THE THERMOELASTIC SQUARE

A mnemonic for remembering thermodynamic identities

The state of a material is the collection of variables such as stress, strain, temperature, entropy. A
variable is a state variable if its integral over any closed path in the other state variables is zero.
Clearly, this definition is circular unless we assume there exists a minimalosétlatedstate
variables. For example, the zeroth law of thermodynamics postulates the existence of a
temperature. The pressure is usually postulated to be a state variable. For typical applications
involving inviscid fluids, only these two state variables — temperature and pressure — are
needed in order to determine the other state variables. For solids, more state variables are
needed. The state postulate of thermodynamics says that the minimum number of state variables
needed to determine all other state variables is equal to one plus the number of quasistatic work
modes. For a gas, there is only one work mode, namdly where pressurp works to produce

a volume changdV. For a more general material, there are a total of six work modes,
corresponding to the six independent components of stress causing changes in the six
components of strain. In addition to the six state variables that characterize stress or strain, the
state postulate says there must be one more variable such as temperature or entropy that
characterizes the thermal state of the material. Suppose we take strain and entropy to be our
primitive state variables. Such a material is said to be thermoelastic, and the first law of
thermodynamics implies that tiepecificstress tensor (i.e., stress divided by density) is given by

a derivative of the internal energy function with respect to strain, while the temperature is the
derivative of energy with respect to entropy. The relationship between stress and strain does not
have to be linear — the principal characteristic of thermoelasticity is that stress must be
expressible as a true function of strain and entropy. In what follows, we speak of the stress tensor
as asingleentity rather than a collection of six individual components (just as, say, velocity is
regarded as aingle vector rather than a collection of three components). Likewise, the strain
tensor is a single entity. Thus, the state postulate says, given a tensor variable (stress or strain)
and a thermal variable (temperature or entropy), then there exist equations of state such that all
of the other state variables may be computed from these two primitive independent state
variables. Thermodynamical identities such as the Legendre transformations and the Maxwell
and Gibbsian relations have nothing to do with thermodynamics — they are simply relationships
that hold whenever you work witany function of two variables. When one of these variables is

a tensor, some identities take slightly modified forms involving the tensor inner product instead
of ordinary scalar multiplication.




Notation and basic thermodynamical concepts. To emphasize

the connection with ordinarPdV identities, thespecific stress tensor (i.e., stress divided by
density) is denoted?  and the strain tensor is dengted . The numerical plus/minus signs in our
identities may differ from what you are accustomed to becausetress and our strain are both
positive in tension

For inviscid fluids, the increment in mechanical work per unit mass is giveR b , Where
is the pressure and is the specific volume (i.e., volume per unit mass, which is simply the
inverse of the densityp ). The most useful measure of volumetric stradpFn(v/Vv,) , for
which the material time rate i8, = V/V . With this logarithmic strain measure, derivatives of
the form v[d( )/dv] become simplyd( )/dg, and the specific work increment
becomes

Pdv = vPdg, = %Bdev

Note that the specific work increment ispecificstress (i.e., pressure divided by density) times

a strain increment. When generalizing to solids and viscous fluids which have nonzero shear
stresses, the increment in work is given B.dy , whée s the second Piola Kirchhoff
(PK2) stress divided by reference dengity , and  is Lagrange strain. The double dot is the
tensor inner product defined between any two tensd}s, Brd AdB = AjBj;
Incidentally,a different scalar product defined b&\ij Bji should be avoided because it is not
aninner product(it fails the positivity axiom).

The work increment isdW = P:dy . Here, the symbal  is a&mexact differential,
indicating that the integral of work over a closed path in state space is not necessarily zero. Thus
work W is not a state variable. ItfQ denotes the heating increment, then first law of
thermodynamics states that teemof the work and heainexactdifferentials is itself arexact
differential. Hence there must exist a state variable — the internal emergguch that

du = dW +dQ
The entropys is defined such thdids = dQ + dD , whefe s temperatureciidd is
the increment in dissipation. A reversible process has zero dissipation, so the first law becomes
du = P:dy +Tds

The form of this equatiorsuggestgbut does notequire) that the internal energyl may be
regarded as a function of stravi  and entrapy . If tiiermoelastic assumptias adopted,
then it follows that




p—[QED

_ [uQ
P = and T i —
@gﬂs

~ [bsl,

Subscripts indicate which variable is being held constant in the partial derivative. The indicial
form of the first equation i;; = (au/avij)s . Material properties are frequently defined in

terms of second derivatives of the energy function. For example, the (specific) fourth-order
isentropic elastic stiffness tensor is the derivative of (specific) sfgss  with respect toystrain

holding entropy constant, so it has componef@®;;/ 9v,), = (02U/0V;;0V,,)s  , which
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oyg By
S

is the derivative ofP  with respect ty  holdirtgmperatureconstant. Its relationship to the
isentropic stiffness may be determined through application of the chain rule:

OED 0RO PRh s
T TRk

By using combinations of Maxwell and Gibbsian relations, the last term may be expressed in
terms of the Gruneisen or thermal expansion tensor and the constant strain specific heat, both of
which are regarded as measurable properties. Thus knowledge of the Maxwell and Gibbsian
relations is essential whenever one wishes to find connections between one material property and
another. The thermoelastic square helps you remember these relationships.




