 
can now also be positioned so that the pole point P is a distance  away. The 
point on Mohr’s circle corresponding to gage A is found by dropping a vertical from P.

B

C

P

center of
Mohr’s circle!

B

C

P

center of
Mohr’s circle!

λA
2 1.21=

B

C

P

center of
Mohr’s circle!

1.21

1.00

2.26

A
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This completes the graphical construction of the Mohr’s circle for . Since  is a 
positive definite tensor, the entire Mohr’s circle will always be contained entirely to the 
right of the vertical axis.

The eigenvalues of  are at the extreme ends where the circle intersects the horizon-
tal axis. Reading off these values graphically (using a ruler) gives

 or  and therefore  (2.49)

 or  and therefore  (2.50)

Therefore, with respect to the principal basis, the logarithmic strain tensor is given by

 (2.51)

With respect to the principal basis, the engineering strain tensor is

 (2.52)

The Mohr’s circles for these strain tensors are shown below: 

This example, unfortunately, did not ask for the strains in the principal basis. It asked for 
the strains relative to a basis for which the 2-direction is aligned with gage “A.”

U
˜̃

2 U
˜̃

2

U
˜̃

2

λmin
2 1.00= λmin 1.00= λminln 0.0=

λmax
2 2.26= λmax 1.50= λmaxln 0.41=

0.0 0
0 0.41

0.0 0
0 0.50

log strain

engineering strain

B

C

P
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The orientations of the principal directions of  are shown above in green. The prin-
cipal directions of strain are the same as those of . Consequently, the pole points for the 
strain circles can be found by passing parallel lines through the eigenvalues as shown. 
With the pole points known, the strain tensors relative to the vertical gage “A” can be 
found by passing vertical and horizontal lines through the pole points and then reading off 
the values. The process is shown below for each strain individually: 

Double checking the result. With rosette stretches 
of 1.1, 1.2, and 1.5, we can draw three line segments of 
these lengths as shown:

These lines can be assembled into a triangle with 
the line for gage A remaining vertical

The vector for gage B is
 = {1.18, 0.193}

The vector for gage C is
 = {1.18, -0.889}

These vectors were initially given by

 (2.53)

 (2.54)

The duals for these vectors are

 (2.55)

U
˜̃

2

U
˜̃

2

engineering strain log strain

(0.345, 0.145)
coordinates:

(0.06, -0.145)

0.345 0.145–
0.145– 0.06

(0.42, 0.18)
coordinates:

(0.075, -0.18)

0.42 0.18–
0.18– 0.075

gB

gC

GB
3

2
------- 1

2
---,

 
 
 

=

GC
3

2
------- 1

2
---–,

 
 
 

=

GB 1
3

------- 1–,
 
 
 

=
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 (2.56)

The deformation gradient is

 Reb: finish this. Compute F, get U  (2.57)

GC 1
3

------- 1,
 
 
 

=

F gBGB gCGC+=
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Mohr’s circle for three-dimensional states of “stress”
Consider a full 3×3 “stress” matrix:

.  (2.58)

The matrix is symmetric if . The traction vector on a plane with unit normal  is 
given by the operation . The normal component of traction is

.  (2.59)

The magnitude of the shear stress on the plane is

.  (2.60)

For convenience, we can always set up a laboratory basis that is aligned with the principal 
directions of stress. In terms of the principal basis, 

.  (2.61)

Furthermore, we can select the ordering for the basis such that . Let 
 be the components of the unit vector  with respect to the principal basis. 

Then Eqs. (2.59) and (2.61) become

 (2.62)

and

.  (2.63)

The vector  has unit magnitude, so its components must satisfy

.  (2.64)

The above three equations may be solved for , , and  to give

 

 

.  (2.65)

Ordering the principal stresses* so that , we may write these equations in the 
form

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

σij σji= n
˜σ

˜̃
n
˜

•

σ n
˜

σ
˜̃

n
˜

••=

τ σ
˜̃

n
˜

• 2 σ2–=

σ
˜̃

[ ]
σ1 0 0
0 σ2 0
0 0 σ3

=

σ1 σ2 σ3≥ ≥
n1 n2 n3, ,{ } n

˜

σ σ1n1
2 σ2n2

2 σ3n3
2+ +=

τ2 σ1
2n1

2 σ2
2n2

2 σ3
2n3

2 σ2–+ +=

n
˜

n1
2 n2

2 n3
2+ + 1=

n1
2 n2

2 n3
2

n1
2

τ2 σ σ2–( ) σ σ3–( )+
σ1 σ2–( ) σ1 σ3–( )

----------------------------------------------------- 0≥=

n2
2

τ2 σ σ3–( ) σ σ1–( )+
σ2 σ3–( ) σ2 σ1–( )

----------------------------------------------------- 0≥=

n3
2

τ2 σ σ1–( ) σ σ2–( )+
σ3 σ1–( ) σ3 σ2–( )

----------------------------------------------------- 0≥=

σ1 σ2 σ3≥ ≥
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.  (2.66)

These inequalities may be re-written

, where  and  

, where  and  

, where  and .  (2.67)

The first of these equations says that the  shear and normal stresses on any plane 
will fall outside the circle with radius  centered at . The second inequality says 
that the same  point must also lie inside the circle of radius  centered at . 
Recalling that we have ordered the principal stresses from largest to smallest, this circle is 
the largest circle that can be formed between any two of the eigenvalues. The final ine-
quality says that the  point must lie outside the circle of radius  centered at . 

Thus, to satisfy all of the above inequalities simultaneously, the point  on the 
Mohr diagram must lie within a region bounded by the three circles between the principal 
stress values. This is an extremely useful result for determining the maximum shear on a 
plane of arbitrary orientation.

* Actually, the analysis as shown requires the principal values to be distinct to avoid division by zero, 
but the reader is asked to verify that the same results still go through when there are repeated eigen-
values.

τ2 σ σ2–( ) σ σ3–( )+ 0≥

τ2 σ σ3–( ) σ σ1–( )+ 0≤

τ2 σ σ1–( ) σ σ2–( )+ 0≥

τ2 σ C23–[ ]2+ R23
2≥ C23

1
2
--- σ2 σ3+( )≡ R23

1
2
--- σ2 σ3–( )≡

τ2 σ C31–[ ]2+ R31
2≤ C31

1
2
--- σ3 σ1+( )≡ R31

1
2
--- σ3 σ1–( )≡

τ2 σ C12–[ ]2+ R12
2≥ C12

1
2
--- σ1 σ2+( )≡ R12

1
2
--- σ1 σ2–( )≡

τ σ,( )
R23 C23

τ σ,( ) R31 C31

τ σ,( ) R12 C12

σ τ,( )
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EXAMPLE 9.   Figure 2.3 shows the results of a numerical experiment in which 
about 7400 unit normals were generated at random. For each unit normal generated by the 
computer program, the corresponding  point of Eqs. (2.59) and (2.60) was com-
puted using the matrix

.  (2.68)

This procedure produces a set of 7400   points that could then be plotted on the 
Mohr diagram. The resulting distribution of  points shown in Fig. 2.3 verifies our 
interpretation of Eq. (2.67).

Application to planar “stress” states
The three-dimensional Mohr’s circle is a very useful for determining maximum shear 

for planar stress problems the 1-2 plane where the “out-of-plane” shears are known to be 
zero and the stress state is therefore of the form

.  (2.69)

One of the principal values of this matrix is clearly . The Mohr’s circle for the upper 
 submatrix is plotted as usual. Then two additional Mohr’s circles are drawn so that 

they pass through  and the two principal values of the  submatrix.

σ τ,( )

σ[ ]
1 0 0
0 2 0
0 0 4

=

σ τ,( )
σ τ,( )

Figure 2.3. 3D Mohr diagram for 3x3 symmetric matrices.    
For this example, the principal values of the  matrix were , 

, and .
σ[ ] σ1=4

σ2=2 σ3=1

σ[ ]
σ11 σ12 0
σ21 σ22 0
0 0 σ33

=

σ33
2 2×

σ33 2 2×
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Let  and  denote the principal values of the  submatrix, and order them 
such that . As illustrated in Fig. 2.4, there are three possible orderings for the third 
eigenvalue:

,    ,   and   .  (2.70)

Referring to Fig. 2.4, the largest shear stress in the material must equal the radius of the 
largest Mohr’s circle. This maximum shear stress is determined by the largest difference 
between principal values. Thus, even for planar stress states, the out-of-plane stress must 
be considered when determining maximum shear stress.

