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THE THERMOELASTIC SQUARE

A mnemonic for remembering thermodynamic identities

The state of a material is the collection of variables such as stress, strain, temperature, entr
variable is a state variable if its integral over any closed path in the other state variables is
Clearly, this definition is circular unless we assume there exists a minimal setpostulatedstate
variables. For example, the zeroth law of thermodynamics postulates the existence
temperature. The pressure is usually postulated to be a state variable. For typical applic
involving inviscid fluids, only these two state variables — temperature and pressure —
needed in order to determine the other state variables. For solids, more state variabl
needed. The state postulate of thermodynamics says that the minimum number of state va
needed to determine all other state variables is equal to one plus the number of quasistati
modes. For a gas, there is only one work mode, namelypdV where pressurep works to produce
a volume changedV. For a more general material, there are a total of six work mod
corresponding to the six independent components of stress causing changes in t
components of strain. In addition to the six state variables that characterize stress or stra
state postulate says there must be one more variable such as temperature or entro
characterizes the thermal state of the material. Suppose we take strain and entropy to
primitive state variables. Such a material is said to be thermoelastic, and the first la
thermodynamics implies that thespecificstress tensor (i.e., stress divided by density) is given
a derivative of the internal energy function with respect to strain, while the temperature i
derivative of energy with respect to entropy. The relationship between stress and strain do
have to be linear — the principal characteristic of thermoelasticity is that stress mus
expressible as a true function of strain and entropy. In what follows, we speak of the stress
as asingleentity rather than a collection of six individual components (just as, say, velocit
regarded as asingle vector rather than a collection of three components). Likewise, the st
tensor is a single entity. Thus, the state postulate says, given a tensor variable (stress or
and a thermal variable (temperature or entropy), then there exist equations of state such
of the other state variables may be computed from these two primitive independent
variables. Thermodynamical identities such as the Legendre transformations and the Ma
and Gibbsian relations have nothing to do with thermodynamics — they are simply relation
that hold whenever you work withany function of two variables. When one of these variables
a tensor, some identities take slightly modified forms involving the tensor inner product ins
of ordinary scalar multiplication.
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Notation and basic thermodynamical concepts. To emphasize
the connection with ordinaryPdV identities, thespecificstress tensor (i.e., stress divided b
density) is denoted and the strain tensor is denoted . The numerical plus/minus signs
identities may differ from what you are accustomed to becauseour stress and our strain are both
positive in tension.

For inviscid fluids, the increment in mechanical work per unit mass is given by , wheP
is the pressure andv is the specific volume (i.e., volume per unit mass, which is simply t
inverse of the density ). The most useful measure of volumetric strain is
which the material time rate is . With this logarithmic strain measure, derivative
the form become simply and the specific work increme
becomes

Note that the specific work increment is aspecificstress (i.e., pressure divided by density) tim
a strain increment. When generalizing to solids and viscous fluids which have nonzero
stresses, the increment in work is given by , where is the second Piola Kirch
(PK2) stress divided by reference density , and is Lagrange strain. The double dot
tensor inner product defined between any two tensors, and , as
Incidentally,a different scalar product defined by should be avoided because it is
an inner product (it fails the positivity axiom).

The work increment is . Here, the symbol is aninexact differential,
indicating that the integral of work over a closed path in state space is not necessarily zero
work is not a state variable. If denotes the heating increment, then first law
thermodynamics states that thesumof the work and heatinexactdifferentials is itself anexact
differential. Hence there must exist a state variable — the internal energyu — such that

The entropy is defined such that , where is temperature and
the increment in dissipation. A reversible process has zero dissipation, so the first law bec

The form of this equationsuggests(but does notrequire) that the internal energy may be

regarded as a function of strain and entropy . If thisthermoelastic assumptionis adopted,

then it follows that
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Subscripts indicate which variable is being held constant in the partial derivative. The ind
form of the first equation is . Material properties are frequently defined

terms of second derivatives of the energy function. For example, the (specific) fourth-o

isentropic elastic stiffness tensor is the derivative of (specific) stress with respect to stra

holding entropy constant, so it has components , wh

we write in symbolic notation as . The (specific)isothermalelastic stiffness

is the derivative of with respect to holdingtemperatureconstant. Its relationship to the

isentropic stiffness may be determined through application of the chain rule:

By using combinations of Maxwell and Gibbsian relations, the last term may be express
terms of the Gruneisen or thermal expansion tensor and the constant strain specific heat,
which are regarded as measurable properties. Thus knowledge of the Maxwell and Gib
relations is essential whenever one wishes to find connections between one material prope
another. The thermoelastic square helps you remember these relationships.
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Irreversible processes. Recall that the first law may be written in the form

only for reversibleprocesses. Many authors claim that this equati

holds even in the presence of dissipation. In this case, the stress and strain arenot the real stress

and real strain . Instead so-called thermodynamic stress and strain must be d

so that . Consider, for example, plastic flow. Th

thermodynamic stress ischosento equal the real stress: . The strain increment

broken into elastic plus plastic parts: . For plasticity, the dissipation

. Consequently, the thermodynamic strain increment must be defined such

. Thus, for plastic deformations, the equations contained in the thermoel

square are valid so long as the strain is regarded as theelasticstrain, not the total strain! This

makes sense intuitively since the mechanical part of internal energy corresponds to the stre

of the elastic lattice (which is characterized by ). The thermal part of the internal en

comes from ordinary external heating and from dissipation associated with irreversible p

flow (characterized by ) of material “through” the lattice.

