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Geometric Insight into
Return Mapping Plasticity Algorithms

Rebecca M. Brannon

ABSTRACT

Return mapping algorithms are probably the most popular means of numerically solving
conventional plasticity equations. However, numerous unfortunate misconceptions regard-
ing the geometrical aspects of stress space and return algorithms will be addressed. The
basic tenets of these techniques are here rigorously justified and interpreted geometrically
in 6D stress space. For any return algorithm, the first step is to tentatively assume elastic
behavior throughout a given time step. If the resulting “trial” stress is forbidden (i.e. if it vio-
lates the yield condition), then the tentative assumption of elastic response is rejected. Even
when it is found to violate the yield condition, the trial stress is nevertheless useful because
it can then be projected back to the plastic yield surface to give the updated stress. Return
algorithms are often wrongly regarded as numerical “tricks” because they appear to be ad
hoc means of keeping the stress on the yield surface. It is natural to inquire whether other
approaches might be more accurate for the same computational cost, but it is shown here
that return methods are rigorously justifiable and appear to correspond to optimal numeri-
cal accuracy and efficiency. It is shown that issues such as plastic stability, dissipation, and
convexity dictate appropriate choices for the quantities that are presumed known in the der-
ivation of return algorithms; it is not the return algorithm per se that addresses such physi-
cal concerns. Code users and even many model developers often seem to believe (in error)
that the method used to return the stress to the yield surface becomes inconsequential as the
time step is reduced. However, it is proved that the correct return direction is dictated by the
governing equations, and any other return direction will converge, but not to the correct
solution of the governing equations. Furthermore, the correct return direction is not aligned
with the plastic strain rate except under certain conditions. Consequently, normality of the
plastic strain rate does not necessarily correspond to normality of the return direction, and
vice versa. These claims are proved first in the context of stationary yield surfaces and then
generalized to permit hardening or softening. This technical note is intended to provide
nothing more than geometrical insight into known results.

The direction used to return to the yield surface really matters!
Before launching into details of the theory of return algorithms, a motiva-

tional discussion is essential. Plasticity algorithms are just one instance of a
larger class of material models in which the behavior of a material is pre-
sumed to change markedly once the stress reaches a critical value. In the field
of plasticity, the set of stresses marking the transition boundary is called the
yield surface. For non-hardening plasticity, the stress must be constrained to
always fall either within the yield surface or on the yield surface. Typically,
numerical solutions of the plasticity equations tentatively assume that the
entire time increment is purely elastic. If the predicted “trial” updated stress
is found to fall outside the yield surface, then the numerical algorithm recog-
nizes that the tentative assumption of elasticity must have been wrong. At
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that point, classical return algorithms assert that the correct updated stress
can be obtained by simply projecting the inadmissible trial stress back to the
yield surface. One goal of this report is to rigorously justify this approach.

Intuitively, it’s easy to see that, if the stress state at the beginning of a time
interval lies on the yield surface, then the prediction for the projected updated
stress at the end of the interval will be the same in the limit as the time step
goes to zero. Unfortunately, many researchers wrongly conclude that the
direction used to project back to the yield surface is therefore inconsequential.
Fig. 1 shows a sketch that illustrates the fallacy of this assertion by using a
counterexample of a flat yield surface with a constant applied strain rate. The
top three drawings in that figure show how the predicted stress moves along
the yield surface for successively smaller time steps, with the total number of
time steps being increased appropriately to ensure that the problem end time

Figure 1. An illustration of return algorithms. The stress state alternates between the
trial stress (lying outside the yield surface) and the final predicted stress (lying on the yield
surface). The dots in the top set of figures show how the predicted stress moves along the
yield surface with successive time steps when the projection back to the yield surface is ob-
lique. The left side shows the result of a large time step and the right side shows the result
of a refined time step. Because this illustration uses a flat yield surface, the final results
are identical for both coarse and large steps (infinite convergence rate). The bottom set of
figures shows the same solution procedure using a different projection direction. Even
though both procedures have infinite convergence rates, their final solutions for the stress
state differ. Consequently, even though both procedures converge, at least one of them
must be converging to the wrong result.
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is the same in all three cases. The bottom three drawings show how the stress
would progress for a different return direction. The two approaches clearly
predict different results for the final updated stress. In other words, even
though both approaches predict identical paths in stress space, these paths
are traced at different rates. Consequently, even though both solutions are
converging, at least one of them is converging to the wrong result. The errone-
ous solution must be solving the governing differential equations incorrectly
because it is predicting the wrong result for how stress varies with time. If the
prediction of stress through time is wrong, then any finite element code that
uses the model will be using the right stresses at the wrong time, which would
lead to erroneous solutions to the time-dependent field equations.

So what is the right direction to return to the yield surface? Many
researchers believe that the direction to return to the yield surface should be
parallel to the direction of the plastic strain rate. While this is true in some
cases, this report will show that it is not true in general — especially not if the
yield surface is pressure sensitive (as is the case, for example, with porous
media). Researchers operating under the false assumption that the return
direction should be parallel to the plastic strain rate often end up wrongly con-
cluding that they need to use a non-associated (i.e., non-normal) plastic flow
direction in order to match observed data.

As will be discussed in this report, another source for erroneous conclu-
sions that a flow law must be non-associated arises when researchers plot the
yield function in the space of equivalent shear stress versus pressure. This 2D
stress space is not isomorphic to 6D tensor stress space, and therefore the
angle between the yield surface and the return direction must be different in
the two spaces. A “nearest point” return direction (i.e., one for which the
return direction is normal to the yield surface) in 6D stress space will appear
to be oblique in the 2D space of equivalent shear stress versus pressure, which
leads some researchers to wrongly assess the obliqueness (or lack of oblique-
ness) of their plastic strain rate.

A final source of “phantom obliqueness” arises when the elastic response is
coupled to the plastic response, as is the case for porous plasticity models that
permit the elastic moduli to stiffen in response to plastic pore collapse. As will
be discussed in this report, elastic plastic coupling results in a change in the
uniquely required return direction. For porous plasticity models, this change
in return direction is such that the isotropic part of the return direction must
be smaller than it would be if no elastic-plastic coupling were present. Again,
this result is sometimes wrongly interpreted by researchers as evidence that a
normal plastic flow direction over-predicts the plastic dilatation.
3
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Notation
The geometrical interpretation of plastic return algorithms is most appar-

ent when presented in symbolic Gibbs notation (also known as “direct” nota-
tion). Throughout this document, the number of underlines beneath a symbol
indicates the tensorial order of that variable. Hence, for example, would be a
scalar, a vector, a second-order tensor, and a fourth-order tensor.
Unless otherwise indicated, the term “tensor” will be taken to mean “second-
order tensor.”

Understanding radial and oblique return algorithms demands a prerequi-
site understanding that second-order tensors are themselves first-order vec-
tors in 9-dimensional space. The set of all symmetric tensors is a 6-
dimensional vector subspace, which (in plasticity literature) is misleadingly
called “stress space” even though it is well-defined for all other symmetric ten-
sors such as strain. The concept of a “subspace of 9-D tensor space” is analo-
gous to a “plane” that passes through the origin in ordinary 3-D space. Any
linear combination of vectors in such a plane is itself in the plane.* Mathemat-
ically, a set forms a subspace if any linear combination of members of that set
is itself a member of the set. Symmetric tensors form a subspace because any
linear combination of symmetric tensors is itself symmetric. The set of all
orthogonal tensors is not a subspace because the sum of two orthogonal ten-
sors is not generally orthogonal.

Any vector operation that is defined for ordinary vectors in 3D space has
an analogous operation that is defined for tensors. The geometrical interpreta-
tions are identical. For ordinary vectors in 3D space, the single “dot” product
between two vectors,  and , is defined

.  (1)

Note that components of are simply multiplied by corresponding compo-
nents of . Visualizing second-order tensors as nine-dimensional vectors, the
analogous tensor inner product between two tensors,  and , is defined

=

+
+

= .  (2)

*This property is why we added the proviso that the plane must pass through the origin.
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The magnitude of a 3D vector is defined . Similarly, the magnitude of
a tensor is defined . Two vectors, and , are perpendicular if

. Similarly, two tensors, and , are said to be perpendicular if
. When we say that a tensor is in the “direction” of some other ten-

sor , we mean that they are “proportional.” In other words, for some
scalar multiplier . Plasticity interpretations draw heavily on the concept that
tensor proportionality is just like vector coaxiality.

Incidentally, it’s important to apply the full nine-dimensional tensor inner
product formula even when working in six-dimensional symmetric tensor
space. If  and  happen to be symmetric, then Eq. (2) reduces to

 (3)

Note that the off-diagonal components contribute twice. Appendix __ explains
why the tensor-vector analog only seems to be breaking down in this case, and
that appendix shows how to recover the intuitive analog by a change of basis.
The bottom line is that the operation remains geometrically analogous to
the vector dot product even in symmetric tensor space, even though the alge-
braic definition might seem to be different (see Appendix __).

In 3D space, the operation represents a linear transformation
from the vector  to a new vector . The indicial form of this operation is

.  (4)

The summation occurs over every component of . Analogously, the opera-

tion represents a linear transformation from the tensor to a

new tensor . The indicial form of this operation is

.  (5)

Analogous to Eq. (4), the summation occurs over every component of .

Linear tensor transformations of the form play a pivotal role in
material modeling. After all, what is a material model? It is a rule by which
you start with one tensor (e.g., the strain) as input and compute some other
tensor (e.g. stress) as output of the model. Thus, a constitutive model is a
transformation taking tensors to tensors. By why should linear transforma-
tions be so important? Any experimentalist will tell you that most materials
behave in a nonlinear fashion. The answer is that a nonlinear function
becomes linear in rate form. Consider, for example, the most general expres-
sion for nonlinear elasticity: namely, the stress is presumed to be a nonlin-
ear function of the strain :
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 (6)

Applying the chain rule to take the time rate gives

 (7)

or, in direct notation,

, where  (8)

The stiffness tensor depends on the strain, but not on the strain rate.
Therefore, nonlinear elasticity is always linear when expressed in rate form.
We will later see that the set of equations governing nonlinear plasticity
becomes linear in rate form, which permits us to solve for the rates. Thus, for
numerical calculations, if the state is known at the beginning of a computa-
tional step, then knowing the rates permits us to predict the state at the end
of the step.
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Projection operations
Our goal is to demonstrate that equations of plasticity can be rearranged

in a form that leads to a radial or oblique return algorithm. To interpret the
solution geometrically, it is important to review the theory of orthogonal and
oblique projection operators (also known as “idempotent” transformations).
Ultimately, this theory will be applied in 6D stress space, but the geometric
concepts will be introduced here using ordinary vectors in 3D space.

Orthogonal (high noon) projections. As
sketched in Fig. 2, any vector can be pro-
jected onto a plane with unit normal by
using the formula

.  (9)

This operation is called an orthogonal pro-
jection because the projected vector repre-
sents the “shadow” cast by onto the plane
perpendicular to when the light rays are
coaxial with . (Note: the term “coaxial”
here means aligned, but not necessarily of
the same directional sense.)

Oblique (afternoon) projections. As
sketched in Fig. 3, a more general kind of
projection allows the “light rays” to intersect
the plane at an oblique angle. This kind of
projection can be characterized via two vec-
tors and . Any vector that is perpen-
dicular to the plane can be used to define the
plane’s orientation. The direction of the
“light rays” can be characterized by any vec-
tor parallel to the light. Note that the
magnitudes of and are inconsequential
since only the orientations of those vectors carry relevant information. Of
course, one can always demand that these vectors be unit vectors, but this is
not necessary and often not convenient. As before, we seek an expression for
the vector that is the projection of onto the plane. This time, however, we
want the projection direction aligned with the vector . Referring to Fig. 3, we
can see that there must exist a scalar multiplier such that the vector can
be written

,  (10)
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To find the value of , we impose the condition that the vector must lie in
the plane. In other words, must be zero to make perpendicular to .
Dotting both sides of Eq. (10) by  (and setting ) gives

.  (11)

Solving for and substituting the result back into (10) gives the desired for-
mula for the oblique projection:

, where .  (12)

Naturally, Eq. (9) is a special case of the more general Eq. (12), obtained by
choosing . In other words, the projection is orthogonal only if is pro-
portional to . The projector operator in Eq. (12) is homogeneous of degree
zero with respect to and/or . (i.e., multiplying either of these vectors by
any nonzero scalar does not affect the formula). This property does not mean
that the projection formula depends on only the angle between and . The
scaling property simply implies that the formula is independent of the magni-
tudes and senses of  and .*

Figure (4) shows two vectors, and , that
fall on the line defined by . More precisely, for
some scalar ,

.  (13)

As seen in the sketch (or as verified by direct
substitution into Eq. (12)),

.  (14)

Conversely, if (14) holds, then so does (13).
Interpreted more geometrically, if two vec-

tors have the same “shadow,” then those they must differ from each other by
some vector parallel to the “light rays.”