Exercise 7.  The term “plane stress” is used if  everywhere. In other words, 
only the upper  submatrix of the stress matrix can contain nonzero entries. Thus,  
is known implicitly to be zero. Use the 3D Mohr’s circle to find the maximum shear stress 
for the following plane-stress states:

, , .  (2.71)

Answers: 3/2, 3/2, 2

λ1 λ2 2 2×
λ1 λ2>

λ1 λ2 σ33≥ ≥ λ1 σ33 λ2≥ ≥ σ33 λ1 λ2≥ ≥

λ1λ2 λ1σ33
λ2 λ1 σ33

λ2
σ33

σ σ σ

τττ

Figure 2.4. 3D Mohr’s circles for planar stress states.   Note that the locations 
of  and  are the same in all three plots. The peak shear stress depends on 
whether or not  lies between the other eigenvalues.

λ1 λ2
σ33

σi3=0
2 2× σ33

43 24–
24– 57

2 36–
36– 23

73– 36–
36– 52–
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Engineering application of 3D Mohr’s circle
The Coulomb-Mohr theory of failure pos-

tulates that there exists an “envelope” such 
that failure occurs when the (largest) Mohr’s 
circle for the stress state reaches the envelope
(in the simplest Mohr-Coulomb theory, the 
failure envelope is a straight line). The 
Mohr’s circle for isotropic stress states 
degenerates to a single point on the -axis. 
Thus, failure under isotropic stress can occur 
only if the mean stress exceeds the tensile 
failure “pressure” where the failure envelope 
crosses the -axis. For less tensile or for 
compressive stress states, the Mohr’s circle 
must have a nonzero radius in order to reach the failure envelop. In other words, suffi-
ciently large shearing stresses must be present, the magnitude of which generally increases 
with increasing mean compression.

EXAMPLE 10.  Consider a linear Mohr-Cou-
lomb envelop:

,  (2.72)

where  and  are known material parameters. 
Express the Coulomb-Mohr failure criterion in 
terms of the center and radius of the largest 
Mohr’s circle. Propose how the material parame-
ters  and  may be measured in the laboratory.

Let  denote the center of the largest Mohr’s cir-
cle. The line that passes through both the point of 
tangency and the center of the largest Mohr’s cir-
cle is described by the equation

.  (2.73)

σ

τ
Failure envelope

tensile failure 
pressure

σ

σ

σ

τFailure envelope

τo
τ τo sσ–=

τo s

τo s

σ

τ

τo

τ
σ CM–

s
-----------------=

τ τo sσ–=

CM

τ
σ CM–

s
-----------------=
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Solving the above two simultaneous equations shows that the failure tangency point is 
located at

.  (2.74)

.  (2.75)

Therefore, the radius of Mohr’s circle at the point of failure is

,  (2.76)

or, substituting from above,

,  (2.77)

which is valid for  (i.e., before the envelop crosses the -axis. 
Assuming , admissible (pre-failure) values for  and  satisfy

 and .  (2.78)

Note how the Mohr’s circle radius at failure is linearly related to the center. In the labora-
tory, the material can be stressed to the point of failure for numerous stress states. The val-
ues of  and  just before the point of failure can be plotted, and a least squares linear 
fit to the data will provide an empirical curve

.  (2.79)

Comparing this with Eq. (2.77) gives

    and    .  (2.80)

σf
sτo CM+

1 s2+
----------------------=

τf
τo sCM–

1 s2+
---------------------=

RM σf CM–( )2 τf
2+=

RM
τo sCM–

s2 1+
---------------------=

sCM τo< σ

s 0≥ RM CM

RM
τo sCM–

s2 1+
---------------------< CM τo s⁄<

RM CM

RM α βCM–=

s β

1 β2–
-------------------= τo

α

1 β2–
-------------------=
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Distributional Mohr-Coulomb theory
Traditional Mohr-Coulomb theory states that material failure occurs at the instant the 

Mohr’s circle touches the failure line. Microphysically, classic linear Mohr-Coulomb the-
ory results if you consider an idealized body containing a large population of randomly 
oriented same-sized cracks. Any given crack will fail if the applied shear stress on the 
crack face is high enough to cause the matrix material near the crack edges to break. When 
all three principal stresses are compressive, but not equal, a crack will be subjected in gen-
eral to both compressive normal stresses and shear stresses. Even though it shear stress 
plays the predominant role in shear crack failure, the existence of a normal compression is 
important because the resulting friction at crack faces helps reduce the amount of shear 
stress that must be suffered by the matrix material, thereby retarding failure. After work-
ing out the details, the presence of friction leads to a failure boundary in the Mohr diagram 
that is a straight line whose slope is determined by the coefficient of friction. If the friction 
is zero, the slope is zero and therefore the failure criterion reduces to Tresca theory.

Under traditional Mohr-Coulomb theory, material failure occurs at the instant the larg-
est Mohr’s circle reaches the failure line. However, an important implicit assumption of 
this criterion is that there actually exists a crack of the proper orientation that will map to 
that “kissing” (tangent) point. 

Suppose there isn’t a crack at the right orientation. Then the Mohr’s circle can continue 
to expand beyond the failure line until, finally, a critical crack orientation (i.e., one that 
maps to a point on the failure line) is found. Dealing with this more realistic possibility 
requires speaking of probabilities that a super-critical crack orientation exists in your sam-
ple. We will assume that the cracks have uniformly random orientations. Since crack nor-
mals are unit vectors and unit vectors are points on the unit sphere, we are talking about a 
uniform distribution of points on the unit sphere.

When all three principal stresses are distinct, each distinct point on an octant of the 
unit sphere maps to a distinct point on the Mohr diagram. The regions in the Mohr dia-
gram that fall above the failure line [see Fig. 2.5(a)] are spawned from a region of crack 
orientations (defined by unit normal components  which are regarded as 
points on the unit sphere) [see Fig. 2.5(b)]. 

d
a

n2

n3

n1

d

cb

a

Figure 2.5. Points on the sphere map to points on the Mohr diagram and vice versa. 

cb

σ3σ2σ1

n1 n2 n3, ,{ }
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Failure will occur if there exists any crack with an orientation in the shaded region on 
the spherical octant sketched in Fig. 2.5(b). Existence of a single failure line is based on an 
assumption that all crack sizes are equal. Reducing the crack size translates the failure line 
upward, and we will deal with that complication later. For now, let’s consider the likeli-
hood that a given single crack will fail. The only variable in this case is the crack’s orien-
tation. The probability of failure is the ratio of the shaded region on the octant the total 
area of the octant. Of course, the probability of failure of a material sample depends on the 
total number of cracks in the sample — larger samples have more cracks, therefore 
increasing the likelihood that at least one of them will be critically oriented. The computa-
tion of failure probability is further complicated by the fact that, for real materials, the 
cracks are not all of the same size. Smaller cracks result in failure lines that are farther 
from the horizontal axis in the Mohr diagram, and they are therefore less likely to fail. 
Extremely tiny cracks will be entirely safe from failure regardless of their orientation 
because the outer Mohr’s circle will be entirely below the failure line for such cracks. 
Thus, brittle failure truly is a “weakest link” theory.

To predict failure probabilities (accounting for distributed crack sizes, distributed 
crack orientations, and varying sample sizes) requires numerical methods for general 
stress states. However, considerable progress can be made by instead considering triaxial
stress states. For triaxial loading, two eigenvalues are equal, and the third is distinct. A far 
better name for this type of loading would be “axisymmetric” because it implies a symme-
try of stress about the eigenvector associated with the distinct eigenvalue. The normal and 
shear stresses on a plane are equal for all points on the unit sphere that are equidistant 
from this symmetry axis. 

For triaxial loading, the 3D Mohr diagram looks a lot like a 2D Mohr diagram, but it 
isn’t. For triaxial stress states, one of the inner circles in the 3D Mohr diagram degenerates 
to a single point (putting double eigenvalues there) while the other grows outward to actu-
ally overlap the outer circle. For triaxial states, there is no longer a one-to-one correspon-
dence between points on the Mohr diagram and points on the sphere. This time, each point 
on the triaxial Mohr’s circle is spawned by an infinite family of unit normals — namely all 
normals equidistant from the symmetry axis. To develop distributional Mohr-Coulomb 
theory for triaxial stress states, we are now seeking the finite “band” of unit normals that 
map to the arc of Mohr’s circle that falls above the failure line.

Except when the failure line has a zero slope (Tresca theory), identifying this band of 
critical normals requires knowing if the triaxial stress state is triaxial compression (TXC), 
where the axial stress is more compressive than the lateral stresses, or triaxial extension 
(TXE), where the axial stress is less compressive than the lateral stresses. (Note: in labora-
tory experiments on brittle materials, all principal stresses are compressive and therefore 
the axial stress for TXE is not tensile — it is merely less compressive). 

