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Glossary

Triaxial Constitutive Models: Algebraic, differential and integral equations relating three-dimensional
stress and strain tensors.

Elasticity: Linear and nonlinear stress-strain relations preserving reversibility in the small (hypo-
elasticity) and in the large (hyper-elasticity).

Plasticity: Yield constraint of stress (strain, energy) trajectory leading to irreversible deformations
due to plastic flow.

Elastic Damage Mechanics: Degradation of elastic stiffness properties due to progressive damage.

Failure Analysis: Loss of stability, loss of uniqueness, and loss of ellipticity (localization) at the
constitutive level.

Opening

This article addresses constitutive models which describe the response behavior of natural and manufac-
tured materials under different mechanical and environmental conditions. Focus of this overview is the
mechanical performance of engineering materials expressed in terms of stress, strain and internal state
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ariables which describe the effect of the previous load history on the current properties. Thereby, the
omain of traditional constitutive models encompasses the continuum concepts of elasticity, plasticity,
iscosity, and their extension to include thermal and other environmental effects through continuum

thermodynamics.

The constitutive model introduces or describes the physical properties of a given material. It connects

the kinematic with the kinetic descriptions of motion thereby closing the formulation of the initial bound-
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ry value problem. In this context it is important to keep in mind the needs of modern computational
nalysis techniques, such as the finite element method, which demand triaxial constitutive models for re-
listic model-based simulations. In fact, it is the range of the underlying material models, which delimits

the predictive value of large scale simulations nowadays involving thousands of degrees of freedom. In
short, our survey will concentrate on continuum-based material formulations which are currently used in

e

ngineering practice, in research and education, as well as in commercial finite element software packages
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for stress and deformation analyses. Primary applications cover life-cycle performance assessment of civil,
mechanical, and aeronautical structures ranging from dams, bridges, containment vessels, to air- and
spacecraft components, as well as automotive crash simulations and micro-electro-mechanical systems.

1 Introductory Remarks

Traditionally, ‘Material Science’ studies the behavior of materials at different scales in order to observe
and quantify the chemo-physical processes at the underlying micro-mechanical, molecular and atomistic
levels. Multi-scale material modeling upscales these processes onto the macroscopic level. The first step
is to decompose the entire range of scales into several sub-ranges. From the view point of characterizing
and designing engineering materials, we distinguish among the four scales illustrated in Figure 1:

e Meter Level:
Practical problems in civil, mechanical and aerospace structures such as the analysis and design of
dams and containment vessels are solved at this level.

e Millimeter Level:
Most material properties are obtained from laboratory specimens at this level. In our terminology
this constitutes the macro-scale - a level at which engineering materials may be treated as homo-
geneous continua after homogenizing the effect of the microstructural constituents into so-called
‘effective’ properties.

e Micrometer Level:
Micro-structural features such as micro-defects, the grain size of polycrystals and hydration prod-
ucts in cement-based materials are observed at this scale. In current terminology this constitutes
the meso-scale - a level at which materials may be treated as heterogeneous composites, e.g.
metal matrix and concrete composites, in which particle inclusions are bonded to the matrix by
cohesive/frictional interface layers.

e Nanometer Level:
Molecular and atomistic processes take place at this level, which includes the molecular chaining
of polymers and the behavior of single crystals. Many diffusion mechanisms for moisture and
aggressive chemicals are considered to be active at this level, which includes e.g. the transport
process of ions and chemical compounds. It should be noted that cause-effect relations in many
cases reach beyond Newtonian mechanics, especially when sub-atomic processes are considered at
the level of quantum mechanics.

Historically, the current thinking of materials dates back to the ‘corpuscular’ natural philosophy
advanced by RENE DESCARTES (1596-1650) who postulated that the properties of matter emerge from
multilevel microstructures comprised of molecules and voids. As early as 1722 RENE DE REAUMUR
developed a fairly realistic picture of the anatomy and multilevel morphology of quench hardened steel
in his treatise on iron at different length scales. On a separate line of materials engineering, JOSEPH
ASPDIN patented in 1824 hydraulic Portland cement for manufacturing mortar and concrete. In the
historical context, the great challenge is to bridge the gap between the atomistic thinking of the classical
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Figure 1: Multiscale Material Mechanics

greek school of natural philosophers around DEMOCRITUS (460-370 b.c.), and the continuum world of
differential calculus by ISAAC NEWTON (1642-1727) and GOTTFRIED WILHELM LEIBNITZ (1646-
1716), which provides the framework of modern continuum mechanics founded by AuGUSTIN CAUCHY
(1789-1857).

Traditionally, engineering materials are considered to be macroscopically homogeneous (and often
isotropic). While in most applications this approach may be adequate, progressive degradation processes
can only be explained properly by considering micro-structural features of the material. This requires
characterization of each constituent and the interface bond conditions, in addition to the morphology of
the specific meso- and micro-structures, respectively. These types of studies are still very demanding in
terms of manpower and computing power, in spite of the rapid development of computer simulations to
investigate degradation processes at the micro-, meso-, and macro- levels in 3-D space and time.