* If desired,  and  can be scaled such that . If this is done,  and  would then be called
“dual” vectors and the component form of Eq. (12) would take a particularly simple form when
expressed using a nonorthogonal basis having  and . Namely .
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Analog of projections for tensors. For second-order tensors, the analog of
Eq. (12) is the similarly-interpreted fourth-order oblique projection operation

.  (15)

As for the projection in 3-space, this operation represents a linear oblique pro-
jection in tensor space. The “surface” to which is projected is orthogonal to

and the oblique projection direction is aligned with . This projection func-
tion can be readily verified to have the following properties:

 for all scalars .  (16)

 for all  and .  (17)

.  (18)

The first two properties simply indicate that the projection operation is linear.
The last property says that projecting a tensor that has already been projected
merely gives the tensor back unchanged.

Finally, the analog of Eqs. (13) and (14) is the important identity that

if and only if .  (19)

When we later encounter projection operations in the solution of plasticity
equations, the tensor will be the gradient of the yield function. Conse-
quently, will be normal to the yield surface in stress space. In the numerical
plasticity solution, the operand in Eq. (15) will be the trial elastic stress,
and the result will be the actual updated stress, projected back to the
yield surface. We will find that the tensor will depend in a particular man-
ner on the elastic stiffness and the plastic flow rule, and it cannot therefore be
chosen at will. The tensor will not generally be parallel to the yield surface
normal . Consequently, we will find that the projection of the trial stress
back to the yield surface is most properly accomplished by an oblique projec-
tion.
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Governing equations for classical nonhardening plasticity
Classical nonhardening plasticity is usually presented in rate or incremen-

tal form so that the equations are linear in the rates. For typical numerical
applications, the current stress in a material and the strain rate
(obtained by a symmetric gradient of the velocity field) are presumed known
at the beginning of a time step. The rate at which the stress changes in
response to the applied strain rate is desired. An interval of deformation is
called “elastic” if the strain would return to its initial state (at the beginning
of the interval) if the stress were to be released back to its value at the begin-
ning of the interval. Otherwise, the interval of deformation is “plastic,” and is
associated with irreversible structural changes in the material. If the point at
which a material transitions from elastic to plastic behavior depends only on
the stress level, then the material is said to be nonhardening. The most simple
(Von Mises) criterion states that plastic behavior commences when the magni-
tude of the stress deviator reaches a critical value. Other models (Tresca)
might mark the onset of plasticity by reaching a critical maximum shear
stress. Many geological and porous metal models further presume that the
yield stress further depends on the amount of pressure as well as the stress
deviator. Sometimes the onset of plasticity is delayed when the material is
under sufficiently large confining pressure. If the material is anisotropic, then
the onset of plasticity might require knowledge of the full stress tensor. The
most general description of nonhardening plasticity presumes that there
exists a scalar-valued “yield” function such that negative values of cor-
respond to elastic stress states and positive values of correspond to “forbid-
den” unattainable stress states. During intervals of plastic deformation, the
yield function must be zero and remain zero. This requirement is called the
“consistency” condition:

 and  if the material is deforming plastically.  (20)

The equation defines a yield surface in 6-dimensional “stress space.”
By convention, the yield function must be defined such that “elastic” stresses
on the interior of this yield surface correspond to negative values of and for-
bidden stresses on the exterior are identified by positive values of . This con-
vention is crucial because a trial stress is categorized to be elastic or plastic by
checking the sign of the yield function. The upcoming analysis will be valid for
arbitrarily anisotropic materials such as laminates or single crystals in which
the direction of the stress is relevant. For plastically isotropic materials, the
yield function depends only on the principal values of the stress, not on the
eigenvectors. Many authors erroneously claim that the yield function for plas-
tically isotropic materials can be alternatively written as a function of the
standard stress invariants (thereby avoiding the need for an eigenvalue anal-
ysis). However, we have yet to see any such function that satisfies the require-
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ment that if and only if the stress state lies within the yield surface (i.e.,
below yield). This issue is further addressed in Appendix 2, where the often-
cited invariant form of the Tresca criterion is proved to be invalid (and there-
fore almost useless) for plasticity applications.

f 0<
11
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Elastic deformation. If the stress at a particular point in time is inside the
yield surface (i.e., if ), then the deformation interval is elastic, and
the stress rate is given by

,  (21)

where is the elastic tangent stiffness tensor. If the material happens to be
elastically isotropic, this equation becomes “Hooke’s law” as described in
Appendix 1. Equation (21) holds as long as the stress remains within the yield
surface.

Plastic deformation. Now suppose the stress reaches the yield surface. If
applying Eq. (21) would take the stress to forbidden states outside the yield
surface, then the interval is plastic and the following plasticity equations (fur-
ther explained in Appendix 2) are then imposed:

Consistency: (becomes Eq. 79 for hardening/softening)  (22)

Strain decomposition:  (23)

Flow rule:  (24)

Nonlinear elasticity: , (becomesEq.85forelastic-plasticcoupling) (25)

In these equations, the following quantities are presumed known:

, gradient of the yield function at the current state ( )

, the total strain rate.

, the fourth-order elastic tangent stiffness tensor.

, the unit tensor in the direction of the plastic strain rate.

The following quantities are unknown:

, the rate of stress

, the elastic part of the strain rate

, the plastic part of the strain rate.

, the magnitude of the plastic part of the strain rate.
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We are interested in the solution of this set of equations, so we won’t provide
their rigorous derivations. We will, however, emphasize that Eq. (22) is just
the rate form of the consistency condition ; specifically, if ,
then the chain rule gives

,  (26)

which is the indicial form of Eq. (22). Since is the gradient of the yield func-
tion, it must be normal to the yield surface. Consequently, Eq. (22) states that
the stress rate must be perpendicular to . In other words, the stress rate
must be tangent to the yield surface during plastic intervals. This condition
makes geometrical sense because the stress state must remain on the yield
surface during plastic intervals. The stress rate has no normal component
because, for nonhardening plasticity, the yield surface itself has no normal
velocity. Equation (23) expresses the typical notion that the total strain rate
can be decomposed additively into elastic and plastic parts. The plastic strain
rate tensor is not generally known at the outset, but Eq. (24) expresses the
typical plasticity assumption that only the magnitude of the plastic strain
rate is unknown — the direction of the plastic strain is presumed known (from
a supplemental “flow” rule). For so-called “associative” plasticity, the plastic
strain rate is assumed to be normal to the yield surface (in which case
would be simply ). Finally, Eq. (25) reflects the assumption that the
stress tensor is determined uniquely by the elastic strain tensor, and the
stress rate therefore must be linear with respect to the elastic strain rate. This
does not preclude nonlinear elastic response [recall Eq. (7)].

Range of validity of foregoing equations. Equations (22) through (25) are
valid for the following conditions.

• Arbitrary elastic anisotropy.
• Arbitrary plastic anisotropy.
• Nonhardening yield surface. (This restriction is released later).
• Genuine nonlinear elasticity. In other words, the stress is truly a proper

function of the elastic strain. The function may permissibly be nonlinear.
Because the function is assumed proper, the stress rate will be linear in
the strain rate, where the linear transformation is given by the elastic
tangent stiffness tensor, which depends only on the elastic strain.

• Yield functions that obey the sign convention that elastic stresses
correspond to negative values and forbidden stresses correspond to
positive values (this is needed so that the outward normal can indeed be
given by the yield function gradient and so that trial stresses may be
categorized according to the sign of the yield function).

• Strain definitions that permit the decomposition of strain rates.
• Stress and strain definitions that permit the use of true rates rather than

objective rates. A popular choice is to use the “unrotated” reference
configuration.

ḟ 0= f f σij( )=

df
dt
------

∂f
∂σij
---------- 

  dσij

dt
----------- Bijσ̇ij 0= = =
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M
˜̃B
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B
˜̃
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• Strain rate direction being dependent only on the material state, not on
the rate of change of state.

Notice that we do not require that the yield surface be convex or that the plas-
tic strain rate be directed away from the yield surface. We don’t even require
that the elastic stiffness be positive definite. Rational models will indeed have
such properties, but those concerns merely dictate appropriate choices for the
quantities listed as “known” on page 12. To prove the radial and oblique
return theorems, we will only need to presume that

,  (27)

where

 (28)

No other assumptions about the “known” quantities will be needed.

Incidentally, for associated plasticity, the plastic flow direction is paral-
lel to the yield surface normal . Thus, for associativity, the condition of
Eq. (27) becomes , which is automatically satisfied if the elastic
stiffness is positive definite.

For convenience, we will also assume that the elastic stiffness tensor is
major symmetric:

 (29)
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Exact solution of the classical nonhardening plasticity equations

In this section, the governing equations (22 through 25) for classical non-
hardening rate-independent plasticity are rearranged so that they are seen to
represent a projection of a trial elastic stress rate back to the yield surface.
Geometrically, the tensor is proportional to the outward normal to the yield
surface, and it will henceforth be referred to as the “normal” to the yield sur-
face despite the fact that it might not have unit magnitude.

Eqs. (23) and (24) combine to give , so that Eq. (25) becomes

.  (30)

For convenience, we write this in a more compact form,

,  (31)

where the so-called “trial” elastic stress rate  is defined

,  (32)

and  is just a shorthand notation for

.  (33)

Note that and are both expressed in terms of known quantities, so
they may themselves be regarded as known. All that remains is to use (22) to
determine . Substituting (31) into (22) gives

.  (34)

Thus

,  (35)

where we have used the fact that . and we have invoked the
assumption of Eq. (28). Substituting this result back into (31) gives the final
solution for the stress rate in terms of known quantities:

.  (36)
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To emphasize the structure of this solution, we write it compactly as

,  (37)

where the operation  is defined

.  (38)

The implicit dependence of the function on and will be understood in
the upcoming discussions. The key point is that the projection operator is con-
structed from known quantities, so it may itself be regarded as known.

Note from (33) and (24) that is proportional to . Comparing Eq.
(38) with Eq. (15) we recognize as a projector! Hence, the exact solution has
an appealing geometric interpretation:

This result (which holds for any shape of yield surface) has been here
derived under the assumption of nonhardening yield surfaces, but the analy-
sis is generalized on page 26 to include hardening and softening. For harden-
ing or softening yield surfaces, it will be seen that the actual stress rate is
again a linear transformation of the trial stress rate, but the transformation is
no longer a projection. Nevertheless, it will be demonstrated that the numeri-
cal return projection mapping algorithm is valid for both hardening and non-
hardening yield functions so long as the target yield surface is updated before
the projection is performed.

Detailed mathematical implications*. Note that the projection direction is
proportional to and is not therefore generally proportional to the plastic
strain rate . A necessary and sufficient condition for the projection direction
to be proportional to is for some scalar . In other words, the
projection direction will be proportional to the plastic strain rate only if the
plastic strain rate is an eigentensor of the fourth-order stiffness tensor. For
isotropic elasticity, this will be the case only if is purely deviatoric or purely
isotropic (See Appendix 1). For many materials, plastic deformation causes no
significant permanent volume changes, and therefore the plastic strain rate
must be traceless (such an assumption is quite sensible for solid metals, but

*This subsection may be skipped without loss in continuity of later analyses.
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rate is obtained by obliquely projecting the trial stress rate to the
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grossly inaccurate for porous metals). Hence, isotropic elasticity in combina-
tion with plastic incompressibility forms a specialized sufficient condition for
the return direction to be proportional to the plastic strain rate.

A large class of modern plasticity models takes the plastic strain rate to be
normal to the yield surface (this assumption is often adopted for porous met-
als). Under the assumption of normality, the plastic strain rate is propor-
tional to the yield surface normal ; in other words, for some
scalar . Consequently, the appropriate return direction is proportional to

. Using similar reasoning as above, we conclude that the return direction
will not generally be normal to the yield surface even if the plastic strain rate
is normal to the yield surface; i.e., the projection is generally oblique. A neces-
sary and sufficient condition for normality of both the plastic strain rate and
the return direction is for some scalar . In other words, the nor-
mal to the yield surface must be an eigentensor of the fourth-order stiffness.
In general, such a condition is not satisfied at all points on the yield surface.
For isotropic elasticity, the only such points on the yield surface are located
where the yield surface normal is either purely deviatoric or purely isotropic
(see Appendix 1); this condition is satisfied everywhere for the non-pressure-
dependent Von Mises yield surface discussed on page 24, but at only at a sub-
set of points for the pressure-dependent Von Mises yield surface discussed on
page 47.

To critically review an existing return algorithm, one can infer the implic-
itly assumed plastic strain rate by determining the projection direction used in
the algorithm. We have shown that the projection direction is related to the
plastic strain rate direction by . Thus, when examining an exist-
ing plastic return code for which you can tell what is used for the return direc-
tion , you may conclude that the implied plastic strain rate direction is

, where the compliance is the inverse of the stiffness. For exam-
ple, the so-called “radial” or “Prandtl” rule projects the stress to the yield sur-
face by simply reducing the magnitude of the trial stress deviator. Thus, if the
material is isotropic, the implied plastic strain rate is parallel to the stress
deviator.