A TXC stress state can have the same Mohr’s circle as a TXE state. The distinction is 
the location of the single root. For TXC, the distinct eigenvalue will be on the left (more 
compressive) side of the Mohr’s circle and therefore, if the loading is observed so that the 
symmetry axis is vertical, the pole point will be on the left side of the Mohr circle. For 
40
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TXE, the pole point is on the right hand side. The pole point can be extremely useful for 
visualizing critical crack orientations. Specifically, you can center an image of the sphere 
at the pole point location appropriate to whether you are considering TXE or TXC. Recall 
that lines drawn from the pole point to locations on the Mohr diagram will have precisely 
the same orientation as the orientation of the unit normal that generated that normal-shear 
stress pair. Thus, because we have centered the image of the sphere at the pole point, any 
line drawn to the terminating points on the critical arc (i.e., the arc above the failure line) 
will intersect the sphere at precisely the terminating boundary of critical crack orienta-
tions. This graphical method for depicting the critical orientation band is illustrated in 
Fig. 2.6.

The area of the critical bands on the sphere is proportional to band thickness when view-
ing the sphere from the side. For example, if the band thickness is 1/3 of the sphere radius, 
then the band area on the spherical octant is 1/3 of the total area of the octant, implying a 
failure probability of 1/3. Note that the TXC bands in Fig. 2.6 are thicker than the TXE 
bands, which indicates that the triaxial compression state has more critical crack orienta-
tions and is therefore more likely to fail. At first, this result might seem to contradict the 
well-established fact that brittle materials are stronger (not weaker) under TXC than under 
TXE. However, this statement about the relative strengths in compression versus exten-
sion apply only when comparing triaxial stress at the same pressure. Pressure is the aver-
age of the stress eigenvalues. TXE has one extensional eigenvalue, but two compressive 
eigenvalues. When comparing TXE and TXC states that have the same Mohr’s circle, the 
TXE state is actually less likely to fail because it is loaded under a more compressive 
mean stress than TXC. A more equitable comparison between TXE and TXC is shown in 
Fig. 2.7, where different Mohr’s circles are used for TXE and TXC such that both stress 
states have the same pressure and equivalent shear (magnitude of the stress deviator). In 
this case, TXE is weaker than TXC, consistent with experimentally established fact.

TXC TXE

zero friction zero friction

high friction high friction

TXC
sphere

TXE
sphere

Figure 2.6. Graphical method for depicting critical orientation bands for triaxial loading. 
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Figure 2.7 graphically illustrates the probability that sample containing exactly one 
single crack will fail under TXC or TXE stress states, compared at the same pressure and 
equivalent shear (same Mohr’s circle radius). The quantitative failure probabilities for a 
single crack are shown in Fig. 2.8 (one plot holds the magnitude of the stress deviator con-
stant while varying the pressure; the other plot holds pressure constant while increasing 
the radius). Except for “apex stress states” (defined below) these plots again show that 
TXE states are more likely to fail than TXC. If the pressure is held fixed, and the Mohr’s 
circle radius  is increased upward from zero, the first curve encountered is the TXE 
curve, which means that TXE is more likely to fail. Similarly, if the radius is held fixed 
while the pressure is decreased downward in magnitude from a perfectly safe “infinite” 
pressure (i.e., if the Mohr’s circle of a given radius is translated from the far left in the 
Mohr diagram until it reaches the failure line), then TXE is the first stress state to begin 
having a nonzero probability of failure. The probability curves cross when the largest 
eigenvalue approaches the apex of the failure line (i.e., the point where the failure line 
crosses the horizontal axis). A these “apex” stress states, most of the critical arc of Mohr’s 
circle is on tensile side of the circle and TXC becomes more likely to fail because TXC 
stresses (which have double eigenvalues on the right side of the Mohr’s circle) actually 
have more tensile points on Mohr’s circle than TXE.

TXC
sphere

TXE
sphere

TXC
Mohr’s
Circle

TXE
Mohr’s
Circle

Figure 2.7. A comparison between TXC and TXE states that have the same pressure and equivalent 
shear stress. 

R
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When considering a sample with an increasing number of cracks, but all of the same 
size, the failure probability curves approach step functions, equivalent to classical Mohr-
Coulomb theory. Real materials, however, do not have equal-sized cracks — they have a 
larger population of tiny (therefore subcritical) cracks and a relatively small population of 
“potentially dangerous” larger crack sizes. Figures 2.9, 2.10, and 2.11 illustrate the effect 
of accounting for crack size distribution. Interestingly, when allowing for multiple crack 
sizes, the cross-over phenomenon seen in Fig. 2.8 goes away. Recall that the cross-over 
occurs when the Mohr’s circle is near the failure line apex. Recall that a decrease in crack 
size corresponds to an upward translation of the failure line. Thus, since most of the cracks 
are small, a given a Mohr’s circle will be far away from most of the failure apex points. 
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Figure 2.8. Failure probabilities for TXC and TXE stress states applied to a sample of material that 
contains exactly one crack.   The scale factor  is the vertical intercept of the failure line, making it 
therefore equal to the shear failure stress for a crack loaded without friction at the crack faces.
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Figure 2.9. Probability that 10 exponentially sized cracks will fail.   This plot corresponds to 10 
cracks whose sizes are exponentially distributed with a mean crack size that is 150 times smaller than 
the single crack size used in the previous plot. Most of the cracks are subcritical. Only the larger 
cracks dominate the response. Thus, a spread in the data is generated reminiscent of the spread for a 
sample containing only a single crack. Crack size distribution, however, clearly affects the shape of 
the distribution, eliminating large slope changes at a Mohr-Coulomb threshold.
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Figure 2.10. Probability that 10 exponentially sized but larger cracks will fail.   This plot is equiv-
alent to Fig. 2.9 except that the mean crack size is 10 times larger.
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Figure 2.11. Effect of increasing the sample size.   This plot is equivalent to Fig. 2.9 except that the 
sample 10 times as many cracks. This is like increasing the sample volume by a factor of 10.
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3. Mohr’s circle for nonsymmetric matrices
Mohr’s circle for nonsymmetric matrices is very 

similar to that for symmetric matrices. The theory has 
been known for approximately 100 years, but very 
few people know about it, so (remarkably and sadly) 
the method continues to receive an audience in con-
temporary literature* when it really belongs in under-
graduate math and engineering textbooks. 

To draw Mohr’s circle for a nonsymmetric 
matrix, you treat the matrix as though it represents a 
nonsymmetric stress. This time, however, the off 
diagonal stresses are no longer symmetric, so we 
must be careful to stay consistent with our symmetry conventions. For our examples, we 
will adopt the following convention

 is the jth component of traction on the ith face.  (3.1)

This means that the traction vector on a face with normal  is given by

.  (3.2)

Many authors define the stress tensor as the transpose of this definition. This should 
present very little difficulty because all that’s really important is drawing the stress ele-
ment correctly. With our definition, the traction on the ith-face is given by the ith COL-
UMN of the stress matrix.†

Consider a generic nonsymmetric 2×2 matrix:

.  (3.3)

* See, for example, 
Treagus, S. (1995), Superposed deformations by Mohr construction.

† with the other definition, it is the ith row. Regardless of the definition, just take care to draw the 
final stress element correctly.

σ11

σ21

σ21

σ12

σ22

σ22

σ12

σ11

σij

n
˜

ti σijnj

j 1=

3

∑=

a c
b d
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For constructing Mohr’s circle, it is again useful to 
“pretend” that the matrix is a stress state where 

, , , and . This 
stress state is sketched at right.

To construct Mohr’s circle, you examine the nor-
mal and shear stresses on each face to construct a pair 
of numbers for each face. 

The face with the horizontal normal will again be 
called the “H” face. The face with the vertical normal 
will be the “V” face. For the stress state shown, the 
normal stress on the H-face equals a, and the normal stress on the V-face equals d. By the 
left hand rule, the shearing stress on the H-face is  and the shearing stress on the V-face 
is .

Mohr diagram for nonsymmetric 
matrices

We again seek a method of computing the normal and 
shear stresses on a plane whose normal makes an angle  
with the horizontal. Again, we define the normal “stress”  
to be positive if it is tensile. The numerical sign for the 
shearing stress  is assigned by a left-hand rule. 

The normal and shearing stresses depend on the orien-
tation of the plane. In particular, comparing Fig. 3.1 with 
Fig. 3.2, we observe that

H-face ( ):      and 
    

V-face ( ):       and      .  (3.4)

Drawing the nonsymmetric stress element does give you a more physical sense of the 
matrix components in the sense that they correspond to traction vectors on the stress ele-
ment faces. However, you can always just skip drawing the element by noting the direct 
correspondence between the original  matrix and the H and V coordinates. Namely:

a

c
d

a

d

b
c

b
σ11 a= σ21 b= σ12 c= σ22 d=

b–
c

The V-face

Th
e 

H
-fa

ce
Figure 3.1. The H and V faces of the “stress” element.   The outward 
normal of the H face is horizontal and the outward normal of the V face is 
vertical.