Irreversible processes. Recall that the first law may be written in the form
du = P:dy + Tds only for reversibleprocesses. Many authors claim that this equation
holds even in the presence of dissipation. In this case, the stress and stramttheereal stress

real . real . , .
P " and real strainy . Instead so-called thermodynamic stress and strain must be defined

real real
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so that P:dy = P vy~ —dD . Consider, for example, plastic flow. The
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thermodynamic stress ishosento equal the real stres§? = P . The strain increment is

broken into elastic plus plastic partdy™a = dye+dyP . For plasticity, the dissipation is
dD = P:dyP. Consequently, the thermodynamic strain increment must be defined such that
P:dy = P:dy®. Thus, for plastic deformations, the equations contained in the thermoelastic

square are valid so long as the strn  is regarded asldséicstrain, not the total strain! This
makes sense intuitively since the mechanical part of internal energy corresponds to the stretching
of the elastic lattice (which is characterized Mf ). The thermal part of the internal energy
comes from ordinary external heating and from dissipation associated with irreversible plastic
flow (characterized bydgp ) of material “through” the lattice.

Other energy measures. If we define a new variableh =u —P:y , called
enthalpy then the first law u = P:dy + Tds ) may be alternatively written as
dh = —y:dP + Tds. By using enthalpy, we have transformed the first law into a form

where specific stresf?  and entropy  appear to be the natural independent variables, which

might be more convenient for certain applications such as stress-controlled loading. Other
energy measures such as Gibbs energy and Helmholtz free energy are more helpful in other
situations. The thermodynamic square provides a means of (1) remembering how these
alternative energy measures are related to each other and (2) recalling the natural independent
variables associated with the energies, and (3) recalling how derivatives of the energy measures
are related to other state variables or to other derivatives.




How to use the thermoelastic square. The thermoelastic  square
(shown on the next page) contains key thermoelastic relationships in recognizable patterns. The
easiest way to learn the square is to deduce for yourself how the identities all obey consistent
geometrical patterns in the square. The numerical plus/minus signs are always related in some
manner to the arrows on the thermoelastic square. The paragraphs below provide further details
in case the patterns are not evident to you.

The edges of the thermoelastic square tell you the four energies and their natural independent
variables. For example, internal energyis naturally a function of entropg and strainy .
Enthalpyh is naturally a function of entropy, and specific stres§? . The contact (Legendre)
transformations that relate one energy to another run parallel to the arrows in the thermoelastic
square. (For example;-a is parallel to the arrow connectifigands, so U—S = TS).

To find the derivative of an energy with respect to one of its natural variables (holding the other
one constant), simply travel from the differentiation variable (which always lies at a corner near
the energy) to the diagonally opposite point across the square. The plus/minus is assigned
according to whether you moweth (+) oragainst(-) the arrows.

For example, note tha  is opposse  and the arrow points ffom T to . Therefore we have
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Maxwell relations involve derivatives of a variable atarner of the square with respect to an
adjacent corner variable. On the thermoelastic square, the derivative of one corner variable with
respect to another is equal to plus or minus the derivative ohtheor imagesof these two
variables. The mirror image 0f across the horizontals T whereas the mirror image &f

across the verticais S . The numerical sign used in the Maxwell relation is positive if the two
arrows on the thermoelastic square are symmetric in the same mirror image direction. The
variable held constant in the derivative is found by continuing the sequence to the next corner.
For example,(a\,.!/as)P involves variabléé asd on the far left edge, so the corfgtant s
then next corner after travelling fronY t6 . The mirror image derivat(\daT/ali’)S
involves variables on the far right edge. The two arrows on the thermoelastic squaretare

symmetric across thisorizontalmirror direction, so the sign must be negative.
Thatis,(0Y/9s),, = —(0T/dR), .

The formulas for the second derivatives obey somewhat more complicated patterns, as you can
deduce yourself. With a little bit of practice, you will find the thermoelastic square to be an
extremely valuable memory aid. We hope you find it helpful!




Thermoelastic square

g

Energies

Isotropic state

tensor state

u(v,s), internal

V, specific volume -—%

V, strain tensdr

a(y, T), Helmholtz

p, tensilepressure

P, specific stress

g(P, T), Gibbs

T, temperature

T , temperature

h(P, s), enthalpy

S, entropy

S , entropy

contact (Legendre) transformations

u—-a=Ts =h-g

*For isotropic,\:/:%ln (v/v,)1l and®=pv] , positive itension

Otherwise,)Y is Lagrange strain aRtl  is PK2 stress dividgal by u-h=vy:p =a-g

~

Maxwell’s relations

Conjugate relations Gibbsian relations
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Thermoelastic square (cont'd)
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Contact (Legendre) transformations

u—a=Ts =h-g
u-h=Yy:pP =a-g

Don’t forget: P is specific stress (i.e.,
stress divided By density) and it is positive
in tension Thus, the stiffness (below) is
conventional stiffness divided by density.

The “double dot” is the tensor inner product
(i.e., 'Q\:L,B:AijBij ).
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