The projection direction is not generally aligned with the normal to the
yield surface; i.e., the projection is generally oblique. It’s natural to seek condi-
tions for which the projection will be orthogonal (i.e., a projection to the near-
est point on the yield surface). The projection will be orthogonal if and only if
the projection direction is proportional to the yield surface normal :
i.e., for some scalar . This conclusion is useful for interpreting
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return algorithms that use orthogonal projections; these formulations corre-
spond to an implied plastic strain rate that is proportional to , where the
compliance  is the inverse of the stiffness.

Finally, note that the geometric interpretation of the exact solution does
not rely directly on physical concerns such as plastic stability or maximum
dissipation. These issues dictate appropriate choices for the quantities that
have been presumed known ( ) in the derivation of the solution. Even
if bad choices are made, the exact solution of Eq. (37) remains unchanged.

F
˜̃̃̃
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M
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Numerical solution by projection to the yield surface
For a numerical solution to the governing equations, the “known” quanti-

ties listed on page 12 are presumed known at the beginning of a time step. The
governing equations are then solved numerically to update the state. All
return algorithms work basically as follows: A trial stress is computed by tak-
ing the entire step to be elastic. If this trial stress happens to fall outside the
yield surface (implying that there was actually some plastic deformation),
then the assumption of elasticity was invalid and the actual updated stress is
obtained by projecting the trial stress back to the yield surface. In this section,
we rigorously justify this approach.

Recall the governing equation:

.  (39)

In developing the numerical solution to this equation, it is imperative to keep
in mind that the function is a linear projector. During elastic intervals, the
stress rate is identically equal to the trial elastic stress rate. During plastic
intervals, the stress rate is the oblique projection of the trial elastic stress rate
back to the yield surface. The projection direction is proportional to .

This section details an efficient numerical algorithm for solution of the

above equation. Following conventional finite difference protocol, the “known”

quantities ( , , , and , and therefore the projection operator ) are

approximated as unchanging throughout the time step. The order of accuracy

of the algorithm is affected by what values are assigned for these tensors. Typ-

ically, middle-of-step estimates improve the order of accuracy and help reduce

numerical errors associated with moving the stress past high-curvature parts

of the yield surface (e.g., yield surface vertices).

Given an old stress state and a time step , the finite difference solu-
tion for the new stress state is

.  (40)

The trial stress rate is computed by applying Eq. (32). The trial stress
is constructed to be the stress state achieved by presuming that the

entire step is elastic. Thus, applying Eq. (39b), under the assumption of an
elastic interval

.  (41)
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As long as is an admissible stress (i.e., if ), then the assump-
tion of elasticity was valid and , making the computational cycle
complete. If, on the other hand, happens to fall in the forbidden zone out-
side the yield surface, then there must have been plastic deformation, and
during at least part of the step, Eq. (39a) applies:

.  (42)

Whenever is found to equal a forbidden stress outside the yield sur-
face, then we know that it does not represent the updated stress. Fortunately,
however, the effort that went into computing the trial stress (which was con-
siderable if the elasticity was anisotropic) need not go to waste. By construc-
tion, we know that is nevertheless still related to by Eq. (41) and
hence

.  (43)

During this time step, the stress state might have been initially below
yield, and a portion of the total time step may have been used to elasti-
cally get the stress to the yield surface. Breaking the step into elastic and
plastic intervals, the stress at the end of the elastic interval is

.  (44)

Using the projected stress rate during the remaining plastic part of the time
step, , the final stress is

,  (45)

or

.  (46)

Substituting in the second term and applying Eq. (16) to the
last term gives

 (47)

Using Eq. (43) to re-introduce the already available trial stress gives

.  (48)

A fascinating advantage of the projector nature of the governing equations is
that it is not necessary to find the exact time at which the deformation transi-
tions from elastic to plastic! Specifically, operating on both sides of (48) with
the projection function  and using linearity gives

.  (49)

Applying Eq. (18), the last two terms cancel with each other, leaving only
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.  (50)

Recalling Eq. (19), this condition is possible if
and only if and fall on a line that is
proportional to the projection direction . As
sketched in Fig. 5, once the trial stress is
known, all that needs to be done is to project it
back to the yield surface! This is true no matter
what fraction of the time step is elastic. The
projection direction is required to be propor-
tional to . Therefore, applying Eq. (19) to Eq.
(42), we know that

,  (51)

for some scalar . Note that the new updated
stress is not generally a scalar multiple of the trial stress. That would be the
case only if the projection direction  is in line with the trial stress.

Given that is the final stress after an interval of plastic deformation,
must be on the yield surface. Hence, the scalar is found by using, say, a

secant solver to find  in the yield equation,

.  (52)

Recalling the explicit expression of the projector, the solution of Eq. (48) is

 (53)

Comparing with Eq. (51), a good first guess for the secant solver is

<--- first guess  (54)

Of course, the value of is generally unknown, but the mean value theorem
can provide a sensible estimate (for well-behaved yield functions):

<--- first guess  (55)

Once the first-order solution is known, it might be a good practice to re-evalu-
ate the “known” quantities  and  at the improved estimates for the stress:

 and  (56)

P σ
˜̃

new( ) P σ
˜̃

trial( )=

σ
˜̃
˙ trial∆t

βA
˜̃

σ
˜̃

trial

σ
˜̃

new

σ
˜̃

old

Figure 5. Return to the yield
surface.

σ
˜̃

new σ
˜̃

trial

A
˜̃

A
˜̃

σ
˜̃

new σ
˜̃

trial βA
˜̃

+=

β

A
˜̃

σ
˜̃

new

σ
˜̃

new β
β

f σ
˜̃

trial βA
˜̃

+( ) 0=

σ
˜̃

new σ
˜̃

trial
A
˜̃

B
˜̃

:σ
˜̃
˙ trial∆t p( )

A
˜̃

:B
˜̃

--------------------------------------–=

β 1( )
B
˜̃

:σ
˜̃
˙ trial∆t p( )
A
˜̃

:B
˜̃

---------------------------------–=

∆t p

∆t p ∆t
1 f σ

˜̃
old( ) f σ

˜̃
trial( )⁄–

--------------------------------------------------=

A
˜̃

B
˜̃

σ
˜̃

new 1( ) σ
˜̃

trial β 1( ) A
˜̃

0( )+= A
˜̃

1( )⇒ B
˜̃

1( )
21



July 30, 2002 9:15 pmD R A F T
R e c c a  B r a n n o n
b e

Taking and , the following iterative algorithm might be
a higher-order alternative to a secant solution because it accounts for varia-
tion of the “known”  and  quantities with stress:

(i) Compute .

(ii) If  then  and go to (ix).

(iii) Set

set

set

(iv) Increment counter  by 1.

(v) Estimate what fraction of the vector from to

lies outside the yield surface (negative values

are allowed for iteration purposes).

(vi) Compute and using

as a stress estimate. (This

estimate is generally off the yield surface, so this
algorithm requires a well-behaved yield function.)

(vii) Update stress estimate:

(viii) If then and go to step

(ix). Otherwise, go to step (iv).

(ix) Stop.

An iterative solver like this may not be necessary if Eq. (52) is simple
enough to solve for analytically. The classical Von Mises yield criterion dis-
cussed on page 24 is such a case. For pressure dependent yield surfaces, a far
more detailed alternative algorithm is given in Appendix 3 on page 5.

The solution of Eqs. (51) and (52) is exact if the “known” quantities listed
on page 12 are truly constant over the entire interval. The algorithm should
be highly accurate for typical yield surfaces and flow rules so long as the ten-
sors and don’t vary too much over the interval. If, for example, the stress
state is on a “flat” part of the yield surface, then the direction of is exactly
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constant. A continuing area of research addresses what to do near regions of
high curvature in the yield surface where and cannot sensibly be
assumed constant.

A
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B
˜̃
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Traditional Von Mises radial return
The Von Mises yield condition says that yield occurs when the second

invariant of the stress deviator reaches a critical positive constant . The
corresponding yield function is

, where .  (57)

For traditional Von Mises plasticity, is a material constant independent
of the stress. Using elementary tensor calculus, the gradient of this yield func-
tion is found to be . Hence, the outward unit normal to the yield surface
at a stress state  on the yield surface is  divided by its own magnitude:

.  (58)

Geometrically, the Von Mises yield surface is a cylinder in stress space, where
the “axis” is the set of isotropic tensors, and the stress deviator is oriented in a
purely radial direction.

Traditional Von Mises plasticity takes the flow rule to be associative, and
the direction of the plastic strain rate is therefore aligned with .

.  (59)

Note from Eq. (58) that and therefore are deviatoric. Consequently, for
isotropic elasticity, is an eigentensor of the stiffness (See Appendix 1). In
other words, the projection direction and the plastic strain rate happen to
be collinear for this simple model. Namely, using Eq. (120) in Appendix 1,

.  (60)

Hence, classical Von Mises plasticity is an “exceptional” model having both
associativity of the plastic strain rate and a proportional orthogonal projection
back to the yield surface. Recall that is proportional to , which is in turn
proportional to . Therefore projection direction is proportional to the
stress deviator . Typically, Von Mises radial return methods take the tensor

 to equal its value at the end of the time step so that Eq. (51) becomes

,  (61)

where the scalar must be assigned to put the new stress on the yield sur-
face. Taking the deviatoric part of both sides of (61) shows that

,  (62)

or, redefining the undetermined constant,
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,  (63)

for some scalar . In other words, the new stress deviator is simply a scalar
multiple of the trial stress deviator. This result is particularly nice because it
allows Eq. (52) to be solved analytically. Once the trial stress is known, the
scalar multiple must be constructed to put the stress on the yield surface.

Therefore using Eq. (63) in (57) and setting  gives

Taking the isotropic part of both sides of (61) shows that the new updated
pressure simply equals the pressure associated with the trial stress:

.  (65)

If desired, the plastic strain rate may be computed using STEP 21 in the algo-
rithm on page 59.
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Hardening/Softening yield surfaces
For hardening (or softening) plasticity, Eqs. (23) through (25) remain valid:

 (66)

 (67)

,  (68)

However, Eq. (22) must be modified to account for the fact that the yield sur-
face is no longer strictly a function of only the stress. The yield function is
additionally dependent on one or more internal state variables. For example,
plastic deformation in metals can cause structural changes such as dislocation
buildups that change the Von Mises yield stress in Eq. (57); and therefore,
would be interpreted as an internal state variable. Sufficiently large compres-
sion of porous materials causes a mesoscopic structural change (pore crushup)
and the yield surface would naturally depend on porosity as an internal state
variable. For illustration purposes, we will show the analysis for the case of a
set of internal state variables, . Thus, the equation defining the
yield surface becomes

.  (69)

Exactly one of the following always holds:

Elastic deformation:  and

Plastic deformation:  and and  (70)

These conditions are described succinctly by the “Kuhn-Tucker” complemen-
tary conditions, which must hold regardless of whether the deformation is
elastic or plastic:

,
,

, and

 (71)

Taking the rate of Eq. (69), the consistency condition for continued yield
( ) becomes

.  (72)

where, as before, represents the gradient of the yield function in stress
space,

,  (73)
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The new quantities for hardening/softening quantify how the yield surface
changes upon a change in the internal state variables:

, , etc.  (74)

Eq. (72) shows that the yield surface is no longer fixed in stress space.
Changes in the internal state variables cause the yield surface to move, and
the stress rate during plastic intervals is therefore no longer required to be
tangent to the yield surface. In order for the stress to remain on the moving
yield surface, the stress rate must have a normal component that exactly
equals the expansion (or contraction) speed of the yield surface. This condition
is ensured by imposing the consistency condition of Eq. (72).

Whenever internal state variables are introduced, additional equations
known as “evolution” equations must be supplied that govern the rate of
change of the internal state variables.

Example of an evolution equation. In this example, we describe a particular
example of an internal state variable and show how its evolution equation can
be expressed in the form of a second-order tensor operating on the plastic part
of the strain rate. Consider porous metals, which exhibit significant perma-
nent volume changes even when the matrix material is plastically incom-
pressible. In an unstressed representative sample of volume , the volume of
the matrix material is , where is the porosity at the unstressed state.
During an interval of elastic deformation the volume of the pores and the vol-
ume of the matrix material can both change, not necessarily in proportion to
each other. Nevertheless, the pore and matrix volumes in the unstressed refer-
ence state remain constant during elastic deformation. Hence, the unstressed
reference porosity is a natural choice as an internal state variable because it
never changes during purely elastic deformation. By using the unstressed
value, our internal state variable can change only due to plastic deformation.
We seek an evolution equation that governs the rate of this unstressed elas-
tic reference porosity. If the matrix material is plastically incompressible, any
changes in the macroscopic unloaded volume must be attributable to changes
in the elastic unloaded porosity. In other words, the unstressed reference vol-
ume of the matrix material, , must be constant. Thus .
Dividing both sides by and using the continuum mechanics identity that

, we obtain the desired evolution equation for the porosity state
variable. Namely,

, or  where  (75)
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Note that the rate of the internal state variable is expressed as a “known”
state-dependent tensor, , operating on the plastic strain rate.