In the long history of alchemy an ancient dream is to create precious materials by synthesizing and
transmuting low-cost constituents through innovative chemo-physical processes. Translated into the
world of high-tech materials of today, this endeavor is at the core of ‘Materials Engineering’, where
optimization and material systems engineering meet well-defined performance objectives. Consequently,
the design of new high-performance materials requires thorough understanding of the properties of each
constituent and their interaction in chemo-physical processes. Thereby the role of constitutive relations
is to quantify the performance of the resulting material compounds under mechanical and environmental
load histories. For engineering purposes the length scale under consideration is the macroscale of tradi-
tional material testing laboratories, which provide the test data to calibrate the material parameters of
the constitutive relation according to specifications of the American Society for Testing and Materials,
ASTM, or other professional engineering societies.

In what follows, we will review established constitutive models for engineering materials, which may
be broadly classified into three groups depending on their mathematical constructs:

1. Algebraic constitutive relations, such as linear and nonlinear elastic models,
2. Differential constitutive relations, such as plastic and viscoplastic models, and

3. Integral constitutive relations, such as hereditary viscoelastic models.
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Thereby it is understood that the constitutive models are linear for performance analyses under service
load conditions, and highly nonlinear for limit state studies, when material failure is considered in the
form of discontinuous fracture processes. For the sake of simplicity, this review will be restricted to small
strains and local constitutive models in order to confine our attention to the interrelationship of stresses
and strains, which are symmetric second order tensors.

The review is organized as follows: Section 2 reviews primarily isotropic elastic models and examines
three families of nonlinear elastic constitutive formulations using representation theorems of scalar and
tensor functions. Section 3 summarizes the flow theory of elasto-plasticity with a dicussion of volumetric-
deviatoric coupling in the case of one-, two-, and three-invariant formulations. Section 4 examines
material failure at the constitutive level and introduces localization analysis with an application for loading
in simple shear. Section 5 briefly reviews recent developments in continuum damage mechanics. Section
6 concludes the state-of-the art report with seminal remarks on current research activities. Appendix
| summarizes a few results of tensor algebra, while Appendix Il contains some remarks on elastoplastic
failure analysis subject to the kinematic constraint of plane strain.

2 Elastic Models

Linear elasticity is the main staple of material models in solids and structures. The statement ‘ut tensio
sic vis’ attributed to ROBERT HOOKE (1635-1703) characterizes the behavior of a linear spring in which
the deformations increase proportionally with the applied forces according to the anagram ‘ceiitnossstuv’.
The original format of Hooke's law included the geometric properties of the wire test specimens, and
therefore the spring constant did exhibit a pronounced size effect. The definition of the modulus of

elasticity F, where
oc=Fe (1)

is attributed to THOMAS YOUNG (1773-1829). He expressed the proportional material behavior through
the notion of a normalized force density and a normalized deformation measure, though the original
formulation also did not entirely eliminate the size effect.

The tensorial character of stress was established by Cauchy, who defined the triaxial state of stress
by three traction vectors using the celebrated tetraeder argument of equilibrium. The state of stress is
described in terms of Cartesian coordinates by the second order tensor

011 012 013
U(mat) = | 021 022 023 (2)
031 032 033

The conjugate state of strain is a second order tensor with Cartesian coordinates,

€(x,t) = | a1 €an €o3 (3)

which is normally expressed in terms of the symmetric part of the displacement gradient, if we restrict
our attention to infinitesimal deformations. In the case of non-polar media we may confine our attention
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to stress measures, which are symmetric according to the axiom of L. Boltzmann,

o = O't or 0 = 0j; (4)

and the conjugate strain measures
€ = Gt or €;; = €j; (5)

where © = 1,2,3 and 7 = 1,2,3. As a result, the eigenvalues are real-valued and constitute the set of
principal stresses and strains with zero shear components in the principal eigen-directions of the second
order tensor. In contrast, non-symmetric stress and strain measures may exhibit complex conjugate
principal values and maximuum normal stress and strain components in directions with non-zero shear
components characteristic for micropolar Cosserat continua.

Restricting this exposition to symmetric stress and strain tensors they may be cast into vector form
using the Voigt notation of crystal physics.

t
U(mat):[(fu O22 033 Ti2 To3 7'31] (6)

and t
G(mat):[ﬁn €22 €33 712 723 731] (7)

where 7;; = 0y, Vij = 2€;, Vi # j. The vector form of stress and strain will allow us to formulate
material models in matrix notation used predominantly in engineering, (some of the properties of second
order tensors and basic tensor operations are expanded in Appendix I).

2.1 Linear Elastic Material Behavior:

Generalization of the scalar format of Hooke's law is based on the notion that the triaxial state of stress
is proportional to the triaxial state of strain through the linear transformation,

o=E:€ or 0y =Ejrek (8)

Considering the symmetry of the stress and strain, the elasticity tensor involves in general 36 elastic
moduli. This may be further reduced to 21 elastic constants, if we invoke major symmetry of the
elasticity tensor, i.e.

£ = gt or gijkl = gklij with gijkl = gijlk and gijkl = gjikl (9)

The task of identifying 21 elastic moduli is simplified if we consider specific classes of symmetry, whereby
orthotropic elasticity involves nine, and transversely anisotropic elasticity five elastic moduli.