σ11 a=
σ12 c=

σ22 d= σ21 b=

σ

τ

θ
Figure 3.2. Sign conven-
tion for normal and shearing 
“stress” on a plane. 

θ
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θ 0= σ σ11 a= =
τ σ21– b–= =
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---= σ σ22 d= = τ +σ12 +c= =
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.  (3.5)

We are interested in the values of  and  on a plane of arbitrary orientation . These 
normal and shear “stresses” vary with . We again imagine a graph in which the shearing 
stress  is plotted parametrically against the corresponding normal stress  for 
various values of the orientation angle . It is proved in the Appendix that this closed path 
must be a circle, which is called Mohr’s circle. 

The H-face corresponds to . Hence Eq. (2.3) tells us that Mohr’s circle must pass 
through the point  when . It must also pass through the point  when 

. Consequently, we have deduced two points that must lie on the circle. The 
Appendix provides a proof of that the following very important property holds even for 
nonsymmetric Mohr’s circles:

Consequently, not only are the points H and V on Mohr’s circle, they are also opposite 
sides of the circle! This added restriction uniquely defines the Mohr’s circle. To construct 
Mohr’s circle, simply plot H and V, and then draw a circle such that the line connecting H 
and V is a major diameter of the circle. The pole point P is constructed in the familiar way 
(by intersecting a horizontal line through H with a vertical line through V).

The Mohr’s circle for nonsymmetric matrices is no longer symmetric about the -
axis! As before, the principal values of the matrix correspond to the values of  where the 
shear stress is zero. For symmetric matrices, there were always two such points because 
the Mohr’s circle was symmetric about the -axis. For nonsymmetric matrices, the 
Mohr’s circle might not cross the -axis at all! In that case, the two eigenvalues are com-
plex. Very kool, eh?

σ11 σ12

σ21 σ22

H1 V2

H2– V1

=

σ τ θ
θ

τ θ( ) σ θ( )
θ

θ=0
a b–,( ) θ=0 d c,( )

θ=π 2⁄

Whenever the orientations of two planes differ by 
exactly 90 degrees, the corresponding points on 
Mohr’s circle will be diametrically opposite each other.

a

c
d
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d

b
c

b

σ
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V: d +c,( )
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Mohr’s circle for an anti-symmetric matrix
Consider the most general form for an anti-symmetric 2×2 matrix:

.  (3.6)

Applying Eq. (3.5), we write

,  (3.7)

and therefore conclude that the H and V points are

H: (0,γ) 
V: (0,γ).  (3.8)

This shows that the Mohr’s circle for any anti- symmetric matrix degenerates to a single 
point a distance  on the  axis. This is an interesting result because it shows that all anti-
symmetric  matrices are isotropic in the sense that their components are unaffected 
by a rotation in the plane.

Mohr’s circle for the symmetric and skew symmetric parts
Consider a general matrix 

.  (3.9)

The symmetric part of this matrix is

.  (3.10)

The anti-symmetric part of the matrix is

.  (3.11)

The corresponding Mohr’s circles are shown below, where the pole points for the original 
matrix, its transpose, the symmetric part, and the anti-symmetric part are labeled , , 

, and , respectively.* The Mohr’s circle for the transpose is the mirror image of the 
Mohr’s circle for the original matrix, but the pole point for the transpose is in the same rel-

0 γ
γ– 0

0 γ
γ– 0

H1 V2

H2– V1

=

γ τ
2 2×

a c
b d

a c b+
2

------------

c b+
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------------ d

0 c b–
2

-----------
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----------- 0
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ative location — not the mirror image! Mohr’s circle for the symmetric part of the matrix 
is obtained by simply shifting the Mohr’s circle for the original matrix until it is symmet-
ric about the -axis. The anti-symmetric Mohr’s circle is a degenerate point at the same 
height as the center of the original Mohr’s circle.

* Keep in mind: Mohr’s circle is virtually useless without knowing the location of the H and V points 
— these points are needed to construct the component matrices with respect to the laboratory basis. 
To keep our drawings cleaner, we have plotted only P, not H and V. However, the location of Pis 
sufficient to give you the H and V points because you can draw a horizontal line through P to obtain 
H and a vertical line through P to obtain V.

σ

σ

τ

P

PS

PA

Mohr’s circle
for the matrix

Mohr’s circle
for symmetric part

Degenerate Mohr’s circle
for anti-symmetric part

Mohr’s circle
for the transpose

PT

(circle is mirror image, but pole point is in same relative location)
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Eigenvalues and eigenvectors of nonsymmetric matrices
As before, an eigenvector is the normal to a plane where the shear stress is zero. The 

eigenvalue is the normal component of traction on that plane. Stated mathematically, a 
“right” eigenvector of a matrix [B] is any vector  for which 

.  (3.12)

The scalar  is the associated eigenvalue. Rearranging the above definition,

.  (3.13)

This condition is possible only if the determinant of  is zero. Applying this 
restriction gives the “characteristic” equation for the eigenvalues:

, 
where  
and .  (3.14)

Eigenvectors corresponding to distinct eigenvalues are always linearly independent. Eq. 
(3.14) is quadratic, so there is a possibility that the eigenvalue has an algebraic multiplic-
ity of two (i.e., it is a double root). When an eigenvalue has an algebraic multiplicity 
greater than one, then there is at least one associated eigenvector, but the geometric multi-
plicity (i.e., the number of linearly independent eigenvectors associated with the eigen-
value) is always less than or equal to the algebraic multiplicity.

A “left” eigenvector of the matrix [B] is any vector  for which

.  (3.15)

The above equation can be written

.  (3.16)

Consequently, the left-eigenvectors of  are identical to the right-eigenvectors of the 
transpose matrix . The trace and determinant of  are equal to the trace and deter-
minant of . Consequently, the characteristic equations — and hence the eigenvalues 
— are the same for both the right and left eigenproblems. The distinction between left and 
right eigenvectors is necessary only for nonsymmetric matrices.

For symmetric matrices, recall that the Mohr’s circle is always symmetric about the -
axis, so the Mohr’s circle for a symmetric matrix always has two points — called “eigen-
points” — at which . The eigenvalues equal the values of  at these two eigen-
points. The eigenvalues are always real for symmetric matrices. Each eigenvector 
corresponding to a particular eigenvalue is in the same direction as the line from the pole 
point to the appropriate eigenpoint. For symmetric matrices, the two eigenpoints are 
always diametrically opposite each other on Mohr’s circle. Recall that diametrically oppo-
site points always correspond to mutually perpendicular planes. Consequently, for sym-
metric matrices, the eigenvectors are always mutually perpendicular (or may be so chosen 
if the matrix is isotropic).

u{ }

B[ ] u{ } λ u{ }=

λ

B[ ] λ I[ ]–( ) u{ } 0{ }=

B[ ] λ I[ ]–

λ2 I1λ– I2+ 0=
I1 tr B[ ] B11 B22+= =

I2 det B[ ] B11B22 B12B21–= =

w{ }

w{ } B[ ] λ w{ }=

B[ ]T w{ } λ w{ }=

B[ ]
B[ ]T B[ ]T

B[ ]

σ

τ=0 σ
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For nonsymmetric matrices, an eigenvalue is again defined to be the value of  at an 
eigenpoint (i.e., a point on Mohr’s circle where ). Note, however, that the Mohr’s cir-
cle might be so far distant from the -axis that there aren’t any points on the circle where 

. In this case, there are no real eigenpoints and the eigenvalues are complex-conjugate 
numbers. If the Mohr’s circle is just barely tangent to the -axis, then the eigenvalues 
have an algebraic multiplicity of two and a geometric multiplicity of one. If the Mohr’s 
circle crosses the -axis, then the normal stresses at the two crossing points (the eigen-
points) are equal to the eigenvalues. Lines from the pole point to tho two eigenpoints give 
the right eigenvectors. The lines from the transpose pole point to the crossing points give 
the left eigenvectors. For nonsymmetric matrices, the eigenvectors are generally not mutu-
ally perpendicular. Consequently, illustrating the eigenvectors requires a stress element in 
the shape of a parallelogram with sides formed by the left eigenvectors (aargh!).