An equivalent form for evolution equations. Another typical approach for
expressing the evolution relation for an internal state variable is to
assume

,  (76)

where is some specified state-dependent scalar and is the plasticity
parameter of Eq. (24). This is essentially the form cited by Simo and
Hughes [><] in their Eq. (2.2.8) where they use the symbols , , and in place
of our , , and , respectively. Recalling that the tensor in Eq. (24) is a
unit tensor, it can be double-dotted into both sides of (24) to give ,
and therefore Eq. (76) can be written

, where .  (77)

Though not immediately obvious, the example of Eq. (75) is a special case of
Eq. (76) with .

Application to hardening/softening. Note that the fundamental structure of
Eqs. (75) and (77) is identical. Namely, the rate of the internal state variable
equals the inner product of a state dependent tensor into the plastic strain
rate . Such a form for the evolution equations is extremely common. In the
subsequent analysis, we therefore assume that, for each internal state vari-
able , there exists a state-dependent second-order tensor such that the
evolution equation for the state variable may be written

.  (78)

Thankfully, it will be shown that it is not necessary to actually compute the
tensors when performing numerical solutions. To prove the algorithm, we

merely need to assert that they exist.

Given Eq. (78), we can imagine the existence of a state-dependent “ensem-
ble” evolution tensor such that the consistency Eq. (72)
becomes

.  (79)

Equation (79) is the generalization of Eq. (22).

Elastic-plastic coupling.

A simple way to explain elastic plastic coupling is to first presume that the
elastic strain tensor is a function of one or more of the internal state
variables in addition to being a function of stress:
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 (80)

The rate form of Eq. (80) is

 (81)

where we have defined the elastic compliance tensor to be

 (82)

and

 (83)

The elastic compliance  and the elastic stiffness,

,  (84)

now depend on the values of the internal state variables. Multiplying both
sides of (81) by the stiffness and then solving for the stress rate gives

 (85)

Now let’s recall that the plastic internal state variables are assumed to be
expressible in the form

.  (86)

so that

 (87)

or, writing ,

 (88)

where

 (89)

Again, we want to emphasize that this ugly expression never has to be actu-
ally computed in practice. The key point here is that there exists a second-
order tensor that depends only on the material state (not its rate) such that
Eq. (88) holds.
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This is the generalization of Eq. (25) when there is elastic-plastic coupling.

Physical example: porosity. Let’s consider a model with only one internal
state variable — the porosity . A very common form for the porosity-
dependence in the elastic compliance is

 (90)

Here is the compliance of the solid (nonporous) matrix material, and
is a coupling tensor that is independent of the porosity. The linear elastic
stress-strain relation is

 (91)

from which it follows that

 (92)

Incidentally, recognizing that the elastic strain tensor is not itself usually
available in numerical implementations, we presented this example of cou-
pling by using compliances instead of stiffnesses so that the final expression
for would depend only on the stress. The stress is readily available in
numerical calculations because it is always needed to solve the momentum
equation. Thus Eq. (92) is quite convenient because it permits us to avoid hav-
ing to additionally compute and allocate storage for the strain tensor.

The z-tensor is computed by substituting Eq. (92) into (89):

 (93)

or, recalling Eq. (75),

.  (94)

Again, we want to emphasize that we have derived the z-tensor for illustration
purposes only. Fortunately, there is really no need to actually compute it in
practice. The purpose of introducing the z-tensor was to demonstrate that
such a tensor exists such that the structural form of Eq. (88) holds. Only the
existence of the z-tensor is needed in order to demonstrate that the radial
return algorithm applies to situations of elastic-plastic coupling. We will now
proceed to demonstrate how such coupling affects the direction that one must
return to the yield surface.
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The generalized governing equations. The other governing equations,
namely (23) and (24), remain unchanged.

Consistency:  (95)

Strain decomposition:  (96)

Flow rule:  (97)

Nonlinear elasticity:  (98)

Eqs. (96) and (97) combine to give , so that Eq. (98) becomes

.  (99)

For convenience, we write this in a more compact form,

,  (100)

where the so-called “trial” elastic stress rate  is again defined

,  (101)

and  is a shorthand notation for

.  (102)

Note that the tensor is now defined with a new term that accounts for elas-
tic-plastic coupling. As for the simpler nonhardening non-coupled case, note
that and are both expressed in terms of known quantities, so they may
themselves be regarded as known. All that remains is to use (22) to determine

. Substituting (100) into (95) gives

.  (103)

Thus solving for the plasticity parameter  gives

.  (104)

Substituting this result back into Eq. (100) gives

,  (105)

where the operation  is defined
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.  (106)

This function is not a projector, but it is linear. Consequently, the numerical
derivation on page 19 remains valid up through Eq. (48) if the function is
replaced with . In particular, the generalization of Eq. (48) becomes

.  (107)

Even though this hardening solution depends the new function , the original
projection function of Eq. (38) is nevertheless still well-defined. In fact, the
new function  is related to the projector  by

,  (108)

where is a scalar-valued function of the state tensors , , , and .
Thankfully, the precise expression for is not needed for the ensuing discus-
sion, but interested readers can readily verify that it is given by

.  (109)

Furthermore, if the evolution laws are presented in the form of Eq. (76), then

 (110)

Operating on Eq. (108) by  (and, as always, using linearity of ) gives

 (111)

Recalling that and noting that , this simplifies to
a useful identity that relates the projector  to the nonprojector :

Operating on Eq. (107) by and applying (112) gives an equation identical to
Eq. (49) from the nonhardening analysis. Consequently, the final result is
unchanged for the hardening (or softening) case! Namely,

 (113)

In other words, the updated stress is still given by a projection of the trial
stress back to the yield surface despite the fact that the stress rate is no longer
a projection of the trial stress rate. Obviously, after an interval of plastic load-
ing, the yield surface will have changed, and it is this new yield surface that
would be used as the target in the projection. First Eq. (104) should be solved
for the plasticity parameter , after which the evolution equations may be
integrated for updated values of the internal state variables at the end of the
step. Finally the stress would be found by using a secant (or other) solver to
find  in the generalization of Eq. (52); namely

h X
˜̃

( ) X
˜̃

A
˜̃

B
˜̃

: X
˜̃

( )
A
˜̃

:B
˜̃

G
˜̃

:M
˜̃

–
-------------------------------–= = hA

˜̃
B
˜̃

G
˜̃

M
˜̃

, , , X
˜̃

( )

P
h

σ
˜̃

new σ
˜̃

trial σ
˜̃
˙ trial∆t p– h σ

˜̃
˙ trial∆t p( )+=

h
P

h P

h X
˜̃

( ) P X
˜̃

( ) γA
˜̃

B
˜̃

: X
˜̃

( )+=

γ A
˜̃

B
˜̃

G
˜̃

M
˜̃γ

γ 1
A
˜̃

:B
˜̃

G
˜̃

:M
˜̃

–
------------------------------- 1

A
˜̃

:B
˜̃

-----------–=

G
˜̃

:M
˜̃

–
∂f
∂ηk
---------mk

k
∑=

P P

P h X
˜̃

( )( ) P P X
˜̃

( )( ) γP A
˜̃

( ) B
˜̃

: X
˜̃

( )+=

P P X
˜̃

( )( ) P X
˜̃

( )= P A
˜̃

( ) 0
˜̃

=
P h

 for any second-order tensor .  (112)P h X
˜̃

( )( ) P X
˜̃

( )= X
˜̃

P

P σ
˜̃

new( ) P σ
˜̃

trial( )=

λ̇

β

32



July 30, 2002 9:15 pm D R A F TR e b e c c a  B r a n o n
n

.  (114)

Once  is known, the updated stress is simply

 (115)

As mentioned in the context of nonhardening plasticity, a secant solver may
not be necessary if the yield function is simple enough to solve Eq. (114) ana-
lytically. To summarize: the effect of hardening or softening is to move the tar-
get projection surface, but the projection to the updated surface still holds.
The effect of elastic-plastic coupling is to alter the projection direction. Conse-
quently, the analyst must be careful not to mistake the effect of elastic-plastic
coupling as a sign of non-associative flow.
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Closing comments
The purpose of this technical note was to provide a geometric interpreta-

tion of conventional return algorithms for nonhardening plasticity, with a
brief explanation of why these algorithms continue to work even when hard-
ening and/or softening and/or elastic-plastic coupling are allowed. It’s impor-
tant to recognize the distinction between projection of the stress rate, which
holds only for stationary (nonhardening) yield surfaces, and projection of the
trial stress, which is valid even for hardening or softening yield surfaces. The
solution algorithm for both hardening and nonhardening yield surfaces
reduces to a simple task of using the projection direction tensor to place the
elastic trial stress on the yield surface.

Another important point of this discussion is that the direction used to
project the trial stress back to the yield surface is not necessarily proportional
to the direction of the plastic strain rate. An associated flow rule can have a
nonassociated return direction and vice versa.

The radial and oblique return algorithms are rigorous direct consequences
of the governing equations (22) through (25). There is nothing in these deriva-
tions that requires any attention to positive dissipation, convexity of the yield
surface, or plastic stability. Such concerns merely dictate appropriate choices
for quantities that have been herein presumed known.

A
˜̃
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APPENDIX 1: Spectrum of the isotropic elastic stiffness.

A material is elastic if stress can be written as a proper function of the strain .
Consequently, the stress-strain path is the same for both loading and unloading.* Even if

the elasticity relationship is nonlinear, the chain rule shows that the stress rate is linear
with respect to the strain rate:

, where  (116)

The fourth-order tensor is called the elastic tangent modulus. It is analogous to the

local tangent to the nonlinear elastic stress-strain curve for uniaxial deformations. For iso-

tropic elasticity, the stiffness tensor  is expressible in the form [2]

 (117)

where is the elastic bulk modulus, is the shear modulus, and is the Kronecker
delta (equal to 1 if  and zero otherwise).

When the isotropic stiffness of Eq. (117) operates on the strain rate in Eq. (116), the
resulting formula is known as Hooke’s law:

,  (118)

The tensors  and  are, respectively, the isotropic and deviatoric parts of , defined

and , where  (119)

Eq. (118) shows that, for isotropic elasticity, the stress rate is a linear combination of the
isotropic and deviatoric strain rates. Whenever the strain rate is traceless (i.e., whenever it
is already deviatoric) then . Geometrically, this means that, whenever the strain
rate is deviatoric, the stress rate differs from the strain rate by only a scalar multiple .
Referring to Eq. (116), this means that

for any symmetric deviatoric tensor .  (120)

Hence, for isotropic elasticity, any symmetric deviatoric tensor is an “eigentensor” of ,

and the associated eigenvalue is . Similarly, any isotropic tensor (i.e., any tensor of the

form  for some scalar ) is an eigentensor with the eigenvalue equal to .

*For any material, elastic or not, subjected to any deformation, stress and strain can be written para-
metrically as functions of time. Therefore stress is often regarded as an implicit function of strain.
However, to be a true or proper function of strain, the stress must be uniquely determined by the
strain regardless of the path through time (i.e., proper functions must be single-valued).
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APPENDIX 2: Further explanation of the plasticity equations.

This appendix provides brief derivations or explanations of the governing equations
(22) through (25). The equation describes the yield surface in 6D stress space.
The yield surface is recognized as nonhardening because it is strictly a function of stress
— it does not change size or shape with time.* For continued yield, the stress state must
remain on the yield surface. In other words, for continued yield. Applying the chain
rule gives Eq. (22). Namely,

.  (121)

The geometrical interpretation of Eq. (22) is that the stress rate must be tangent to
the yield surface. Since the gradient of the yield function is normal to the yield surface,
the stress rate must be “perpendicular” to . This restriction follows from the nonharden-
ing assumption that the yield function depends only on the stress and not on any other
internal state variables that could cause the yield surface to expand or contract, which
would give the stress rate a normal component in order to “keep up.” This effect is dis-
cussed separately on page 26.

Equation (23) expresses the typical decomposition of the strain rate into recoverable
elastic part plus a permanent plastic part . Heuristically, the plastic strain may be
regarded as the permanent strain that would remain if all stresses were released.

Equation (24) states that the magnitude of the plastic strain rate is not known,
but its direction is presumed known based on other physical arguments. Importantly,
this direction depends only on the material state. In other words, all rate dependence (if
any) is reflected through the magnitude of the plastic strain rate. The direction of the
plastic strain rate is presumed rate independent. Whenever the plastic strain rate is normal
to the yield surface (i.e., if for some positive scalar ), then the flow rule is said
to be “associative”.

Equation (25) states that the stress rate is linearly related to the elastic part of the strain
rate. The component form of (25) is

 (122)

If the material is isotropic, this equation is merely the elastic expression of Hooke’s law of
Eq. (118) in rate form.