1. Isotropic Linear Elasticity

In the case of isotropy the fourth order elasticity tensor has the most general representation,
E=0,1®1+aq,1%1 + a21®1  or gijkl = aoéijékl + a15ik(5ﬂ + CLQ(Sil(Sjk (10)

where 1 = [§;;] stands for the second order unit tensor. The three parameter expression may be
recast in terms of symmetric and skew symmetric fourth order tensor components as

E=0,1®1+bT+ bI*" (11)
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where the symmetric fourth order unit tensor reads
1. - 1
I = 5[1@1 + 1@1] or Iijkl = 5[(5m(5ﬂ + 6z’l5jk] (12)
and the skewed symmetric one

1 1
Tokew _ 5[1®1 —1®1] or I = 5[52'1@53'5 — Giu0,] (13)

Because of the symmetry of stress and strain the skewed symmetric contribution is inactive, by = 0,
thus isotropic linear elasticity the material behavior is fully described by two independent elastic
constants. In short, the fourth order material stiffness tensor reduces to

E=A1 ®1+ 2GT or 5ijkl = A(Sijékl + G[ézkéﬂ + 5il5jk] (14)

where the two elastic constants A, G are named after GABRIEL LAME (1795-1870).

P (15)
1+ v][1—2v]
denotes the cross modulus, and 5
= 1
¢ = Sy (16)

designates the shear modulus which have a one-to-one relationship with the modulus of elasticity
and Poisson'’s ratio, F, v.

In the absence of initial stresses and initial strains due to environmental effects, the linear elastic
relation reduces to
g = A[tre]l + 2Ge or Oij = AEkk(Si]' + 2G€i]' (17)

Here the trace operation is the sum of the diagonal entries of the second order tensor corresponding
to double contraction with the identity tensor tre = ¢x, = 1 : €.

2. Matriz Form of Elastic Stiffness: o = E €

Isotropic linear elastic behavior may be cast in matrix format, using the Voigt notation of symmetric
stress and strain tensors and the engineering definition of shear strain 7;; = 2¢;;. The elastic
stiffness matrix may be written for isotropic behavior as,

[ A+2G A A
A A+26 A 0
e | A A A+2G )
G
0 G
G
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3. Matriz Form of Elastic Compliance: € = C o

In the isotropic case the normal stress oy; gives rise to three normal strain contributions, the

direct strain €;; = Loy, and the normal strains €5, = —%0q, €33 = L0y, because of the cross
E E y €33 E

effect attributed to SIMEON DENIS PoOI1ssoN (1781-1840). Using the principle of superposition,
the additional strain contributions due to o5 and o33 enter the compliance relation for isotropic

elasticity in matrix format,

€11 1 2 % 011

1
€20 | = E -V 1 -V 029 (19)
€33 -v —-v 1 033

In the isotropic case the shear response is entirely decoupled from the direct response of the normal
components. Thus the compliance matrix expands into the partitioned form

[ 1 —v —v ]
v 1 —v 0
c-Lt|lvr v 1 (20)
E 2[1 + v]
0 2[1 4+ v]
2[1 + v]

where isotropy entirely decouples the shear response from the normal stress-strain response. This
cross effect of POISSON is illustrated in Figure 2, which shows the interaction of lateral and axial
deformations under axial compression. It is intriguing that in his original work a value of v = 0.25
was proposed by S. POISSON based on molecular considerations. The elastic compliance relation

:

€ \aera SN € aia

O-axial
1
c

Figure 2: Poisson Effect in Axial Compression

reads in direct and indicial notations,

v 1 v 14+v
C= —El ®1+ ﬁl' or Cz'jkl = —E(SU(SM + W[(S,kéﬂ + 6z’l5jk] (21)
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4. Canonical Format of Isotropic Elasticity:

Decomposing the stress and strain tensors into spherical and deviatoric components

s=0 —0,y1 where o0, = g[tra] (22)
1
e =€— 6,1 where ¢, = g[tre] (23)
leads to the stress deviator
%[2011 — 022 — 033] 012 013
s(x,t) = 021 %[2022 — 033 — 011] 023 (24)
031 032 %[2033 — 011 — 022]
and the strain deviator
%[2611 — €23 — €33] €12 €13
e(x,t) = €21 %[2622 — €33 — €11 €23 (25)
€31 €32 %[2633 — €11 — 622]

which have the property trs = 0 and tre = 0. The decomposition decouples the volumetric from
the distortional response, because of the underlying orthogonality of the spherical and deviatoric
partitions, s : [0,,1] = 0 and e : [e,0;1] = 0. The decoupled response reduces the elasticity tensor

to the scalar form,
Opol =3 Ke,,y and s =2Ge (26)

in which the bulk and the shear moduli,

E 2 E 3
K=gqogj =M +5G and G=gam =Sl = A (27)

define the volumetric and the deviatoric material stiffness.