σ
τ=0

σ
τ=0

σ
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the transpose of
the matrix
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For nonsymmetric matrices, there’s no guarantee that there will be two eigenvectors. 
Sometimes there’s only one. This occurs when the Mohr’s circle just “kisses” the -axis 
as shown below:

Exercise 8.  Use Mohr’s circle to find a 2×2 matrix having all nonzero components
but having both eigenvalues equal to zero. Hint: you desire a zero eigenvalue of multiplicity 2, so you must 

construct a nonsymmetric matrix whose Mohr’s circle just “kisses” the point (0,0). Draw any convenient circle that fits 

this description and select any two diametrically opposite points on this circle to be your H and V points (make sure you 

select points having nonzero coordinates). From there, draw the “stress” element and construct the matrix.

EXAMPLE 11.  Characterize the set of all possible “square roots” of the 2×2 identity 
matrix. 

SOLUTION:

We seek restrictions on  such that

.  (3.17)

σ
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˜
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Multiplying this out, we find that

,  
 
 
.  (3.18)

Analyzing these restrictions shows that the “square root” of the 2×2 identity matrix must 
fall into one of the following two categories:

, in which case the solution is  (3.19)

, in which case the solution is ,  (3.20)

where  and  are arbitrary. The first solution corresponds to the diagonal components 
being equal to each other, in which case, the off-diagonals must be zero. The second solu-
tion corresponds to the diagonal components being negatives of each other. An eigenvalue 
analysis of this latter solution shows that, regardless of the values of  and , the eigen-
values of the matrix in Eq. (3.20) must equal  and . Conversely, any matrix whose 
eigenvalues are  and  is expressible in the form (3.20).

The two Mohr’s circles corresponding to Eq. (3.19) are simply the degenerate zero-
radius circles at the points (1,0) and (-1,0). The more interesting infinite family of Mohr’s 
circles corresponding to Eq. (3.20) is the set of any and all circles that pass through the 
points (1,0) and (-1,0). 

Exercise 9.  Construct some nonsymmetric real “square roots” of the identity matrix 
and show their Mohr’s circles.

Exercise 10.  Prove that the matrix  is a “square root” of the ZERO matrix, 
and draw its Mohr’s circle.  
Does the Mohr’s circle have any similarities to the one you constructed for Exercise 8?

a2 cb+ 1=
d2 cb+ 1=
b a d+( ) 0=
c a d+( ) 0=

a d+ 0≠ 1 0
0 1

±

a d+ 0= 1 cb– c

b 1 cb––
±

c b

c b
+1 1–

+1 1–

2 1–
4 2–
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EXAMPLE 12.  Back in Example 3, we looked at an isotropic 
symmetric 2×2 matrix. For 2-dimensional matrices, there also exist 
nonsymmetric isotropic matrices. The most general form of an iso-
tropic 2×2 matrix is 

,  (3.21)

where  and  are scalars. The interpretation of such a matrix becomes more clear if we 
instead represent the scalars in terms of a change of variables,  and  such that

      and      .  (3.22)

Then Eq. (3.21) can be written

.  (3.23)

In this form, we recognize the matrix as a scalar multiple of a rotation matrix. The H and 
V points are identical:

H:  
V: .  (3.24)

The H and V points will always be identical for any isotropic 
matrix. Conversely, if the H and V points coincide, then the matrix 
must be isotropic.

Mohr’s circle for an isotropic matrix degenerates to a single 
point. This means that, no matter how you look at this stress state, 
the matrix that represents it will always be the same. The compo-
nents will not change upon an orthogonal change of basis. The 
degenerate isotropic Mohr’s circle will lie off the symmetric axis 
whenever the matrix is nonsymmetric (i.e., whenever ). Consequently, nonsymmet-
ric isotropic matrices have no real 2×2 eigenvalues.

Exercise 11.  Demonstrate that the following matrix is isotropic by showing that its 
Mohr’s circle degenerates to a single point:

.  (3.25)

a

a

a

a
b

b

b
ba b–

b a

a b
ρ α

a ρ αcos= b ρ αsin=

ρ αcos αsin–
αsin αcos

r αcos r αsin–,( )
r αcos r αsin–,( )

σ

τ

V,H,P

−α

α 0≠

3 4
4– 3
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EXAMPLE 13.  Consider the most general form for a 2×2 in-plane rotation matrix:

.  (3.26)

The H and V points are

H:  
V: .  (3.27)

This shows that the Mohr’s circle for any rotation matrix degenerates to a single point that 
lies a unit distance from the origin. Thus a 2×2 in-plane rotation matrix is isotropic with 
respect to any in-plane change of basis. The rotation angle is the negative of the angular 
position of the (degenerate) Mohr’s circle.

θcos θsin–
θsin θcos

θcos θsin–,( )
θcos θsin–,( )
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Mohr’s circle for the polar decomposition
Consider a general matrix 

.  (3.28)

Assuming this matrix is invertible and has a positive determinant, the polar decomposition 
is defined

,  (3.29)

where  is a rotation matrix of the form of Eq. (3.26) and [V] and [U] are symmetric pos-
itive definite matrices. The decomposition is unique.

For 3×3 matrices, the general method for determining a polar decomposition requires 
an eigenvalue analysis. However, for 2×2 matrices, the decomposition can be performed 
rapidly by the following formula:

,  (3.30)

where 

 

.  (3.31)

Beware! You must define  and  separately in order to uniquely determine the 
rotation angle. It is certainly true that

,  (3.32)

but you must never use this relation to define the rotation angle because there are always 
two angles  in the range from 0 to  that satisfy the above equation. By contrast there 
is only one angle in the range from 0 to  that satisfies Eq. (3.31). The rotation angle  
is measured counterclockwise.

F
F11 F12

F21 F22

=

F RU VR= =
R

R θcos θsin–
θsin θcos

=

θcos
F11 F22+

F11 F22+( )2 F21 F12–( )2+
-----------------------------------------------------------------------=

θsin
F21 F12–

F11 F22+( )2 F21 F12–( )2+
-----------------------------------------------------------------------=

θcos θsin

θtan F21 F12–( ) F11 F22+( )⁄=

θ 2π
2π θ
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The Mohr’s circle for the rotation matrix is degenerate and it will always be located at a 
unit distance from the origin on a line that passes through the center of the Mohr’s circle 
for the original matrix F. In other words, the rotation angle is the negative of the angle to 
the center of Mohr’s circle for F.

Once the rotation matrix R is known, the polar stretches may be computed by

       and       .  (3.33)

The Mohr’s circle for the left stretch [V] is the Mohr’s circle that would be obtained by 
rotating the Mohr’s circle for [F] until it is symmetric about the  axis. To satisfy the 
restriction that [V] be positive definite, the rotation must be such that both eigenvalues of 
[V] will be positive. The pole point for [V] is obtained by similarly rotating the pole point 
for [F]. Thus, corresponding to the above sketch, we have.

Of course, if your intent is to obtain a quick graphical estimate of the polar stretch, this 
figure could be obtained by merely rotating your sheet of paper by an amount equal to the 
rotation angle. 

The Mohr’s circle for the right stretch [U] is identical to that for [V]. The only differ-
ence is where the pole point is located. Probably the simplest way to locate the pole point 
is to recognize that 

.  (3.34)

σ

τ

θ– PFPR

1

U RTF= V FRT=

σ

Mohr’s circle for F

Mohr’s circle for V is obtained by rotating
the F-circle and its pole point such that

Mohr’s circle for R
is the degenerate point
on the line thru center of
Mohr’s circle for F

σ

τ

θ– PFPR

V will be symmetric with positive eigenvalues.

Mohr’s circle for V

FT URT=
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Hence, the right stretch for [F] is the left stretch for . The following figure shows the 
Mohr’s circle for  and the corresponding pole point for [U]:

FT[ ]
FT[ ]

PU

Mohr’s circle for U is identical to Mohr’s
circle for V, but the pole point is in a
different place! Hence, the components of
U and V are different.

Mohr’s circle for FT

σ

τ

θ

PFT
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EXAMPLE 14.  Consider the following deformation gradient matrix:

.  (3.35)

(a) Determine the polar decomposition analytically.
(b) Determine the polar decomposition graphically using Mohr’s circle.

SOLUTION (PART A):

Before starting an analytical solution, 
it is useful to first sketch the deforma-
tion associated with the deformation 
gradient tensor. Specifically, consider 
a unit square whose sides are formed 
by the laboratory basis . 
Under the above deformation this 
square deforms to a parallelogram 
having sides defined by two vectors 

 and . In 
other words, the material originally 
aligned with  deforms to 
a new vector given by the first column 
of , namely . 
Similarly, the material originally 
aligned with  deforms to 

. This deformation is 
sketched at right. 