*Hardening and softening yield surfaces that do vary in time are discussed on page 26.
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Importance of the yield function sign convention. If a material is plastically iso-
tropic, its yield function satisfies the condition that for all
orthogonal tensors . This implies that the yield function can be written as a function of
invariants of stress. One of the simplest isotropic yield functions is that of Tresca which
hypothesizes that yield commences when the largest shear stress reaches a critical value,

. If and are respectively the largest and smallest principal values of stress,
then the largest shear is and occurs on a plane whose normal
bisects two associated principal directions of stress. If the three principal stresses are
known but have not yet been ordered, the Tresca criterion can be applied by simply con-
sidering the largest (in absolute value) of the three possible stress differences. In other
words, the Tresca yield function may be written

 (123)

where are the principal stresses. This is a properly defined yield function
because it satisfies the essential sign convention properties:

 if and only if the stress is on the yield surface  (124a)

 if and only if the stress is inside the yield surface.  (124b)

The choice of the yield function is not unique. Many other functions can be constructed
such that the above two conditions hold. Unfortunately, however, many authors* will
wrongly claim that an alternative form for the Tresca yield function is

 (125)

It is straightforward to verify that this function may be written in terms of the standard
invariants,  and , of the stress deviator :

 (126)

Thus, the function has an intoxicating appeal because its value may be computed with-
out an eigenvalue analysis of the stress. The only problem is that is not a valid yield
function! The properties of Eq. (124) are satisfied in only one direction, not both. The
function  has properties

If a stress is on the yield surface, then .  (127a)

If a stress is within the yield surface, then .  (127b)

However, the converses of both statements are false and therefore the sign requirements of
Eqs. (124) do not hold! The proof by counterexample is trivial. Consider
and . Applying the valid yield function of Eq. (123) gives , indicating that
this stress state lies outside the yield surface. Applying the invalid yield function of
Eq. (125) gives , which (being negative) falsely indicates that this stress state
is inside the yield surface. Conclusion: the function is inadmissible as the sole means
of determining whether a stress state is below yield.

*and even respected plasticity texts [1].
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The situation is not too hard to rectify. The basic idea is to first check whether the
stress state lies near the yield surface by checking whether it lies within the inscribed and
circumscribed Von Mises yield surfaces that bound the Tresca hexagon. Specifically,

If , then the stress is inside the yield surface,

else if , then the stress is outside the yield surface,
else check the sign of Eq. (126).  (128)

This corresponds to the following yield function

Elastic potential
Quite often, the stress is presumed derivable from an elastic potential

such that

 (130)

The elastic stiffness is defined

, or  (131)

If the stiffness is constant, the elastic potential function is expressible as

 (132)

ISV potential
Hardening or softening yield functions are of the form . Simo and

Hughes [3] define the flow rule to be “associative” if the plastic strain rate is normal to the
yield surface in stress space

 (133)

Recalling that we write

,  (134)

where  is a unit tensor,
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 otherwise  (129b)
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Stress space associativity is equivalent to assuming that

and  (135)

Simo and Hughes also extend the idea of associativity to include the following assumption
about the evolution of the internal state variables. Specifically, we will say that the model
is “fully associative” if there exist coefficients  (called plastic moduli) such that

 (136)

Here are just an alternative set of plastic moduli defined in a manner compatible with
. Namely,

 (137)

Equation (136) can be written

 (138)

It is natural to define “conjugate” internal state variables  by

 (139)

Thus, if the plastic moduli are constant, then Eq. (138) can be written

where  (140)

Alternatively, using  and , we note that equation (136) can be written

 (141)

It is natural to define “conjugate” internal state variables  by

 (142)

Thus, if the plastic moduli are constant, then Eq. (138) can be written

, where  (143)

Note that this result is analogous to Eq. (133). Simo and Hughes therefore postulate the
existence of a plastic potential  such that
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 (144)

If the plastic moduli are constant, then

 (145)

Example: porosity. For a plastically incompressible matrix material, we know that the
unstressed porosity  must evolve according to

 (146)

Alternatively, the porosity evolution equation may be written in terms of the commonly-
used distention  defined by . Then the porosity evolution equation is

 (147)

We can alternatively define

 (148)

Then the evolution equation for this alternative porosity measure is

 (149)

Note that all three porosity measures ( , , and ) represent the same internal state vari-
able. Knowing one gives values for the other. To analyze all three choices (as well as other
unstated choices) for the porosity variable, let denote some unique measure of porosity.
We will assume that there exists a function

 (150)

that relates the porosity measure to the porosity measure . Then Eq. (149) implies that
is governed by

, where  (151)

For example,

if , then  and
if , then  and
if , then  and  (152)

The porosity may be regarded as an internal state variable. Now we are going to
explore Simo and Hughes idea of the “plastic” modulus for our generalized porosity mea-
sure . Keep in mind that an application will use one — and only one — measure of
porosity. Our purpose here is to illustrate how the choice of porosity measure can have an
impact on the simplicity of the calculations.

Recall that the plastic strain rate may be written as
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 (153)

Then the three evolution equation becomes

 (154)

For this special case of a single internal state variable, the summation in Eq. (136) now
ranges over only one term. In other words, there is only one , so the matrix is just
a matrix, making it simply a single scalar . Depending on the single choice for the
porosity measure, Eq. (136) becomes

 (155)

Equating the last two equation gives

 (156)

Using subscripts to explicitly show what is being held constant, this equation may be writ-
ten

 (157)

Since is the only internal state variable, we know that the yield function is of the
form . Without loss in generality, we may alternatively assert that

, where is the stress deviator and is the pressure. Then, by the chain
rule,*

 (158)

Now, observe that

 (159)

By a well-known identity from multivariable calculus, we note that

 (160)

Substituting Eq. (158) into Eq. (157) and using the identity (160) gives

 (161)

When solving this partial differential equation, it is important to realize that any integra-
tion constants that appear will actually be functions of the constant stress deviator . Sup-
pose that “crush curve” experiments are available that provide the porosity as a function of

*Incidentally, this operation is a good example of a danger with indicial notation. Specifically,
 is not the same thing as , so it should not be written in indicial notation as

 because such an expression is ambiguous.
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the applied pressure, for various (constant) values of the stress deviator. Such curves are
often called curves. By the substitution , these curves can be readily con-
verted into curves. An experimentally measured function applies dur-
ing crush (i.e., when ). Therefore, we can define

 (162)

Thus, the function may be regarded as a known property of the material.
We have used the negative sign because a decrease in porosity normally results from an
increase in pressure (though the opposite is true in tension). By the chain rule, we have

 (163)

So Eq. (161) becomes

 (164)

or

 (165)

or, showing the independent variables,

 (166)

In order for this to hold, we note that the plastic modulus must generally depend on the
stress deviator. If the function is approximated to be independent of the stress
deviator, then the above equation may be integrated to obtain the “natural” measure of
porosity for which the plastic modulus is constant. Alternatively, if is assumed to be the
natural porosity measure, then is constant and Eq. (166) implies the crush curve.
Namely

 (167)

or

 (168)

If, for example,  itself is presumed to be the natural porosity measure, then

 (169)

or, writing , the crush curve becomes

 (170)

The integration constants  and  depend on the shear stress.
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Plastic dissipation
Simo and Hughes define the plastic dissipation to be

 (171)

where  are the conjugate “strains” associated with the internal state variables; namely

 (172)

Example: porosity. Consider a single porosity measure used in the previous exam-
ple. Suppose that  is constant. Then

 (173)

where  is the conjugate “strains” associated with the internal state variables; namely
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Using Eq. (166) gives
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Ȧ η̇
D
----– ξ̇

g ξ S
˜̃

,( )
D

------------------–= =
46



July 30, 2002 9:15 pm D R A F TR e b e c c a  B r a n o n
n

APPENDIX 3: Pressure-dependent Von Mises (J2) yield
The traditional Von Mises criterion is often modified to include pressure

dependence by allowing the Von Mises yield stress to vary with pressure. If
the material is plastically incompressible, then the solution algorithm is not
significantly different from the solution method described on page 24 for the
traditional pressure-independent Von Mises model. Specifically, if the mate-
rial is plastically incompressible, then the updated stress is obtained by
merely scaling down the magnitude of the trial stress deviator, keeping the
trial pressure as the final pressure. As explained below, this so-called
“Prandtl” solution implicitly corresponds to a nonassociative flow rule. Fur-
thermore, such an approach is grossly inappropriate for porous materials
because porous materials exhibit large amounts of plastic volume change.

Unfortunately, if the plastic strain rate is allowed to have an isotropic part,
correctly accounting for the pressure dependence is quite complicated. This
appendix shows how the choice of distortional and volumetric stress measures
can have profound impact on the solution scheme. This appendix closes with a
detailed algorithm for updating the stress for any plastic strain direction.

Mathematical/geometrical preliminaries. To begin the discussion of pressure
sensitive Von Mises yield models, it is useful to demonstrate that breaking up
a tensor into its isotropic and deviatoric parts is a lot like decomposing an
ordinary vector into its parts that are parallel and perpendicular to a fixed
unit vector.

Figure 6 shows an ordinary 3D vector decomposed into parts that are
parallel and perpendicular to a unit vector . The part of in the direction of

 is just

, where  (178)

The part of  perpendicular to  is then simply

 (179)

Let denote the magnitude of , and let be the unit vector in the direction
of . Then we can write the above expression as

 (180)

In this form, and can be viewed as the components of with respect to
the unit base vectors, and , in the plane. If a physical phenomenon of
interest is occurring exclusively in the plane, it can be analyzed in two dimen-
sions rather than three dimensions.

Suppose that is some other vector in the same plane, then it can be writ-
ten as a linear combination of the same base vectors:
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,  (181)

where

 and  (182)

Now consider the analogous tensor operation in which a tensor is decom-
posed into its isotropic and deviatoric parts. The analogy with the ordinary
vector decomposition is seen by comparing Figures 6 and 7. A tensor is said to
be isotropic if it is proportional to the identity tensor . Thus, the tensor
serves as a basis for all isotropic tensors. Unfortunately, is not a unit tensor;
its magnitude is
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Figure 6. Orthogonal projection of a vector. (a) full three-dimensional view. (b) view
of the same configuration as seen from an optimal perspective where all relevant vec-
tors are in the observer’s plane and the unit vector  points to the observer’s right.n
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Figure 7. Decomposition of a tensor into isotropic and deviatoric parts. (a) conceptu-
al “view” in stress space. (b) view of the same configuration as seen from an optimal
perspective where the tensor is broken up into its isotropic and deviatoric parts.
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 (183)

We introduce a unit tensor in the direction of , defined

 (184)

The unit tensor in Fig. 7 is analogous to the unit vector in Fig. 6. The iso-
tropic part of a tensor  is defined

 (185)

It’s easily verified that this can be written

, where  (186)

We use the subscript “p” because, for tensors, the isotropic part is often related
in some way to pressure. Recall that the double dot product for tensors is anal-
ogous to the single dot product for ordinary vectors. Hence Eq. (186) is analo-
gous to Eq. (178). Finding the isotropic part of a tensor is exactly like
orthogonally projecting a vector to its part parallel to a given unit vector. The
isotropic part of a tensor is the part of the tensor that is “parallel” to the iden-
tity tensor!

The “deviatoric” part of a tensor  is defined

 (187)

This equation is analogous to Eq. (179). We now introduce a unit tensor in the
direction of :
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If we denote the magnitude of  by , then the tensor  can be written
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This equation is analogous to Eq. (180). Note that the tensors and form a
basis for a two-dimensional subspace of nine-dimensional tensor space. This
subspace is analogous to the plane containing the vectors and in Fig. 6.
Any tensor  in this subspace can be written in the form
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where

 and  (191)

These equations are analogous to Eqs. (181) and (182).
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Note that can be regarded as a function of . Likewise is also a
function of . Later on, we will need to know the derivatives of and
with respect to . In component form, note that

 (192)

Consequently,

= =  (193)

In direct notation, we write this as

 (194)

Similarly, it is straightforward to show that

 (195)

Application to the stress tensor. The decomposition of the stress tensor
into deviatoric and isotropic parts is conventionally written

 (196)

where is the compressive pressure and is the stress deviator.
Applying Eqs. (190) and (191) with  replaced by  gives

 (197)

where

, and

 (198)

As before,

and  (199)

Pressure-dependent Von Mises yield functions. (For plasticity applications
involving a pressure-dependent Von Mises yield model, most of the tensors of
interest will lie in the “plane” formed by the identity tensor and the stress
deviator. Rather than explicitly giving a yield function, , most people
define a stress state to be below yield if a measure of the shear stress is less
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than some critical value that depends on pressure. Unfortunately, there are
several different measures of the shear stress in common use. Likewise, there
are various definitions for the pressure. To make the upcoming analysis useful
to the largest audience of readers, we will define “engineering” stress mea-
sures:

 (200)

 (201)

The scalar constants and are selected by the analyst to correspond to
their preferred measures of shear and isotropic stresses. Typical/convenient
choices for the deviatoric stress coefficient are

if then  is the so-called effective shear stress  (202)

if then  is the effective (uniaxial) stress.  (203)

if then  is the “isomorphic” shear stress,  (204)

Typical/convenient choices for the isotropic stress coefficient are

if then  is the conventional pressure  (positive in compression)  (205)

if then  is the tensile pressure (positive in tension)  (206)

if then  is the “isomorphic” pressure,  (207)

Recall that the stress tensor can be written

 (208)

In this form, and are like an orthonormal basis for the hyperplane con-
taining and . Using the stress measures of Eqs. (201) and (200), the stress
can be written

 (209)

In this form, can be regarded as coefficients of the stress tensor with
respect to the orthogonal but not normalized basis and . There is
nothing wrong with this per se. However, as discussed below, engineering
stress measures for which and/or basically distort your 2D visu-
alizations of stress space — visualizations plotted as vs. will not be rep-
resentative of what’s really happening in 6-D stress space. For example, if the
yield surface is a perfect sphere in 6-D stress space, then it will be an ellipse in
the vs. plane if . The 6D spherical yield surface would at least be
a circle in the vs. plane if and are equal, but it will have not have
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the same radius as the 6D sphere unless . The only way to accu-
rately depict stress space in a 2D plot is to use the isomorphic stress measures
corresponding to . Any other values of and result in rather
ugly corrections in the key equations, as we shall demonstrate below.