Consequently, the internal strain energy density expands into the canonical form of two decoupled
contributions
QW =0 :€=[0,ul]: [coal] +5: e =9Ke, +2Ge: e (28)

such that the positive strain energy argument delimits the range of possible values of Poisson’s
ratioto —1 < v < 0.5

2.1.1 Isotropic Elasticity under Initial Volumetric Strain

In the case of isotropic material behavior, with no directional properties, the size of a representative
volume element may change due to thermal effects or shrinkage and swelling, but it will not distort.
Consequently, the expansion is purely volumetric, i.e. identical in all directions. Using direct and indicial
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notation, the additive decomposition of strain into elastic and initial volumetric components, € = €.+ €,
leads to the following extension of the elastic compliance relation:

v 1 v 1
—E[tra]l t359 €l or €= —Eakk%' T 5q i T €003 (29)

€ —

where €, = €,1 denotes the initial volumetric strain e.g. due to thermal expansion. The inverse relation
reads

g = A[tTG]l + 2Ge — 3€0K1 or O = Aﬁkk(sij + 2G6ij — 360K5ij (30)
Rewriting this equation in matrix notation we have:
011 K+ %G K- %G K- %G €11 1
0929 = | K — %G K + %G K — %G €0 | — 3K60 1 (31)
033 K — gG K — §G K+ gG €33 1

Considering the special case of plane stress, o33 = 0, the stress-strain relations reduce in the presence

of initial volumetric strains to:
E
IR )

|:0'11:|_ E |:]_ v
opl 1—1v2lv 1] [lex 1—v

where the shear components are not affected by the temperature change in the case of isotropy.

2.1.2 Free Thermal Expansion

Under stress free conditions the thermal expansion €, = o[T — T,]1 leads to € = ¢,, i.e.

e = o[l — T, (33)
€9 = a|T — T, (34)
€33 = [T — T, (35)

Thus the change of temperature results in free thermal expansion, while the mechanical stress remains
zero under zero confinement, o = € : €, = 0.

2.1.3 Thermal Stress under Full Confinement

In contrast to the unconfined situation above, the thermal expansion is equal and opposite to the elastic
strain €, = —¢€, under full confinement, when € = 0. In the case of plane stress, the temperature change
AT =T — T, leads to the thermal stresses

E
o117 = —1_l/Oé[T—TO] (36)

Oy = — E a|T — T, (37)

1—v
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2.2 Nonlinear Elasticity

In linear elasticity the resulting constitutive relations do not depend on the point of departure, except for
the symmetry argument, which is derived most naturally from the energy argument. In contrast, nonlinear
elastic material models strongly depend on the setting of the constitutive formulation. Considering for a
moment the uniaxial stress-strain relation shown in Figure 3, it appears that the nonlinear material law
may be formulated in terms of any one of the following three possibilities:

(a) Algebraic Format: o = f(€)
The algebraic format extends Hooke's law o = £ : € into the nonlinear regime. The triaxial
generalization of the scalar-valued algebraic function leads in the simplest case to the concept
of a secant stiffness, & = FE, : €. In the triaxial situation this leads to the question how to
represent a symmetric tensor-valued function of the symmetric strain tensor, & = f(e). This type
of constitutive model is limited to rate and history independent material behavior, such as linear
and nonlinear elasticity which do not exhibit hysteretic effects.

(b) Integral Format: o = 2%
The integral format is the repository of functional representations which include linear and nonlinear
viscoelasticity in which creep and relaxation are considered in the form of fading memory effects,
o(t) = TtOSTStW' As long as the rate sensitivity does not include any history effects,
g = 0, the functional representation does not exhibit hysteretic effects. In this case and in the
absence of rate dependence we recover the format of instantaneous hyperelasticity, in which the

ow

stress is derived from the gradient of an elastic potential, o0 = 7.

(c) Differential Format: do = E, : de
In its elementary format the differential form reduces to the tangential stress-strain relationship. In a
broader sense it provides also a repository for internal variables, which memorize inelastic changes of
the material properties in plasticity and viscoplasticity. In this case, hysteretic effects are included
to account for material dissipation and energy release in the case of fracture. Restricting our
attention to nonlinear hypolasticity, the differential format leads to the question how to represent
the stress rate in terms of a tensor-valued function of two symmetric tensors, & = g(o, €)?

In what follows we will see that the three versions of nonlinear elasticity lead to constitutive formu-
lations which exhibit fundamental differences when we consider triaxial conditions.

2.2.1 Algebraic Format

The so-called ‘total’ stress—strain relation expresses stress in terms of a nonlinear function of strain. As
an alternative, the secant relation, o = £ : € provides a pseudo-linear format, which simply redefines
the nonlinear function f(€) in terms of the nonlinear secant modulus &;.

The triaxial setting, however, leads to two algebraic formats of nonlinear elasticity which differ in a
fundamental manner:

1. Cauchy Elasticity: o = f(€)

In this case, the triaxial state of stress is a nonlinear tensor function of the strain tensor, i.e. in
indicial notation o;; = fi;(ex). Using the representation theorems of second order symmetric
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P E= 99/ge

a=fe) /"

\Kj/::\,LW(E) :S ode
. J E$=0/€ o=dW

P - cy/ de

€

Figure 3: Conceptual Material Models of Nonlinear Elasticity

tensor functions the possibilities are restricted to a small set of possible choices when isotropy
is invoked. In this case, the most general format of Cauchy elasticity may have one of the two
representations,

o =01+ Doe+ D32 or o =T1+ Uye+ Uye * (38)

because of the Cayleigh-Hamilton theorem. Thereby, the three response functions ®;, and V; are
scalar functions of the three invariants of either stress or strain. It is important to keep in mind
that Cauchy elasticity is based on a second order symmetric tensor function of a second order
symmetric tensor.