Other energy measures. If we define a new variable , called

enthalpy, then the first law ( ) may be alternatively written a

. By using enthalpy, we have transformed the first law into a fo

where specific stress and entropy appear to be the natural independent variables,

might be more convenient for certain applications such as stress-controlled loading.
energy measures such as Gibbs energy and Helmholtz free energy are more helpful in
situations. The thermodynamic square provides a means of (1) remembering how
alternative energy measures are related to each other and (2) recalling the natural indep
variables associated with the energies, and (3) recalling how derivatives of the energy me
are related to other state variables or to other derivatives.

du P
˜̃

:dv
˜̃

Tds+=

P
˜̃

real v
˜̃

real

P
˜̃

:dv
˜̃

P
˜̃

real:dv
˜̃

real dD–=

P
˜̃

P
˜̃

real
=

dv
˜̃

real dv
˜̃

e dv
˜̃

p+=

dD P
˜̃

:dv
˜̃

p=

P
˜̃

:dv
˜̃

P
˜̃

:dv
˜̃

e=

v
˜̃

v
˜̃

e

dv
˜̃

p

h u P
˜̃

:v
˜̃

–≡

du P
˜̃

:dv
˜̃

Tds+=

dh v
˜̃
:dP

˜̃
– Tds+=

P
˜̃

s



s. The
istent
some

details

endent

e)
elastic

ther
near
signed

have

e with

o
. The
orner.

is

re

ou can
an
How to use the thermoelastic square. The thermoelastic square
(shown on the next page) contains key thermoelastic relationships in recognizable pattern
easiest way to learn the square is to deduce for yourself how the identities all obey cons
geometrical patterns in the square. The numerical plus/minus signs are always related in
manner to the arrows on the thermoelastic square. The paragraphs below provide further
in case the patterns are not evident to you.

The edges of the thermoelastic square tell you the four energies and their natural indep
variables. For example, internal energyu is naturally a function of entropys and strain .
Enthalpy is naturally a function of entropy,s, and specific stress, . The contact (Legendr
transformations that relate one energy to another run parallel to the arrows in the thermo
square. (For example,u–a is parallel to the arrow connectingT ands, so ).

To find the derivative of an energy with respect to one of its natural variables (holding the o
one constant), simply travel from the differentiation variable (which always lies at a corner
the energy) to the diagonally opposite point across the square. The plus/minus is as
according to whether you movewith (+) oragainst (–) the arrows.

For example, note that is opposite and the arrow points from to . Therefore we

,  and . Similarly,  and .

Maxwell relations involve derivatives of a variable at acorner of the square with respect to an
adjacent corner variable. On the thermoelastic square, the derivative of one corner variabl
respect to another is equal to plus or minus the derivative of themirror imagesof these two
variables. The mirror image of across the horizontalis whereas the mirror image of
across the verticalis . The numerical sign used in the Maxwell relation is positive if the tw
arrows on the thermoelastic square are symmetric in the same mirror image direction
variable held constant in the derivative is found by continuing the sequence to the next c
For example, involves variables and on the far left edge, so the constant
then next corner after travelling from to . The mirror image derivative
involves variables on the far right edge. The two arrows on the thermoelastic square anot
symmetric across thishorizontal mirror direction, so the sign must be negative.
That is, .

The formulas for the second derivatives obey somewhat more complicated patterns, as y
deduce yourself. With a little bit of practice, you will find the thermoelastic square to be
extremely valuable memory aid. We hope you find it helpful!
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Thermoelastic square

a

h

g

P
˜̃

T

=

=

=

=

∂2u
∂v

˜̃
∂s

------------- + ∂P
˜̃∂s

------- 
 

v
˜̃

∂2a
∂v

˜̃
∂T

--------------- + ∂P
˜̃∂T

------- 
 

v
˜̃

∂2g
∂P

˜̃
∂T

--------------- ∂v
˜̃∂T

------- 
 

P
˜̃̃

–

∂2h
∂P

˜̃
∂s

-------------- ∂v
˜̃∂s

------ 
 

P
˜̃

–

ell’s relations

Ts h g–= =

v
˜̃
:P
˜̃

a g–= =

egendre) transformations
/home/rmbrann/Teach/Thermo/ThermoSquare
-6 of 7- Rebecca Brannon, rmbrann@sandia.gov

v
˜̃

u

*For isotropic,  and , positive intension.

Otherwise,  is Lagrange strain and  is PK2 stress divided by .
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, Gibbs , temperature , temperature

, enthalpy , entropy , entropy
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Thermoelastic square (cont’d)
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by density) and it is positive

us, the stiffness (below) is
tiffness divided by density.
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