Recall that the yield function generally depends on the full stress ten-
sor. Pressure-dependent Von Mises yield models are greatly simplified because
the yield function depends only on the pressure and the magnitude of the
stress deviator. In other words, there exists a function  such that

 (210)

In the pie-plane*, the yield surface is a circle whose radius depends on the
pressure. The expression implicitly defines a yield curve in
which the deviatoric stress measure is a function of isotropic stress mea-
sure . In an explicit relationship, , is known then a correspond-
ing implicit function is constructed by .

A natural way to visualize the yield surface is to show the yield curve in
the “Rendulic” plane where is plotted against . When doing this, how-
ever, it is important to realize that the yield surface in the Rendulic ( vs. )
plane will not have the same size and shape as the yield surface in stress space
unless isomorphic stress measures are used. The yield surface in the Rendulic
plane will have the same shape as the yield surface in stress space if and only
if . It will have the same size only if . As shown in Fig. 8, if
the analyst chooses , then the Rendulic yield surface will be a distorted
representation of the true yield surface, and vectors that were normal to the iso-
morphic yield surface will not be normal to the yield surface in the engineering
stress plane! This is why we highly recommend using isomorphic stress mea-
sures to visualize the yield curve.

*so named because it looks like a piece of pie. It is often written and -plane or pi-plane.
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the magnitude of the stress deviator as the stress measures. This choice distorts the
yield surface so that the “normals” are no longer perpendicular to the yield surface.
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To apply return methods to a pressure-dependent Von Mises yield surface,
we need the gradient of the yield function with respect to stress. Apply-
ing the chain rule to Eq. (210) gives

,  (211)

where

and  (212a)

 (212b)

Using Eq. (199) in Eqs. (201) and (200) shows that

and  (213a)

 (213b)

Therefore, the normal to the yield surface in stress space is

 (214)

When viewed as a vector in stress space, we note that is contained in the
hyperplane formed by the unit tensors and . The components of in that
stress hyperplane are . Note that the normal to the yield sur-
face in the Rendulic plane is a two-dimensional vector with components

. Hence, the normal to the Rendulic yield surface is isomorphic to
the normal in stress space only if . This is a principal argument in
favor of using the isomorphic stress measures. We are presenting the analysis
for general values of and only so that existing models that use more con-
ventional stress measures can be easily implemented.

The radial return algorithm requires a return direction tensor. Recall that
the return direction in stress space must be parallel to

.  (215)

where is the (known) direction of the plastic strain rate. For the following
discussion, we presume that has no component perpendicular to the Ren-
dulic plane; in other words, we assume that can be expressed as a linear
combination of  and :
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If the elastic stiffness is isotropic, Eq. (215) becomes

 (217)

where is the bulk modulus and is the shear modulus. Factoring out the
bulk modulus, the return direction can be written

 (218)

where

 (219)

Here, is Poisson’s ratio. Recall that only the direction of matters — any
scalar multiple of the projection direction is inconsequential. Thus, the factor

in Eq. (218) has no influence, and the projection direction may be replaced
without loss in generality by

 (220)

Comparing Eqs. (216) and (220)
shows that the projection direction
will not be aligned with the plastic
strain rate except in the exceptional
case of . Excluding negative Pois-
son’s ratios, will lie in the range

, so the projection direction will
generally have a shallower slope in
the Rendulic plane than the plastic
strain rate. If, for example, Poisson’s
ratio equals 1/3, then and (when drawn in the isomorphic Rendulic
plane) the slope of the return direction will be 1/4 that of the plastic strain
rate. For an associative flow rule, the plastic strain rate is normal to the yield
surface, and the above result shows that the return direction must then be
oblique to the yield surface, as sketched in Fig. 9.

Though often applied without physical justification, modern plasticity
codes often use a “Prandtl” return direction to project the trial stress back to
the yield surface. With this approach, the magnitude of the stress deviator is
reduced enough to place the stress on the yield surface. Hence, the Prandtl
rule corresponds to a projection direction that is aligned with . Referring
to Eq. (216), this implies that . In other words, the Prandtl return
direction corresponds to a purely deviatoric plastic strain rate. Hence, for iso-
tropic materials with a Von Mises yield criterion, a Prandtl return direction
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holds if and only if the material plastically incompressible. The Prandtl return
direction seems nominally applicable to materials having the properties that
(1) the elastic response is isotropic, (2) the yield stress varies with pressure

and (3) the material is plastically incompressible. A Prandtl return direction
would be highly inappropriate for porous metals or any other material that
exhibits non-negligible amounts of irreversible permanent volume change.

These preliminary discussions have revealed how complicated and subtle
pressure-sensitivity can be. We now proceed to an algorithm for returning the
stress to the yield surface along the proper return direction for any plastic
strain rate direction. Such algorithms typically require the stress at the begin-
ning of the step and the total rate (assumed constant throughout the step).
The algorithm computes the trial elastic stress and then returns it to the yield
surface to obtain the final updated stress at the end of the step. The algorithm
also outputs the plastic strain rate and updates the scalar measures of the
plastic strain rate. The “plastic segment” is a scalar measure of the total accu-
mulated plastic strain and is defined to be the integral over time of the magni-
tude of the plastic strain rate tensor. Thus, since the plastic strain rate
direction  is a unit tensor, the plastic segment is defined:

 (221)

Recall that a principal advantage of return algorithms is that they do not
require an explicit determination of what fraction of the time step is plastic.
However, computing the increment in can be tricky is zero during elastic
intervals. Referring the governing equations on page 10, we note that the only
equation that holds over both intervals is . Therefore, once the stress
is updated via return methods, the total stress rate can be computed via stan-
dard finite difference and the plastic strain rate tensor may be approximated
by

.  (222)

This formula may be substituted into Eq. (221) to update the plastic segment.
This formula may also be used to compute another popular scalar measure of
plastic strain is the so-called equivalent plastic strain, defined

, where  is the deviatoric part of .  (223)
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Solution algorithm for arbitrary plastic strain directions. In this section, we
provide a general procedure for projecting the stress back to the yield surface
for isotropic elasticity a pressure-dependent Von Mises yield surface with a
(permissibly) nonassociative flow rule. The method presented here includes
crude corrections for yield surface curvature.

INPUT:

• , the constant from Eq. (200) for the preferred isotropic stress measure.

• , the constant from Eq. (201) for the preferred deviatoric stress
measure.

• , the time step

• , the deviatoric part of the total strain rate tensor.

• , the trace of the total strain rate tensor

• , the elastic tangent bulk modulus

• , the elastic tangent shear modulus

• , the old value of the plastic segment.

• , the equivalent plastic shear strain at the beginning of the step.

• A routine that will evaluate the yield function

• Routines that will evaluate the yield function derivatives

 and

• A routine that will provide the unit tensor in the direction of the plastic

strain rate. This is not needed if an associative flow rule is desired.

• , stress deviator at the beginning of the time step.

• , conventional pressure ( ) at the beginning of the step.

OUTPUT:

• , stress deviator at the end of the time step.

• , conventional pressure ( ) at the end of the step.

, the value of the plastic segment. at the end of the step

, the equivalent plastic strain at the end of the step.

, the plastic strain rate.
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ALGORITHM:

STEP 1.Apply Eq. (200) to compute .

STEP 2.Apply Eq. (201) to compute .

STEP 3.Compute the trial stress deviator:

 (224)

STEP 4.Compute the trial pressure:

 (225)

STEP 5.Apply Eq. (200) to compute .

STEP 6.Compute .

STEP 7.Apply Eq. (201) to compute .

STEP 8.Call the yield function to compute .

STEP 9.If , the step is at least partly plastic, so proceed to STEP 10.

If  then the step is elastic, so do the following:

(i) Set

(ii) Set

(iii) Set

(iv) Set

(v) Set

(vi) Go to step 22.

STEP 10.Compute . This will be taken as the final stress deviator

direction. The remainder of this algorithm applies oblique return
methods in the Rendulic plane to put the stress back on the yield
surface.

STEP 11.Set .

Set .

Set .

STEP 12.Compute the yield surface derivatives at the test stress
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STEP 13.Approximate the isomorphic components of  by applying Eq.

(214) at the test stress. Specifically,

Set  and

Set .

STEP 14.For an associative flow rule, set  and . For a
nonassociative flow rule, call the appropriate routine to compute the

direction of the plastic strain rate. In other words, compute and

so that . In this algorithm, it is not necessary for you to

force  to be a unit tensor. It is also not necessary to store the actual

tensor for  — only the Rendulic components are needed.

STEP 15.Compute

STEP 16.Apply Eq. (220) to obtain the isomorphic components of the

projection direction:  and . Mathematically, the
projection direction can be harmlessly multiplied by any scalar without
affecting the solution. For numerical reasons, the components of the
projection direction should be scaled so that they are on the order of
stress. One way to do this would be to multiply both projection direction
components by

STEP 17.We know that the desired stress is a projection of the test stress
back to the yield surface. Thus we know that

 and

Written in terms of the analyst’s preferred stress measures, we know
that

 and

We seek the value of  such that . We shall
iteratively solve this using a slight variation on Newton’s method that is
expected to give better results near regions of high curvature on the
yield surface. Apply Newton’s method starting with , to compute
an improved estimate:
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One advantage of this formulation is that no additional function calls
are needed to improve the estimate for .

STEP 18.Compute the improved estimates for the test stress by replacing

STEP 19.The projection direction has already been scaled to be on the order

of stress. Test for convergence by checking whether  is sufficiently
tiny in comparison to one. If so, go to STEP 20. If not, compute

 and loop back to STEP 12.

STEP 20.At this point, the stress measures have been updated. Compute the
final updated pressure and stress deviator by

STEP 21.Now finish up by computing the other promised outputs. Recall

that  and . The deviatoric plastic strain rate is

Compute the volumetric plastic strain rate by

Update the distortional plastic strain by

Update the total equivalent plastic strain by

.

STEP 22.Stop.
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Albuquerque, New Mexico 87185-0820
Sponsors: ARL, DOE

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Company, for the United States Department of Energy under Contract DE-ACO4-94
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ally solving conven-
orously justified and
step is to tentatively
ss is forbidden (i.e. if
se is rejected. Even
seful because it can

e return algorithm is
est point on the yield

is accomplished by
wrongly regarded as
on the yield surface.
same computational
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ABSTRACT: Return algorithms are probably the most popular means of numeric
tional plasticity equations. The basic tenets of these techniques are here rig
interpreted geometrically in 6D stress space. For any return algorithm, the first
assume elastic behavior throughout a given time step. If the resulting “trial” stre
it violates the yield condition), then the tentative assumption of elastic respon
when it is found to violate the yield condition, the trial stress is nevertheless u
then be projected back to the plastic yield surface to give the updated stress. Th
called “normal” or “orthogonal” if the trial stress is projected directly to the near
surface. The return method is called “radial” or “Prandtl” when the projection
reducing the magnitude of the trial stress deviator. Return algorithms are often
numerical “tricks” because they appear to be ad hoc means of keeping the stress
It is natural to inquire whether other approaches might be more accurate for the
cost, but it is shown here that return methods are rigorously justifiable and app
optimal numerical accuracy and efficiency. It is shown that issues such as plas
tion, and convexity dictate appropriate choices for the quantities that are presum
ivation of return algorithms; it is not the return algorithm per se that add
concerns. It is proved that the correct return direction is dictated by the govern
not aligned with the plastic strain rate except under certain conditions. Conse
the plastic strain rate does not necessarily correspond to normality of the retur
versa. These claims are proved first in the context of stationary yield surfaces an
permit hardening or softening. The technical note is intended to provide nothing
cal insight into known results.
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Tensors are vectors!

r which addition

 apply to

tions

s

t

Uij αCij=

Vij Aij Bij+=

RijSij
1=

3

∑
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To a mathematician, a vector is a member of a set fo
and scalar multiplication satisfy certain rules.

Many familiar 3D vector concepts and theorems also
tensors when regarded as 9D vectors.