2. Secant or Pseudo-FElasticity: o = &, : €

In the pseudo-elastic format of elasticity, the nonlinearity is incorporated into the fourth order secant
stiffness tensor. This format has been used early on in different engineering disciplines to develop
nonlinear extensions of simple classes of linear elasticity. The so-called variable stiffness models
retain the format of linear elasticity and simply replace the two elastic constants of linear elasticity
by nonlinear functions. We will see later on that the nonlinear K —G models are theoretically sound
if the nonlinear response decouples the volumetric from the deviatoric response, i.e. K = K(¢€,)
and G = G(tre?) where tre? = e : e.

It is not very surprising that elastic damage models did start from this secant format of nonlinear
elasticity using arguments of effective stiffness properties, which are in some sense equivalent to
distributed micro-mechanical defects. In fact, the original proposal of scalar damage was nothing
but a nonlinear pseudo-elastic model in which the secant stiffness is in matrix notation

E
oc=E, where E,=[1—-dE, and d=1- 7 (39)

In its basic format the secant matrix of elastic damage retains the structure of the initial elastic
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stiffness except for the factor [1 — d]

[ 1—v, V, V, ]

v, 1—vy, V, 0
B - [1—d]|E, v, v, 1—v, (40)
T4 ][ = 20, 12,
1—2v,
0 2
1—2v,
L 2

which measures the remaining integrity of the material when the damage variable increases from
zero to one, 0 < d — 1. Restricting damage to the format of isotropic linear elasticity, it is natural
to decompose degradation into volumetric and deviatoric damage components such that

Ks = [1 — dvol]Ko and Gs = [1 — ddev]Go (41)

The corresponding secant relation of elastic damage reads in matrix notation

_Ks+%Gs Ks_%Gs Ks_gGs ]
K, - %G, K,+3G, K,-3G, 0
Es _ Ks - %Gs Ks - %Gs Ks + %Gs (42)
Gs
0 G
G

From this expression we observe that the secant format of isotropic elastic damage is very simple
because of the underlying decoupling of volumetric from deviatoric degradation. As long as we
are only interested in a given state of damage, this isotropic pseudo-elastic formulation suffices to
describe the response behavior using effective material properties based on the principle of stress-
or strain equivalence. However, the constitutive formulation becomes far more intricate when a
thermodynamically consistent damage formulation is needed for progressive damage simulations.
In this case, loading and unloading have to be defined for the general case of triaxial conditions, and
evolution laws are required to describe the two independent processes of volumetric and deviatoric
damage which will be described in Section 5 in more detail.

2.2.2 Integral Format

The integral description of elasticity starts from the postulate of a strain energy function from which
the stress is derived by differentiation. This ‘hyperelastic’ format of elasticity dates back to the original
work of GEORGE GREEN (1793-1841).

oW

1. Green Elasticity: o = 5¢
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Given a strain energy density potential, W' = W (e), the hyperelastic stress-strain relation is simply
the gradient of that potential function with respect to strain,

ow ow

o= — O0or 0= ——
70
eij

43
e (43)
The compliance relation derives from the dual complementary strain energy potential. The impor-
tant aspect of this integral formulation is the path-independence of the line integral which defines
the internal strain energy

/0' de = aW de_/dW (44)

in terms of the total differential dWW. The traditional notions of elasticity, such as reversibility
and lack of energy dissipation under closed cycles of strain, are a direct consequence of path-
independence, i.e.

:j{dW:O (45)

In other terms, the hyperelastic material description is non-dissipative and preserves energy under
arbitrary strain histories.

The corresponding hyperelastic stiffness tensor is a measure of the curvature of the strain energy
function involving the second derivatives of W = W (e),
O*W
oc=&E,:€ where & =—— 46
! "7 e @ Oe (46)
Consequently, the elasticity tensor is symmetric, £, = E., if W (e) is sufficiently smooth. This
reduces the 36 elastic constants to 21 in the general case of anisotropic elasticity, and to two in
case of isotropy. The positive definiteness of the hyperelastic tangent operator, det &£, > 0, is
directly connected to the convexity of the strain energy functional and the uniqueness argument
of boundary value problems in elasticity.

2. Isotropic Hyperelastic Models:

In the case of isotropy, frame-objectivity requires that the strain energy density function must
be independent from the coordinate system of an observer. Thus the potential function must
be a function of strain invariants and combinations thereof. In the past two different families of
nonlinear isotropic hyperelastic material models have been proposed, one leads to the format of
nonlinear K-G models, while the other results in a pseudo-orthotropic format based on principal
coordinates of stress and strain.

(a) Hyperelastic K-G Models:
Starting from the invariant representation of the strain energy density function, W(e) =
W (I, I5, I3), the stress-strain relation follows from the chain rule of differentiation as:

_OW _ oWl oW oL, oW ol
N 86 N 611 86 6[2 86 613 86
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Using the moment invariants for the sake of convenience, where I; = %trei, the derivatives
simplify to g—% = €', Consequently, the nonlinear isotropic stress-strain relation results in
the general hyperelastic format for nonlinear isotropic behavior,

g = W11 —+ WQG —+ W3€2 (48)

The three scalar functions W; = 2% = W;(I;) describe the degree of nonlinearity in terms

of three irreducible invariants, while the tensorial properties are characterized by the three
irreducible basis tensors 1, €, €2. Note the interrelationship between the scalar functions,

Wi _ oWy W PW
oI, — 0I, oOLoI; — OLdl;

(49)
when they are derived from a sufficiently differentiable scalar potential, W = W (I, I, I).
In contrast, the scalar functions ®; and V; of the pseudo-elastic formulation do not satisfy
this form of reciprocity if the underlying integrability conditions are not enforced.