Note that , showing 
that  is invertible with a positive 
determinant. This is also consistent 
with our sketch since the area does 
appear to have doubled. For the rota-
tion angle, Eq. (3.31) gives

 

.  (3.36)

Hence, the rotation angle is  measured counter-clockwise. Applying Eq. (3.30) 
gives the polar rotation matrix:

F[ ] 1– 2–
3 4

=

Undeformed

Deformed

E
˜ 1

E
˜ 2

g
˜ 1

g
˜ 2

E
˜ 1 E

˜ 2,{ }

g
˜ 1 F

˜̃
E
˜ 1•= g

˜ 2 F
˜̃

E
˜ 2•=

E
˜ 1 1 0,{ }=

F[ ] g
˜ 1{ } 1– 3,{ }=

E
˜ 2 0 1,{ }=

g
˜ 2{ } 2– 4,{ }=

det F[ ] 2=
F[ ]

θcos 1– 4+
1– 4+( )2 3 2+( )2+

------------------------------------------------------ 3
34

---------- 0.51449= = =

θsin 3 2+
1– 4+( )2 3 2+( )2+

------------------------------------------------------ 5
34

---------- 0.85749= = =

59.04°
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.  (3.37)

Applying Eq. (3.33) gives the polar stretches:

 (3.38)

.  (3.39)

This completes the analytical derivation of the polar decomposition. One simple check 
that you can do is to simply verify that the determinants of  and  are both equal to 
the determinant of . Even if you only want the analytical result, it is always a good 
idea to go ahead and do the Mohr’s circle as a double check on your work, which leads 
into part (b) of this problem.

SOLUTION (PART B):

For Mohr’s circle, we pretend that the matrix for  is a 
stress matrix as shown at right. The H- and V-points for the  
matrix are:

H:(-1,-3)  (3.40)

V:(4,-2).  (3.41)

The corresponding Mohr’s circle is:

It’s just a coincidence that this Mohr’s circle happens to just barely “kiss” the -axis.
The polar rotation angle  is, by convention, always measured counterclockwise from 

the laboratory horizontal. The rotation angle is the negative of the angle to the center of 
the Mohr’s circle when this angle is measured counterclockwise. The center of the circle is 
at the point (1.5,-2.5) therefore the rotation angle is , which agrees with our 
result from part (a) and can be visually verified by inspection of Mohr’s circle. The sign of 
the rotation angle is positive because the angle to the center of Mohr’s circle is negative 
when measured counterclockwise.

R θcos θsin–
θsin θcos

1
34

---------- 3 5–
5 3

0.51449 0.85749–
0.85749 0.51449

= = =

U RTF 1
34

---------- 3 5
5– 3

1– 2–
3 4

1
34

---------- 12 14
14 22

2.058 2.401
2.401 3.773

= = = =

V FRT 1
34

---------- 1– 2–
3 4

3 5
5– 3

1
34

---------- 7 11–
11– 27

1.200 1.886–
1.886– 4.630

= = = =

U[ ] V[ ]
F[ ]

4

1
3

2
F[ ]

F[ ]

σ

τ

HF PF

VFθ

1 2 3 4-1

Mohr’s circle for F

σ
θ

θ 59.04°=
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To obtain the Mohr’s circle for the left stretch , we must rotate the Mohr’s circle 
for  until it is symmetric about the positive side of the -axis. Alternatively, we can 
leave the Mohr’s circle for  alone and instead rotate the -  axes. The result is:

Importantly, the pole point remains unchanged during the rotation. If we draw this 
above picture in the familiar orientation where the -axis is horizontal, the result is:

In the above drawing, we have labeled the H and V points for the left stretch matrix 
. We are interested in a graphical verification of our analytical results from part (a). 

Reading directly from the coordinate grid, the coordinates of the H and V points appear to 
be approximately

HV: (1.2,1.9) 
VV: (4.6,-1.9).  (3.42)

Hence, the matrix for  is

,  (3.43)

which agrees with the analytical result of Eq. (3.39).

V[ ]
F[ ] σ

F[ ] σ τ

σ
τ

θ

P

σ

σ

τ
HV

PV

VV

V[ ]

V[ ]

V[ ] 1.2 1.9–
1.9– 4.6

=
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Finding the right-stretch  requires that we first construct the Mohr’s circle for 
. Keep in mind that the Mohr’s circle for the transpose is the mirror image of the cir-

cle for the original matrix, but the pole point is in the same relative location!

The Mohr’s circle for  is obtained by rotating the Mohr’s circle for  and its 
pole point until it the rotated circle is symmetric about the positive -axis. Pass a horizon-
tal line through the rotated pole point to obtain the H-point for ; pass a vertical line 
through the pole point to obtain the V-point. The resulting circle is identical to the Mohr’s 
circle for , but the pole point is in different location.

Reading coordinates off of the above figure, the approximate locations of the H and V-
points for  are

HU: (2.1,-2.4) 
VU: (3.8,2.4),  (3.44)

from which the matrix for  is constructed:

,  (3.45)

which agrees with Eq. (3.38).

Exercise 12.  The deformation gradient matrix for simple shear is of the form

U[ ]
F[ ]T

σ

τ

HFT PFT
VFT

1 2 3 4-1

Mohr’s circle for FT

U[ ] F[ ]
σ
U[ ]

V[ ]

σ

τ

HU PU

VU

1 2 3 4-1

Mohr’s circle for U

U[ ]

U[ ]

U[ ] 2.1 2.4–
2.4 3.8

=
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,  (3.46)

where  is a constant and  is time. Chose a value for  and sketch the Mohr’s circles at a 
representative number of times.

Exercise 13.  (a) Construct a deformation gradient matrix  for which the rotation 

angle is  and the left stretch tensor is given by .  

(b) Solve the inverse problem [as was done in part (b) of Example 14] to graphically
determine  and  and , starting with the matrix for . Do not use formulas; the term 
“graphically” means you must make accurate drawings and measure coordinates and angles with rulers and protrac-
tors.

Connection of Mohr’s circle with polar coordinates
When analyzing phenomena in the 12 plane, physical tensors such as the stress fre-

quently have a matrix with respect to the orthonormal laboratory basis, , that 
is of the form

.  (3.47)

If this represents a stress state, this structure implies that the material endures no out-of-
plane shears, but it does have an out-of-plane normal stress . The upper  subma-
trix may be readily analyzed using Mohr’s circle.

For cylindrical (polar) coordinates, the basis is , which is defined in terms 
of the orthonormal laboratory basis by

, , and ,  (3.48)

where

1 kt
0 1

k t k

F[ ]

120° V[ ] 10 4
4 4

=

R[ ] V[ ] U[ ] F[ ]

e
˜1 e

˜2 e
˜3, ,{ }

σ11 σ12 0
σ21 σ22 0
0 0 σ33

σ33 2 2×

e
˜ r e

˜θ e
˜ z, ,{ }

e
˜ r ce

˜1 se
˜2+= e

˜θ s– e
˜1 ce

˜2+= e
˜ z e

˜3=
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 and .  (3.49)

The matrix for the same tensor with respect to the cylindrical basis is

,  (3.50)

where

 

 

 

 
.  (3.51)

The half angle trigonometry identities state that

 

 

.  (3.52)

Therefore the polar components of stress may be written

 

 

 

.  (3.53)

We note at this point that these equations are exactly of the form of Eqs. (4.10-4.12. In 
other words, expressing a tensor in terms of cylindrical coordinates is exactly the same as 
performing an orthogonal coordinate transformation by an angle equal to . Following the 
methods used in the appendix, we define

 (3.54)

,  (3.55)

where the superscript “L” stands for “Laboratory” to indicate that the quantity is com-
puted using the laboratory components. * With the above substitutions, Eqs. (3.53) 
become

s θsin≡ c θcos≡

σrr σrθ 0
σθr σθθ 0
0 0 σzz

σrr c2σ11 cs σ12 σ21+( ) s2σ22+ +=
σθr csσ11– c2σ21 s2σ12– csσ33+ +=
σθθ c2σ22 cs σ12 σ21+( ) s2σ11+ +=
σrθ csσ11– c2σ12 s2σ21– csσ33+ +=
σzz σ33=

c2 1
2
--- 1 2θ( )cos+[ ]=

s2 1
2
--- 1 2θ( )cos–[ ]=

cs 1
2
--- 2θ( )sin[ ]=

σrr
σ11 σ22+

2
-----------------------

σ11 σ22–
2

----------------------- 2θcos
σ12 σ21+

2
----------------------- 2θsin+ +=

σθr
σ21 σ12–

2
-----------------------

σ12 σ21+
2

----------------------- 2θcos
σ22 σ11–

2
----------------------- 2θsin+ +=

σθθ
σ11 σ22+

2
-----------------------

σ11 σ22–
2

----------------------- 2θcos–
σ12 σ21+

2
----------------------- 2θsin–=

σrθ
σ12 σ21–

2
-----------------------

σ12 σ21+
2

----------------------- 2θcos
σ22 σ11–

2
----------------------- 2θsin+ +=

θ

C1
σ11 σ22+

2
-----------------------≡ C2–

σ21 σ12–
2

----------------------=

R1
L

σ11 σ22–
2

----------------------≡ R2
L–

σ21 σ12+
2

-----------------------=
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.  (3.56)