3D vector operations
 means

 means

3D inner product

 means

u
˜

αc
˜

= ui αci=

v
˜

a
˜

b
˜

+= vi ai bi+=

r
˜

s
˜

• risi
i 1=

3

∑

9D tensor opera
 means

 mean

9D inner produc

 means

U
˜̃

αC
˜̃

=

V
˜̃

A
˜̃

B
˜̃

+=

R
˜̃

:S
˜̃

ji 1=

3

∑
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Projection operations

n direction.

x
˜

p
˜

icular to b
˜

Oblique
projection

b
˜

x
˜

•( )
a
˜

b
˜

•
--------------------

A
˜̃

B
˜̃

:X
˜̃

( )
A
˜̃

:B
˜̃

---------------------

α2P X
˜̃ 2

( )
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Note:  defines the target plane;  defines projectio

Analog for 9D tensor space:

Projections are linear. . .

p
˜

x
˜

Plane perpendicular to n
˜

n
˜ a

˜

b
˜

Plane perpend

Orthogonal
projection

p
˜

x
˜

n
˜

n
˜

x
˜

•( )–= p
˜

x
˜

a
-̃---–=

b
˜

a
˜

P X
˜̃

( ) X
˜̃

–=

P α1 X
˜̃ 1

α2 X
˜̃ 2

+( ) α1P X
˜̃ 1

( ) +=
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LEMMA

sa.

 no change).

at
.

is true too!

x
˜
)=P y

˜
( )
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Analog for tensors:

If then and vice ver

Corollary:  (projecting twice makes

x
˜

P x
˜

( )=P y
˜

( )

a
˜

y
˜

If there is a  such th
,  then

Important: converse 

β
x
˜

y
˜

βa
˜

+= P(

X
˜̃

Y
˜̃

βA
˜̃

+= P X
˜̃

( )=P Y
˜̃

( )

P P X
˜̃

( )( ) P X
˜̃

( )=
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Nonhardening plasticity
/home/rmbran

-65 of 89- http://www.me.unm.edu/~rmbrann/gobag.html

Known:

, gradient of yield function ( ).

, total strain rate.

, fourth-order elastic tangent stiffness tensor.

, direction of the plastic strain rate.

Unknown:

, rate of stress

, elastic part of the strain rate

, plastic part of the strain rate.

, magnitude of the plastic part of the strain rate.

B
˜̃

Bij ∂f ∂σij⁄=

ε
˜̃
˙

E
˜̃̃̃
M
˜̃

σ
˜̃
˙

ε
˜̃
˙ e

ε
˜̃
˙ p

λ̇
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Governing equations

ion
 is known
strain

rface

venience,

 for  and back

.

λ̇

:σ
˜̃
˙ trial

B
˜̃

: A
˜̃

---------------




A
˜̃
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strain rate decomposit
plastic strain direction
stress linear in elastic 

stress stays on yield su

Solution:

Note , so . For con

define  and . Then

Enforce last equation to get . Solve

substitute to get solution for stress rate:

ε
˜̃
˙ ε

˜̃
˙ e ε

˜̃
˙ p+=

ε
˜̃
˙ p λ̇M

˜̃
=

σ
˜̃
˙ E

˜̃̃̃
:ε
˜̃
˙ e=

B
˜̃

:σ
˜̃
˙ 0=

ε
˜̃
˙ e ε

˜̃
˙ ε

˜̃
˙ p– ε

˜̃
˙ λ̇M

˜̃
–= = σ

˜̃
˙ E

˜̃̃̃
: ε

˜̃
˙ λ̇M

˜̃
–( )=

σ
˜̃
˙ trial E

˜̃̃̃
:ε
˜̃
˙= A

˜̃
E
˜̃̃̃

:M
˜̃

= σ
˜̃
˙ σ

˜̃
˙ trial λ̇ A

˜̃
–=

B
˜̃

: σ
˜̃
˙ trial λ̇ A

˜̃
–[ ] 0=

σ
˜̃
˙ σ

˜̃
˙ trial

B
˜̃---





–=
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Geometrical interpretation

.

A
˜̃

=E
˜̃̃
˜

:M
˜̃

βA
˜̃
) 0=
/home/rmbran
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Slightly rearrange solution to final form:

where

Numerical solution: . Find  by

σ
˜̃
˙ P σ

˜̃
˙ trial( )= P X

˜̃
( ) X

˜̃

A
˜̃

B
˜̃

:X
˜̃

( )
A
˜̃

:B
˜̃

---------------------–=

σ
˜̃
˙ trial∆t

σ
˜̃
˙ ∆t p

B
˜̃

σ
˜̃

ε
˜̃
˙ p=λ̇M

˜̃

σ
˜̃
˙ ∆te

yield
surface

σ
˜̃

σ
˜̃

trial βA
˜̃

+= β f σ
˜̃

trial +(
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Discussion

sitive dissipation,
oncerns dictate

pressible.

ument) to
ess back to the
tress rate is no
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The return direction is...

• coaxial with .

• not generally normal to the yield surface.
• not generally aligned with the plastic strain rate.
• not dictated by physical considerations such as po

yield surface convexity, or plastic stability. (Such c
appropriate values for “known” quantities.)

• “radial” if and only if the material is plastically incom

The above analysis can be generalized (see web doc
include hardening/softening. Projection of the trial str
current yield surface remains valid even though the s
longer a projection of the trial stress rate.

A
˜̃



n/Teach/MtlModels/RadialReturn/plas2000vug

Equivalent plastic strain

 laws that
hich is defined

.

tic intervals.)

t∆
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Many constitutive models use yield surface evolution
depend on the so-called “equivalent plastic strain,” w

The best method uses the definition directly:

, or, for isotropic,

For a finite time step ,

(...better suited for partially plas

γp
2
3
---ε

˜̃
˙ p ′ :ε

˜̃
˙ p ′ td∫≡ 2

3
--- ε

˜̃
˙ p ′ td∫=

γp∆ 2
3
--- ε

˜̃
˙ ′ ε

˜̃
˙ e ′– t∆≡ γp∆ 2

3
--- ε

˜̃
˙ ′

S
˜̃
˙

2G
--------–≡

S
˜̃

old S
˜̃

new

S
˜̃

*

2G ε
˜̃
˙ t p∆( )

2G ε
˜̃
˙ te∆( )

t∆

γp
new γp

old 2
3
--- ε

˜̃
˙ ′ t∆

S
˜̃

new S
˜̃

old–

2G
----------------------------–+≡
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Supplemental topic:
s

(1)

gly claim that

. (2)

ariants as

(3)

, but converse

nk a plastic trial
 is

 by .

Goo

2]
BA

WOR

0

σ3 0=

F σ
˜̃

( )
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invariant yield function

Tresca: Stress state is below yield if and only if

Some authors (e.g. Fung, 1965, Lubliner 1990) wron
an acceptable alternative Tresca yield function is

This is intoxicating because it can be written with inv

FATAL FLAW: If stress is below yield, then

is false! A return algorithm using  might wrongly thi
stress is below yield. For example,  and

correctly identified to be above yield by , but not

f σ
˜̃

( ) 1
2
---max σ1 σ2– σ2 σ3– σ3 σ1–, ,( ) k– 0<=

d

F σ
˜̃

( ) σ1 σ2–( )2 4k2–[ ] σ 2 σ3–( )2 4k2–[ ] σ 3 σ1–( )2 4k–[=
D

F σ
˜̃

( ) 4J2
3 27J3

2– 36k2J2
2– 96k4J2 64k6–+=

SE

F σ
˜̃

( ) ≤

F
σ1 σ2 3k= =

f σ
˜̃

( )
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Plot of (bad) invariant Tresca function

regions where
ld be black

2k
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Under the assumption of plane stress where , 
 are shown in black. A valid yield function shou

everywhere outside the yellow Tresca hexagon.

σ3 0=

F σ
˜̃

( ) 0>

σ1 ⁄

σ2 2k⁄
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Supplemental topic: 9D vector basis

 a
 =

.

9 1×

8 T9,

ion
T13e

˜ 1e
˜ 3+

T23e
˜ 2e

˜ 3+

T33e
˜ 3e

˜ 3+

j TK
o ξ

˜̃ K
o

K 1=

9

∑=
-72 of 89-
/home/rmbran

http://www.me.unm.edu/~rmbrann/gobag.html

Recall that tensors are 9D vectors, so we may define
component array for them:

,

where , , , , etc

T1 T2 T3 T4 T5 T6 T7 T, , , , , , ,
T11 T21 T31 T12 T22 T32 T13 T23 T33, , , , , , , ,{ }

3D vector basis expansion

Summation form

v
˜

v1e
˜ 1 v2e

˜ 2 v3e
˜ 3+ +=

v
˜

vke
˜ k

k 1=

3

∑=

9D tensor expans

+
+

Summation form

T
˜̃

T11e
˜ 1e

˜ 1 T12e
˜ 1e

˜ 2+=

T21e
˜ 2e

˜ 1 T22e
˜ 2e

˜ 2+

T31e
˜ 3e

˜ 1 T32e
˜ 3e

˜ 2+

T
˜̃

Tije˜ ie˜
j 1=

3

∑
i 1=

3

∑=

T1
o T11= ξ

˜̃ 1
o e

˜ 1e
˜ 1= T2

o T21= ξ
˜̃ 2

o e
˜ 2e

˜ 1=
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Subspace of symmetric tensors

en if there are
 impact of a
em, any
e: all base
.

hich is
e set of all
plane, the result
ar combination

etric. Our
mmetric
pace such that
 skew-
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Suppose that a physical problem involves a plane ev
some non-planar aspects of the motion (e.g., oblique
projectile onto a slab of armor). For solving the probl
sensible engineer would line up a basis with the plan
vectors are either in the plane or normal to the plane

The set of all symmetric tensors forms a subspace, w
analogous to a plane. The “normal” to the plane is th
skew-symmetric tensors. If you add two vectors in a
is also in the plane. Analogously, if you form any line
of symmetric tensors, the result is also symmetric.

Yield functions are defined for stress, which is symm
constitutive modelling problems intimately involve sy
tensors, so it makes sense to use a basis for tensor s
all base tensors are either purely symmetric or purely
symmetric.
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Voigt vs. Mandel — Introduction

 us some day?

— they are
s. Mandel
alized — basis!

mS4
m R6

mS6
m+
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Voigt:

Mandel:

Then means

Q: Is the Mandel convention just a “trick” likely to bite

A: NO! Voigt components are the dangerous choice 
referenced to an irregular basis for symmetric tensor
components are referenced to the same — but norm

T{ } v T11 T22 T33 T23 T31 T12, , , , ,{ }=

R1
vS1

v R2
vS2

v R3
vS3

v 2 R4
vS4

v R5
vS4

v R6
vS6

v+ +( )+ + +

T{ } m T11 T22 T33 2T23 2T31 2T12, , , , ,{ }=

R
˜̃

:S
˜̃

R1
mS1

m R2
mS2

m R3
mS3

m R4
mS4

m R5+ + + +
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Change of basis for tensors

 zero. If the
all zero and the
or.

1+T32e
˜ 3e

˜ 2+T33e
˜ 3e

˜ 3

2e
˜ 1)

1e
˜ 2)
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The basis expansion of any tensor may be written

 =

=

+

+

where

 and

If the tensor is symmetric, the last three terms are all
tensor is skew-symmetric, then the first six terms are
last three terms are the components of the axial vect

T
˜̃

T11e
˜ 1e

˜ 1+T12e
˜ 1e

˜ 2+T13e
˜ 1e

˜ 3+T21e
˜ 2e

˜ 1+T22e
˜ 2e

˜ 2+T23e
˜ 2e

˜ 3+T31e
˜ 3e

˜

T 11( )e˜ 1e
˜ 1 T 22( )e˜ 2e

˜ 2 T 33( )e˜ 3e
˜ 3+ +

T 23( ) e
˜ 2e

˜ 3 e
˜ 3e

˜ 2+( ) T 31( ) e
˜ 3e

˜ 1 e
˜ 1e

˜ 3+( ) T 12( ) e
˜ 1e

˜ 2 e
˜

+(+ +

T 32[ ] e
˜ 3e

˜ 2 e
˜ 2e

˜ 3–( ) T 13[ ] e
˜ 1e

˜ 3 e
˜ 3e

˜ 1–( ) T 21[ ] e
˜ 2e

˜ 1 e
˜

–(+ +

T ij( )
1
2
--- Tij T ji+( )≡ T ij[ ]

1
2
--- Tij T ji–( )≡
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Voigt sym-dev basis

, ...

, ...

lized!

2 e
˜ 2e

˜ 1+ )

e
˜ 1e

˜ 2– )

31( )

3e
˜ 1 e

˜ 1e
˜ 3+ )
-76 of 89-
/home/rmbran

http://www.me.unm.edu/~rmbrann/gobag.html

 =

+

+

Traditional Voigt:
, , , ,

, , , ,

Then .

For symmetric,  and .