On the issue of volumetric-deviatoric coupling we observe that the trace operation leads to
tra = 3W, + Wytre + Witre? (50)

Considering a simple shear deformation, with €5 = 0.5y, W3 and thus the dependence of
W =W (I, I, I) on the third invariant is responsible for volumetric-deviatoric interaction.

On another note, the quadratic expansion of the strain energy density function with leads
exactly to the two Lamé constants of linear isotropic elasticity since W3 = 0. Thus it is Green
hyperelasticity which firmly established the bi-modular theory of isotropic elasticity in contrast
to the uni-modular theory which was widely accepted by the French school of engineering
scientists in the last century.

In fact, this bi-modular format also holds for nonlinear hyperelasticity if the strain energy den-
sity function can be decomposed into two independent functions, one defining the volumetric
and the other the deviatoric behavior.

W(€e) = Wy (tre) + Weye,(tre?) (51)

This infers, however, that the influence of the third invariant I3 remains negligible, since it is
this term which is responsible for coupling the volumetric and deviatoric response behavior.
The decomposition of the strain energy function leads to the appealing concept of nonlinear
K — G models, because of their inherent simplicity, which retains the two-modular form
of linear elasticity. Figures 4 and 5 illustrate the secant stiffness relations, which may be
expressed best in the form of the octahedral components of stress 7,7, and strain €,, 7,,

oo] _[3Ks O €o

=10 ae 15] (52)
where K, = K(tre) and G; = G(tre?). The so-called K — G models shown in Figures 4
and 5 play a prominent role for modeling nonlinear material behavior.
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Figure 4: Nonlinear Volumetric Response Behavior
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Figure 5: Nonlinear Deviatoric Response Behavior

Combining the volumetric and deviatoric scalar relations leads to the secant stiffness relation
2
o=E;:€ where &,=[K,— gGs]l ®1+2G,T (53)

where the elastic material constants have been simply replaced by their secant values. The
corresponding tangential stiffness relation however introduces an additional fourth order tensor
term because of the chain rule of differentiation when taking derivatives of G, = G(y/e : e),

4Gy — G

trez  © we (54)

. ) 2

oc=&E :¢ where & =[K,— gGs]l ®1+2G,I +
The dyadic tensor product e ® e originates from the nonlinearity and reflects the state of
the deviator strain on the incremental material law. This term is the source of strain-induced
anisotropy, which characterizes the tangential stiffness relations of all elastoplastic and elastic
damage models.
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(b) Hyperelastic Model in Principal Coordinates:
In this case the strain energy function is expressed in terms of the principal strain values,

W= W(Ela €2, 63) = W(627 63761) = W(637617 62) (55)

whereby the underlying isotropy infers cyclic permutation of indices. Because of the underlying

coaxiality of the principal axes of stress and strain, the stress-strain relation involves only their

principal values, i.e.

3W(61, €9, 63)
8@

The tangential stress-strain relation leads to the following matrix representation of the prin-

cipal coordinates:

(56)

g; —

) °wW °wW ’wW .
01 Oe1 et Oe1Oea Oe10eg 61

. _ PW PW ’W .
02 | = Oex0¢€r Oex0¢€x Oeox0€3 €2 (57)
O3 ?°W ’°W ?W €3

OezOeq Oezen OezOes
This illustrates the symmetry of the tangential stiffness properties if the strain energy func-
tion is sufficiently smooth. Moreover, the tangential stiffness properties are positive definite
if the strain energy function remains convex. Although the tangential relation appears to be
anisotropic in principal coordinates, the nonlinear stress-strain rate relation maintains coaxi-
ality between o — € as long as the tangential shear terms satisfy the condition, R. OGDEN

[1984]:
T12 — 0 0 Y12
Ty =| 0 =2 0 Vo3 (58)
T31 0 0 e Y31

€1—€3
In the past, the principal coordinate representation of nonlinear stress-strain relations has
been popularized under the name of ‘orthotropic’ material models, see CHEN & HAN
[1988], though strictly speaking the constitutive format is isotropic in which the strain-induced
orthotropy appears because of the different levels of nonlinearity in the principal coordinates.

2.2.3 Differential Format

The differential description of elasticity starts from representation theorems of nonlinear tensor functions
which lead in the simplest case of grade-one materials to an incrementally linear format of tangential
stiffness. The ‘hypoelastic’ terminology is attributed to CLIFFORD TRUESDELL (1919-2000), although
the linear format of incremental elasticity is normally referred to as tangential stiffness model.