Based on the structure of these equations, we introduce yet another change of variables. 
Specifically, let

      and      ,  (3.57)

where the superscript “L” is used to emphasize that the value of  is computed using the 
laboratory components, so it dictates the placement of the “ ” point on Mohr’s circle 
corresponding to the face of the “stress” element having the normal aligned with the first 
laboratory base vector . As shown below, the quantity  turns out to be an invariant, so 
it needs no “L” adornment. With the above substitution, Eqs. (3.56) become

 
 

 
.  (3.58)

This shows that the “ ” point for a polar 
basis (corresponding to the plane whose nor-
mal is the first polar base vector ) is located 
at an angle  that is related to the laboratory 
“ ” point by

.  (3.59)

This conclusion is occasionally expressed 
(especially in fracture mechanics literature) by 
visualizing the radial-vectors shown in the fig-
ure to be expressed via complex numbers. 
Thus, one could write

,  (3.60)

where, analogously to Eq. (3.55),

.  (3.61)

Eq. (3.60) may be written out explicitly as

* As shown below, the  quantities turn out to be scalar invariants and therefore give the same value 
regardless of the basis to which the components are referenced (so long as the basis is orthonor-
mal). Consequently, they are not adorned with an “L” identifier.

Ci

σrr C1 R1
L 2θcos R2

L 2θsin–+=

σθr C2– R2
L 2θcos– R1

L 2θsin–=

σθθ C1 R1
L 2θcos– R2

L 2θsin+=

σrθ C2– R2
L 2θcos– R1

L 2θsin–=

R1
L R γLcos= R2

L R γLsin=

γL

HL

e
˜1 R

σrr C1 R γL 2θ+( )cos+=
σθr C2– R γL 2θ+( )sin–=
σθθ C1 R γL 2θ+( )cos–=
σrθ C2– R γL 2θ+( )sin+=

θ

C1 C2,( )

HL= σ11 σ21–,( )HP

σ11

σ21

σ22
σ12

σrrσθrσθθ
σrθ θ

2θ

γL

γP

= σrr σθr–,( )

e
˜1

e
˜2

e
˜θ

e
˜ r

HP

e
˜ r

γP
HL

γP γL 2θ+=

R1
P iR2

P+ ei2θ R1
L iR2

L+[ ]=

R1
P

σrr σθθ–
2

----------------------≡

R2
P–

σθr σrθ+
2

----------------------=
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,  (3.62)

where we have multiplied both sides by –1.

σθθ σrr–
2

---------------------- i
σθr σrθ+

2
----------------------+ ei2θ σ22 σ11–

2
---------------------- i

σ21 σ12+
2

-----------------------+=
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The in-plane part of the tensor is represented by the upper  submatrices in either 
the laboratory or polar basis. The in-plane part of the tensor has three invariants with 
respect to rotation in the plane. Specifically,

trace:  

 (3.63)

determinant: 
 (3.64)

magnitude:  
.  (3.65)

These three invariants are independent,* so the above results demonstrate that the center 
 and radius  of Mohr’s circle are invariants — they do not change upon an in-

plane change of basis.

3D Mohr’s circle for 3x3 nonsymmetric matrices???
To this author’s knowledge, no general theory exists for the 3D mohr’s circle of non-

symmetric matrices. In the spirit of scientific inquiry, a natural first step is to explore the 
Mohr diagram for a variety of matrices. 

In the plots that follow, the normal stress is computed in the usual way:

.  (3.66)

For the full Mohr diagram, we now redefine the “shear stress” so that it is the total magni-
tude of the shear stress, not just the component in the plane.

.  (3.67)

With this definition,  always.

We performed numerical experiments in which about 7400 points in the Mohr diagram
were generated by using uniformly random unit normals.† Our hope was to educe some 
discernible order in the Mohr diagram. Alas, although it is apparent that order exists, we 
haven’t the foggiest idea how to characterize it! The figure below shows dot plots on the 
Mohr diagram for various [F] matrices. 

* Many people wrongly think that a  matrix corresponding to the planar part of a tensor has only 
two invariants. This is true for symmetric tensors, but false for nonsymmetric tensors. Consider, for 
example, the tensor  where  is a scalar. This tensor has a matrix with zeros everywhere 
except that the 12 component equals the scalar . Both the trace and determinant of this tensor are 
zero, yet the tensor’s magnitude, , is nonzero and arbitrary, proving that magnitude is an indepen-
dent invariant for nonsymmetric tensors.

† The document http://me.unm.edu/~rmbrann/rotation.pdf shows how to make uniformly random 
unit vectors.

2 2×

σ11 σ22+
2

-----------------------
σrr σθθ+

2
---------------------- C1= =

σ11σ22 σ12σ21– σrrσθθ σrθσθr– C1
2 C2

2– R2–= =

σ11
2 σ22

2 σ12
2 σ21

2+ + + σrr
2 σθθ

2 σrθ
2 σθr

2+ + + C1
2 C2

2 R2+ += =

2 2×

α e
˜1e

˜2( ) α
α

α

C1 C2,( ) R

σ n
˜

F
˜̃

n
˜

••≡

τ F
˜̃

n
˜

• 2 σ2– n
˜

F
˜̃

T F
˜̃

• n
˜

•• σ2–= =

τ 0>
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Mohr diagram normal
“stress”

shear
“stress”

Figure 3.3. Mohr diagram for the four sample [F] matrices.    

,    ,    ,   and ,

  respectively. The first matrix is symmetric. The last matrix is a generalization of the matrix in Eq. 
(3.35).

F[ ]
1 0 0
0 2 0
0 0 4

= F[ ]
1 3 0
2 4 0
0 0 5

= F[ ]
0.6 0.8– 0
0.8 0.6 0
0 0 5

= F[ ]
1– 2 0

3 4 0
0 0 5

=
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To explore the variety of possible results, similar plots were performed for randomly 
generated [F] matrices. Below are two representative results when all components of [F] 
(with respect to the lab basis) were restricted to lie in the interval [0,1):

Below are further explorations in which the components of [F] are uniformly random 
in the interval [–1,1).

Clearly there is structure here, but its mathematical description is not obvious. Perhaps 
working with a different shear measure would prove useful? Suggestions would be wel-
comed.

Figure 3.4. Mohr diagram for 3D matrices on [0,1). 

Figure 3.5. Mohr diagram for 3D matrices on [-1,1) 
69
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4. APPENDIX

Derivation of Mohr’s circle
Consider a tensor  represented by the following matrix of components with respect 

to an orthonormal laboratory basis :

.  (4.1)

In basis notation, we would write

.  (4.2)

We seek an expression for how the components of this tensor change upon an orthonormal 
change of basis. Let  denote the new orthonormal basis, and let  denote the 
components of  with respect to this new basis. Then

.  (4.3)

The new components are found by constructing a direction cosine matrix such that 

.  (4.4)

Then

,  (4.5)

or, in matrix notation,

.  (4.6)

This calculation is tedious to perform for general basis changes, but it is relatively 
straightforward if the new basis shares one base vector with the lab basis. 

Suppose that a new basis is constructed by rotating the lab basis by an angle  about 
the  axis. For this special case, the new basis is then

, , ,  (4.7)

and the corresponding direction cosine matrix is

F
˜̃ E

˜ 1 E
˜ 2 E

˜ 3, ,{ }

F11 F12 F13

F21 F22 F23

F31 F32 F33

F
˜̃

FijE˜ iE˜ j=

e
˜1 e

˜2 e
˜3, ,{ } fij

F
˜̃

F
˜̃

fije˜ ie˜ j=

Qij e
˜ i E

˜ j•=

fij QimQjnFmn=

f11 f12 f13

f21 f22 f23

f31 f32 f33

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

F11 F12 F13

F21 F22 F23

F31 F32 F33

Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

=

θ
E
˜ 3

e
˜1

θcos
θsin

0 
 
 
 
 

= e
˜2

θsin–
θcos

0 
 
 
 
 

= e
˜3

0
0
1 

 
 
 
 

=

70
Copyright is reserved. Individual copies may be made for personal use. No part of this document may be reproduced for profit.