MAJOR DISADVANTAGE: Voigt basis is not norma

T
˜̃

T 11( )e˜ 1e
˜ 1 T 22( )e˜ 2e

˜ 2 T 33( )e˜ 3e
˜ 3+ +

T 23( ) e
˜ 2e

˜ 3 e
˜ 3e

˜ 2+( ) T 31( ) e
˜ 3e

˜ 1 e
˜ 1e

˜ 3+( ) T 12( ) e
˜ 1e

˜
(+ +

T 32[ ] e
˜ 3e

˜ 2 e
˜ 2e

˜ 3–( ) T 13[ ] e
˜ 1e

˜ 3 e
˜ 3e

˜ 1–( ) T 21[ ] e
˜ 2e

˜ 1(+ +

T1
v=T 11( ) T2

v=T 22( ) T3
v=T 33( ) T4

v=T 23( ) T5
v=T

ξ
˜̃ 1

v=e
˜ 1e

˜ 1 ξ
˜̃ 2

v=e
˜ 2e

˜ 2 ξ
˜̃ 3

v=e
˜ 3e

˜ 3 ξ
˜̃ 4

v= e
˜ 2e

˜ 3 e
˜ 3e

˜ 2+( ) ξ
˜̃ 5

v= e
˜

(

T
˜̃

TK
v ξ

˜̃ K
v

K 1=

9

∑=

T ij( ) Tij= T ij[ ] 0=
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ized

g base tensors

. Thus

˜̃ J
v )

…+
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Voigt basis is not normal

Consider the inner product:

The Voigt basis is orthogonal:

 if .

The first three Voigt base tensors are normalized:

, , and , but the remainin

are not normalized. They all have a magnitude of

R
˜̃

:S
˜̃

RK
v ξ

˜̃ K
v

K 1=

9

∑ 
 
 

: SJ
v ξ

˜̃ J
v

J 1=

9

∑ 
 
 

RK
v SJ

v ξ
˜̃ K

v :ξ(
J 1=

9

∑
K 1=

9

∑= =

ξ
˜̃ K

v :ξ
˜̃ J

v 0= K J≠

ξ
˜̃ 1

v:ξ
˜̃ 1

v 1= ξ
˜̃ 2

v:ξ
˜̃ 2

v 1= ξ
˜̃ 3

v:ξ
˜̃ 3

v 1=

2

R
˜̃

:S
˜̃

RK
v SK

v ξ
˜̃ K

2

K 1=

9

∑ R1
vS1

v R2
vS2

v R3
vS3

v 2 R4
vS4

v( ) 2 R5
vS5

v( )+ + + += =
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MANDEL basis

, ...

, ...

product takes a
inner product.

2T 31( )

e
˜ 3e

˜ 1 e
˜ 1e

˜ 3+ )

2
---------------------------------

RK
v SK

v

1=

9
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Obvious thing to do ... normalize the basis.

Mandel basis: .

, , , ,

, , , ,

Then , and  and

With this orthonormal Mandel basis, the tensor inner
form that is a direct analog of the ordinary 3D vector 

ξ
˜̃ K

m
ξ
˜̃ K

v

ξ
˜̃ K

v
-------------≡

T1
m=T 11( ) T2

m=T 22( ) T3
m=T 33( ) T4

m= 2T 23( ) T5
m=

ξ
˜̃ 1

m=e
˜ 1e

˜ 1 ξ
˜̃ 2

m=e
˜ 2e

˜ 2 ξ
˜̃ 3

m=e
˜ 3e

˜ 3 ξ
˜̃ 4

m=
e
˜ 2e

˜ 3 e
˜ 3e

˜ 2+( )

2
----------------------------------- ξ

˜̃ 5
m=

(
--

T
˜̃

TK
mξ

˜̃ K
m

K 1=

9

∑= ξ
˜̃ K

m :ξ
˜̃ J

m δKJ= R
˜̃

:S
˜̃

K
∑=
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Mandel basis for symmetric tensors

The basis is

 of .

, the Mandel

e
˜ 3e

˜ 3

1

2
------- e

˜ 1e
˜ 2 e

˜ 2e
˜ 1+( )

1

2
------- e

˜ 2e
˜ 1 e

˜ 1e
˜ 2–( )

2

e
˜ k
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The Mandel basis for 9D full tensor space is

, ,

, ,

, ,

The basis is orthogonal because  if . 

normalized (i.e., ) because of the factors

Just as an ordinary vector has components

components of a tensor  are .

ξ
˜̃ 1

e
˜ 1e

˜ 1= ξ
˜̃ 2

e
˜ 2e

˜ 2= ξ
˜̃ 3

=

ξ
˜̃ 4

1

2
------- e

˜ 2e
˜ 3 e

˜ 3e
˜ 2+( )= ξ

˜̃ 5

1

2
------- e

˜ 3e
˜ 1 e

˜ 1e
˜ 3+( )= ξ

˜̃ 6
=

ξ
˜̃ 7

1

2
------- e

˜ 3e
˜ 2 e

˜ 2e
˜ 3–( )= ξ

˜̃ 8

1

2
------- e

˜ 1e
˜ 3 e

˜ 3e
˜ 1–( )= ξ

˜̃ 9
=

ξ
˜̃ K

:ξ
˜̃ J

0= K J≠

ξ
˜̃ K

:ξ
˜̃ J

δKJ=

vk v
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Related topic: isomorphic stress space

e in tension)

se the identity
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Stress:

Mean stress: (positiv

Stress deviator:

Magnitude of the stress deviator:

Unit tensor in the direction of :

Then .

We now show that non-intuitive factors appear becau
 is not a unit tensor. Specificially, .
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3
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1
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= =
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τ S
˜̃
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˜
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˜
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S
˜̃

---------≡
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Motivational example

ield function
urface defined

 a surface of

 the yield

the yield surace
at the plastic

) ∂f
∂p
------ 1

3
---I

˜̃ 
 +
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A popular simplified yield criterion assumes that the y
depends only on  and . . The yield s

by  is a hypercylinder in stress space — it is

revolution about the isotropic axis.

Gradient of yield:

Let  denote a trial elastic stress.

Let  denote the new updated stress on

surface obtained by returning to the nearest point on
in stress space (which does not necessarily mean th
strain rate is normal to the yield surface).

τ p F σ
˜̃

( ) f τ p,( )=

F σ
˜̃

( ) 0=

B
˜̃

dF
dσ

˜̃

--------
∂f
∂τ
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dσ
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------- 
  ∂f
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dσ
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ˆ
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t τ tS
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σ
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n τnS
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Normal projection (cont’d)

scalar  such

to stress space.
ogonal, but not
ropriately

β

∂f
∂p
------ 1

3
---I

˜̃ 
 




p
correct answer

er
pn τn,( )

pt τ t,( )
trial stress
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Return to nearest point on yield surface ⇒  there’s a 
that

, or

Therefore .

Thus, to project normal to the yield
surface in stress space, you must project
using a slope 3 times steeper than the
normal in  vs.  space. The problem is
that the stress measures and are not isomorphic
Viewed differently, the base tensors  and  are orth
normalized. We should use  with an app
modified measure of mean stress. Namely, .
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Rendulic plane

ean stress.”

. The

ctor.

p or p̂

τ

engineering

ê
˜ z

x
˜

Cylindrical
z vs. r plane.

zê
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ê
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The Rendulic plane plots a “shear stress” versus a “m

Engineer’s choice

“shear stress:” , and

“mean stress:” . Then .

Problem: This  vs.  space isn’t
isomorphic to stress space. For example,

. Importantly, the normal to the

yield surface in  vs.  space is not normal
to the yield surface in stress space.

Mathematician’s choice: “shear stress”

“mean stress” . Then

normalized identity  is like the  cylindrical base ve

isomorphic

View in 3-D
physical space
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Supplemental Topic:
es

irst-cut” best
id of the form

is form is perfectly capable
 media.)

s .

, but the yield
ple must be
ten lacking.

t  and  have
e...

E
˜̃̃̃

E
˜̃̃̃

L
˜̃̃̃
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Anisotropic yield surfac

For elastically anisotropic material, a very common “f
guess at the plastic yield surface is a Tsai-Wu ellipso

, (contrary to Walker’s recent claims, th
of modelling even highly anisotropic

where  shares the same anisotropy with the stiffnes

Elastic constants may be nondestructively measured
 parameters are more difficult since a fresh sam

used to measure each component. Thus, data are of

Proposal: Face with a dearth of data, assume tha
the same eigenprojectors, a term which we now defin

f σ
˜̃

( ) σ
˜̃

σ
˜̃
∗–( ):L

˜̃̃̃
: σ

˜̃
σ
˜̃
∗–( ) 1–=

L
˜̃̃̃

Lijkl
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What are eigenprojectors?

mple tensor

v
˜ 1=1

3
--- 1 2 2, ,{ }

v
˜ 2= 1

5
------- 2– 0 1, ,{ }

v
˜ 3= 1

3 5
---------- 2– 5 4–, ,{ }

nique!

x
˜

P
˜̃ 2

x
˜

•

P
˜̃ 1

x
˜

•
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To illustrate, consider simpler 3D space. Here’s a sa

, which has eigenpairs

In spectral form,

With respect to the principal basis,

, , and

A
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17 2– 2–
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What are eigentensors?

. The major

 an ordinary

dimensional
 eigentensors.

Y
˜̃

11

22

33

Y23

Y31

Y23
-86 of 89-
/home/rmbran

http://www.me.unm.edu/~rmbrann/gobag.html

We seek tensors  and scalars  such that

and minor symmetries of  allow this to be written as

 matrix eigenproblem:

An eigensolver will output a set of six orthonormal 6-
eigenvectors. Each of these correspond to symmetric

Y
˜̃

λ E
˜̃̃̃

:Y
˜̃

λ=

E
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6 6×

E1111 E1122 E1133 2E1123 2E1131 2E1112

E2211 E2222 E2233 2E2223 2E2231 2E2212

E3311 E3322 E3333 2E3323 2E3331 2E3312

2E2311 2E2322 2E2333 2E2323 2E2331 2E2312

2E3111 2E3122 2E3133 2E3123 2E3131 2E3112

2E1211 2E1222 2E1233 2E1223 2E1231 2E1212
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Y22

Y33

2Y23

2Y31

2Y23

λ

Y

Y

Y

2

2

2
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If  has multiplicity of 1, then  is the
ates on any
tion of .

iplicity 1. The
, which

ates on.

nd  are not

 is
result is the part
e similar.

iplicity 5. The
 five

r of any tensor it
n eigentensor

λ Pijkl YijYkl=

Yij

jδkl

Y
˜̃

2( )

Yij
2( )Ykl

2( )
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corresponding eigenprojector. When it oper
tensor, the result is the part of that tensor in the direc

EXAMPLE: For isotropy, 3K is an eigenvalue of mult
norrmalized eigentensor is . The projector is

merely returns the isotropic part of any tensor it oper

If  has multiplicity of 2, then the eigentensors  a

unique. Instead, the eigenprojector,
unique. When it operates on an arbitrary tensor, the
of the tensor in the subspace. Higher multiplicities ar

EXAMPLE: For isotropy, 2G is an eigenvalue of mult
eigenprojector (constructed by summing dyads of the
orthonormalized eigenprojectors) returns the deviato
operates on. Thus, ANY DEVIATORIC TENSOR is a
for isotropy.

I
˜̃

3⁄ 1
3
---δi

λ Y
˜̃

1( )

Pijkl Yij
1( )Ykl

1( ) +=
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Back to anisotropic yield...

transverse, the

independent
enprojectors).
formula for the
onse.

,
,
E3 E1133=

12 Eo E2 E5+=
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Recall . If the material is 

Mandel eigenproblem is of the form

,

There are five independent stiffnesses, but only four 
eigenvalues (and therefore only four independent eig
Forcing  to have the same eigenprojectors gives a 
elusive  value that couples lateral and axial resp

f σ
˜̃

( ) σ
˜̃

σ
˜̃
∗–( ):L

˜̃̃̃
: σ

˜̃
σ
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∗–( ) 1–=

where
, ,
,

E1 E3333= E2 E1122=

E4 2E2323= E5 2E12=

E0 E2 E3 0 0 0

E2 E0 E3 0 0 0

E3 E3 E1 0 0 0

0 0 0 E4 0 0

0 0 0 0 E5 0

0 0 0 0 0 E5
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Conclusions

strate the
al vectors.

y be returned to
nalogous to

andel convention
 orthonormal

valid because
ssarily

te representation
ess “vector” in the
ss itself.
y via the elastic
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This presentation covered many applications that illu
usefulness of regarding tensors as higher-dimension

Key points were
• For radial and oblique return models, the stress ma

the yield surface via a projection operation that is a
projecting a simple vector onto a plane.

• Symmetric tensors are analogous to planes. The M
for symmetric tensor components correspond to an
basis for symmetric tensors.

• The invariant form of the Tresca yield criterion is in
negative values of that “yield function” do not nece
correspond to stresses that are below yield.

• The isomorphic stress measures are a more accura
of stress space that is analogous to viewing the str
“plane” formed by the isotropic tensor and the stre

• Anisotropic yield may be coupled to elastic isotrop
eigenprojectors.
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