1. Truesdell Elasticity.: o = g(o, €)

In the differential format of elasticity the stress rate is expanded into a symmetric tensor function of
two second order tensors. In the case of a stress-based formulation, the two independent arguments
of the tensor function are the stress and the rate of strain tensors. Invoking the argument of material
objectivity and frame indifference, the irreducible set of base tensors encompasses the following
terms:
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2 2

1,0,0%, ¢ (0-é+é-0)(0-E€+&-0),(0” eé+é-o0°), (0 &+ 0?) (59)
Conseqently, an isotropic tensor function of two symmetric tensors involves in the most general
case nine response functions, ¢, ..¢9 which depend in turn on the six moment invariants of the

stress and strain rate tensors below,
[T =tro, I§ =tro?, I{ = tro®; I} = tre, I = tré?, I = tré® (60)

as well as on the four joint invariants

Jy=tr(o-¢€), Jy=tr(a?-¢€), Js=tr(o- &), J =tr(c? ) (61)

The general format results in the general stress-strain rate relation,

[\

0 = Q11400 +30°+Ps€+056"+ b6 (0-€+E-0)+ (-2 +E>-0)+dg (07 E+€-0%)+ g (€2 &>

(62)

For rate independence, the expansion must be homogeneous of order one, thus the rate terms of
the tensor function must be restricted to the first order. In other terms, the hypo-elastic material
law is rate independent, if and only if,

g(o,a€) = ag(o,€) (63)

Among the numerous possibilities, two classes of hypoelastic constitutive models may be distin-
guished.

(a) Incrementally Linear Hypoelastic Models:
The linear restriction of the hypoelastic stress-strain relations leads to the classical tangential
stiffness format
=& :€ where & =€&(o0) (64)

This stress-based format is reversible in the small, but not in the large. In other terms, the
classical hypoelastic formulation leads to path-dependence

o= /eé't(a) : %dt (65)

This infers energy dissipation and irreversible behavior for arbitrary load histories as opposed
to hyperelasticity. In fact, the hyperelastic property of path-independence is recovered only
if appropriate integrability conditions are satisfied which assure that the stress is the gradient
of a single potential function, i.e. & = %‘—g.

The most general format of the hypoelastic tangent operator involves 12 hypoelastic response
functions which depend in general on all ten stress invariants, C; = C;(;, J;). The tensorial
structure involves twelve fourth order tensor products between the second order unit tensor

and stress tensors up to the fourth power.
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C11®1 +Cho®1 +C0°® 1
£ _ +CilQo +Cs0 @ o +Cs0* @ o (66)
B +C71 ® o2 +Cs0 @ o +Cy0? ® o?

+C10[1®1 +1®1] +C1;[e®1 +1Q0] +Ci5[0*®1 + 1807

Consequently, the tangential stiffness operator of the nonlinear K — G model in Section 2.2.2
forms a very limited subclass as it activates only three out-of the twelve terms in the general
framework of incrementally linear hypoelasticity. Under the name of variable moduli models,
a good number of simplified hypoelastic material models have proposed and are still used in
structural and geotechnical engineering.

(b) Incrementally Nonlinear Hypoelastic Models:

Another rate independent restriction leads to a class of incrementally nonlinear models which
have been proposed under the name of hypoplastic models. Because of the incremental
nonlinearity they are capable to distinguish between different loading and unloading stiffness
properties in analogy to the endochronic time model introduced by K. VALANIS [1975]. In
the absence of a loading function, it is understood that the irreversible contribution leads to
continuous energy dissipation under repeated load cycles in contrast to unload-reload cycles
in elastoplasticity.

3 Elastoplastic Models

There are several points of departure to develop a consistent theory for elastoplastic constitutive models.
Traditionally we start from the underlying rheological model shown in Figure 6 which lends itself to develop
the elastoplastic stress-strain relations for uniaxial conditions. The basic concepts may be generalized
using the internal variable theory of COLEMAN & GURTIN [1967] based on continuum thermodynamics
which provides an elegant repository for history dependent inelasticity. In the sequel we will confine
our discussion to rate independent material behavior. In this case starting point of the internal variable
models is the assumption that the stress tensor may be represented as a function of the current strain
tensor and a finite number of parameters, ¢, ¢o, -..q»-

o= f(€q,q,- -G (67)

These internal variables ¢y, ¢, ...q, represent the material state that depends on the process history.
Their current values is defined in terms of evolution equations which form in general a system of ordinary
first order differential equations

Gi(t) = gi(o,€,q1(t), q2(t), ..qn(t)) where i=1,2 ..n (68)

The evolution equations specify the temporal change of the internal variables depending on their current
value and input histories either in the form of stress or strain control. For strain control, the general
integral of the functional

Gi(t) = Fro<r<i(€(7), @1 (to), 42(to), --gn (to)) (69)
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needs to be evaluated numerically. The internal variables represent the memory properties of the inelastic
material behavior. Their physical meaning is to represent the dynamical process which take place because
of inelasticity at the material microstructure and to make visible their macroscopic effects. In plasticity,
they constitute the plastic strain tensor and the reduced variables for isotropic and kinematic hardening.
In elastic damage mechanics they form the damage tensor and the scalar damage variables for volumetric
and deviatoric elastic stiffness degradation. Thereby, the evolution equations are additional constitutive
equations which augment the stress-strain relation.

In the sequel we start from the uniaxial relations of the the rheological model and extend them to
triaxial conditions using an engineering approach. For illustration we consider the one-invariant von Mises
plasticity model and its extension to the two-invariant DRUCKER-PRAGER [1952] model as well as the
three-invariant extension along the line of the five parameter model by WILLAM-WARNKE [1975]. We
will conclude this section with the example problem of simple shear which will illustrate the dramatic
effect of volumetric-deviatoric interaction on the overall response behavior.