October 29, 2003 6:19 pm
APPENDIX D R A F TR e b e c c a  B r a n n
 o n

.  (4.8)

Equation (4.6), gives the new components as

 (4.9)

Multiplying this out gives

 

 

 (4.10)

 

 

 (4.11)

 
 
.  (4.12)

Observe:

• The formulas for the , , , and  components are independent of the  

and  components. In other words, the upper-left  submatrix of  depends 

only on the upper-left  submatrix of  and the rotation angle. Henceforth, we 
are interested primarily in this submatrix.

• The formula for  can be obtained from the formula for  by replacing  by 

.

• The formula for  can be obtained from the formula for  by replacing  by 

, and then multiplying the result by -1.

The last two observations (and a similar statement for the out of plane components,  
and ) follow intuitively if we “pretend” that the  matrix is a stress, as sketched in 
Fig. 4.1. Specifically, if we had instead used a  basis that was rotated  farther than 
the  basis, then  with respect to the  basis would have to equal the  from the 
original rotated basis.

Q[ ]
θcos θsin 0
θsin– θcos 0

0 0 1
=

f11 f12 f13

f21 f22 f23

f31 f32 f33

θcos θsin 0
θsin– θcos 0

0 0 1

F11 F12 F13

F21 F22 F23

F31 F32 F33

θcos θsin– 0
θsin θcos 0

0 0 1
=

f11
F11 F22+

2
-----------------------

F11 F22–
2

----------------------- 2θcos
F12 F21+

2
----------------------- 2θsin+ +=

f21
F21 F12–

2
-----------------------

F12 F21+
2

----------------------- 2θcos
F22 F11–

2
----------------------- 2θsin+ +=

f31 F31 θcos F32 θsin+=

f22
F11 F22+

2
-----------------------

F11 F22–
2

----------------------- 2θcos–
F12 F21+

2
----------------------- 2θsin–=

f12
F12 F21–

2
-----------------------

F12 F21+
2

----------------------- 2θcos
F22 F11–

2
----------------------- 2θsin+ +=

f32 F32 θcos F31 θsin+=

f33 F33=
f23 F23 θcos F13 θsin–=
f13 F13 θcos F23 θsin+=

f11 f22 f12 f21 Fi3

F3j 2 2× f[ ]

2 2× F[ ]

f22 f11 θ

θ π
2
---+

f12 f21 θ

θ π
2
---+

f31
f13 F[ ]

e
˜ i* 90°

e
˜ i f11

* e
˜ i* f22
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Recall that the “stresses”  and , on the face whose outward normal is  can be 
obtained by using the formulas for  and  with the angle replaced by . The 
shear component  also changes sign. 

We now denote the normal “stress” acting on the 1-face by . The two shear 
“stresses” acting on this face will be defined  and . These are the three 
components of the “traction” acting on the face of the stress element whose normal is 
aligned with . For reasons explained later, the shear stress has been defined as the nega-
tive of . This shear will be called positive if it tends to rotate the stress element in the 
clockwise direction. Hence, referring to Eq. (4.10), we note

 (4.13)

.  (4.14)

 (4.15)

θ+π/2

F11

F21

F21

F12

F22

F22

F12

F11

f11

f21= f12
*–

f21

f12= f21
*–

f22=f11
*

f22

f12

f11=f22
*

e
˜1

e
˜2

E
˜ 1

E
˜ 2

“stress”
element

in lab
basis

“stress”

element

in rotated

basis

Figure 4.1. The same “stress” element as seen by two different observers.   Note that the 11 
component with respect to the “star” basis is equal to the 22 component with respect to the rotated 
unstarred basis.
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2
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2
----------------------- 2θsin+ +=
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2
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2
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Naturally, it is wise to verify that these formulas give the correct results when the local 
basis happens to be aligned with the lab basis (i.e., when ). Namely, the normal and 
shear stresses correspond to those on the  face:

    and         and      (4.16)

Similarly, when the local basis is differs from the lab basis by  then the normal and 
shear stresses correspond to those on the  face:

    and         and      (4.17)

In general, as the orientation of the face varies, , , and  vary with the orientation angle 
 and may be plotted parametrically against each other. We will now demonstrate that this 

parametric curve in  vs.  space turns out to be a circle. We will furthermore show that 
the points defined by Eqs. (4.16) and (4.17) turn out to be diametrically opposite each 
other on the circle.

Looking closely at Eqs. (4.13) and (4.14), we see that  and  appear in pairs, 
either summed or subtracted. Similarly, the shear components  and  appear either 
summed or subtracted. This motivates the following change of variables. Let

 (4.18)

.  (4.19)

Then Eqs. (4.13) and (4.14) become

 (4.20)

.  (4.21)

Looking at the structure of this result motivates an extension in our change of variables. 
Namely, introduce two variables  and  such that

      and     (4.22)

Then

Note that . Thus the curve which is parametrically defined by 
 and  is in fact a circle — Mohr’s circle — centered at the point  in the 

-  plane.

θ=0
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σ 0( ) F11= τ 0( ) F21–= s 0( ) F31=

θ=π 2⁄
E
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σ π 2⁄( ) F22= τ π 2⁄( ) F12= s π 2⁄( ) F32=

σ τ s
θ

σ τ

F11 F22
F12 F21

C1
F11 F22+

2
-----------------------≡ C2–

F21 F12–
2

----------------------=

R1
F11 F22–

2
----------------------≡ R2–

F21 F12+
2

-----------------------=

σ θ( ) C1 R1 2θcos R2 2θsin–+=

τ θ( ) C2 R2 2θcos R1 2θsin+ +=

R γ

R1 R γcos= R2 R γsin=

 (4.1a)

.  (4.1b)

σ θ( ) C1 R γ 2θ+( )cos+=
τ θ( ) C2 R γ 2θ+( )sin+=

σ C1–( )2 τ C2–( )2+ R2=
σ θ( ) τ θ( ) C1 C2,( )
σ τ
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Now consider two planes whose orientations are  and . In other words, 
they differ by  in the physical plane. Then Eq. (4.1) shows that the corresponding 
points on Mohr’s circle must be diametrically opposite each other. Thus, the two points of 
Eqs. (4.16) and (4.17), uniquely define the Mohr’s circle. The “H-plane” of Eq. (4.16) cor-
responds to . The “V-plane” of Eq. (4.17) corresponds to . 

Referring to Eq. (4.1) we see that a plane that differs from the H-plane by an angle  
measured counterclockwise in physical space will correspond to a point on Mohr’s circle 
that is located at an angle  measured counterclockwise from the H-point on Mohr’s cir-
cle.

Recall Eq. (4.15) for the out-of-plane shear stress:

 (4.1)

This formula may be written more compactly as

 

where  is the angle at which .  (4.2)

Namely,  and  (4.3)

This result shows that the out-of-plane shear varies sinusoidally. 

θ∗ θ∗ π 2⁄+
90°

θ=0 θ=π 2⁄
θ
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s θ( ) F31 θcos F32 θsin+=

s θ( ) F31
2 F32

2+ θ θ∗–( )sin=
θ∗ s 0=

θ∗cos
F32

F31
2 F32

2+
---------------------------= θ∗sin

F31–

F31
2 F32

2+
---------------------------=
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Polar decomposition in 2-D
Consider a matrix of the following form

     with      and .  (4.4)

If the matrix  is invertible, the polar decomposition theorem states that it permits a 
decomposition of the form  for which  is orthogonal and  is both symmetric 
and positive definite. 

For the decomposition to be unique, positive definiteness of  and  are require-
ments, not consequences. In what follows, we serendipitously produce suitable  and  
matrices and invoke uniqueness to claim that they are the only solutions. By serendipity, 
we claim that

,  (4.5)

where

      and  (4.6)

.  (4.7)

The positive square root is to be taken. Observe that we do not define . 

Such a definition is not unique because the arc-tangent has two solutions in the interval 
from 0 to . In numerical applications, the two-argument arc-tangent may be used.

Note that  and therefore  is orthogonal as required. The stretch  
is obtained by . It is a straightforward (but tedious) exercise to then prove 
that  is both symmetric and positive definite, thereby proving that Eq. (4.5) does 
indeed represent the unique polar rotation matrix. Symmetry of  is fairly simple to 
prove, but keep in mind that verifying symmetry is not enough! Positive definiteness must 
be proved by demonstrating that  and  and . The 
last inequality is trivial to prove because, by construction, 

, which is positive by premise. The second inequality 
is equally easy due to the partitioned structure of the . The first inequality ( ) 
follows by invoking the fact that .

Connection to Mohr’s circle. Substituting Eq. (4.18) into (4.6) and (4.7) gives

       and      .  (4.8)

Thus, the angle that the center of Mohr’s circle makes with the -axis is equal to .
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