3.1 Elastoplastic Rheological Model

The serial arrangement of an elastic spring and a friction element dates back to Reuss who proposed
the additive decomposition of strain into elastic and plastic components. The combination of an elastic

E oxﬂ Ep) ‘ °

1+¢

Figure 6: Elastoplastic Serial Model of Spring and Friction Element

spring and the friction element leads to two formats of elastoplasticity, one is the ‘Deformation Theory’
of Hencky, and the other is the ‘Rate Theory’ of Prandtl-Reuss. The deformation theory is essentially
a secant-type formulation of plasticity along the nonlinear K-G model which is augmented by a plastic
load-elastic unload condition. This leads to discontinuities in the transition region from elasticity to
plasticity under repeated loading and unloading cycles. Thus, we will concentrate on the flow theory of
plasticity, although the continuity leads to overly stiff elastic response predictions when plastic loading
takes place to-the-side of a smooth yield surface without corners.

In small deformation problems the flow theory is based on the additive decomposition of the total
strain rate into elastic and plastic components,

E=é +é, (70)

the serial arrangement of an elastic spring and a plastic friction element infers stress equivalence in the
two elements. In other terms the state of stress in the elastic spring is limited by the slip conditions of
the friction element. The behavior in the elastic response regime o < o, is described by Hooke's law,

t= % (71)
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while the plastic response is active when the stress reaches the yield condition, such that under persistent
plastic loading when o = 0,

b=g (72)
Consequently, ' _ '
. o0 0 o
€ = E —+ fp - E—ep (73)
with the elastoplastic tangent stiffness
E., = ﬂ (74)
¥ E+E,

Figure 7 illustrates the elastoplastic response for a load-unload-reload input history. Note that the tangent
modulus E; = E,, may range from positive to negative values according to

> 0, Hardening
Eep { =0, Perfectly Plastic
< 0, Softening

with the understanding that a critical value for softening is reached when E;j”t =-F.
o o
/Eéfh
E, /e
5 ¥
E E
e e € e, &

Figure 7: Load-Unload-Reload Response of Elastoplastic Hardening Solid

We also note the indeterminacy of the plastic strain rate for perfectly plastic behavior, when the

plastic modulus is zero, ¢, = %. This indicates that strain rather than stress control must be used to
maintain uniqueness for elastic-perfectly plastic conditions as well as for strain-softening,
1% E

"B E+E, (75)
This assures that the plastic strain rate increases with increasing strain rate and vice versa. Moreover,
the intuitive loading condition must be replaced by a more precise yield condition of the form of the
scalar-valued yield function of stress

F(o)=lo| =0y =0 (76)
which acts as a threshold condition when the stress demand |o| reaches the yield capacity of the elasto-
plastic material. We note that plastic loading requires, (i) the stress path has to reach the yield strength,
which is here assumed to be the same in uniaxial tension and compression, and (ii) under persistent
plastic action the rate of strain must satisfy € ¢ > 0 under strain control.
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3.2 General Format of the Flow Theory of Elastoplasticity

Starting from the small strain setting, where the strain tensor is the symmetric part of the displacement
gradient, € = $[Vu + V'u], the serial arrangement of the rheological model in Figure 6 decomposes the
strain into the sum of elastic and plastic parts.

€E=¢€ +€ (77)
1. Elastic Behavior:

Extending the hyperelastic concept of a strain energy potential, we start this time from the free
energy function ¥ according to Helmholtz, in which the plastic strains and the internal variable x
account for the hardening behavior.

U = U(e, €y, k) (78)
With the classical arguments of Clausius—Duhem, the inequality of the second law of thermody-
namics yields the stress tensor o as thermodynamically conjugate variable to the elastic strains,

oV
e,

Thereby the relation between the stress rates and the elastic strain rates is defined in terms of the
fourth order elasticity tensor £ discussed earlier on in Section 2.

o and oc=E:[€—¢) (79)

2. Plastic Yield Condition:

The yield function

oF
" oo
delimits the elastic domain with the normal n to the tangent plane at the yield surface. The
geometric interpretation of the yield function in the form of a yield surface helps to visualize the

elastic region which may expand or shrink according to the underlying hardening/softening model.
Hereby, the yield resistance 7, is conjugate to the internal variable for isotropic hardenening &,

v
- Ok

Thereby, the relation between the rate of the yield resistance and the hardening variable defines
the hardening modulus H,,.

F(o,k)=f(o) —1y(k) <0  with n (80)

Ty and 7y = Hy K, (81)

3. Plastic Flow Rule:

The evolution of plastic strains is governed by the plastic flow rule,

€, =\Am with m=_— 82

P aa_ ( )
whereby m denotes the normal to the plastic potential ) which differs from the yield function F’
in the non—associated case. In the above equation, \ denotes the plastic multiplier, and Q = Q(o)
is the plastic flow potential. We speak of associated flow when m || n which infers normality of
plastic flow in the direction of the gradient of the yield function. In the case of non-associated

flow, @ # F', one speaks of loss of normality.
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4. Plastic Consistency Condition:

For plastic behavior not only the yield condition must hold, F' = 0, but also the plastic consistency
condition must be satisfied under persistent plastic action. The plastic consistency condition of
Prager F' = 0 enforces the stress path to remain on the yield surface (at least in the differential
sense).

The set of constitutive equations is completed by the Kuhn—Tucker condition:
F<0 A>0 FA=0 (83)

together with the plastic consistency condition:

F=0. (84)
From the latter the plastic multiplier results in,

. 1 _
)\:h—n:g:é with h,=H,+n:&:m (85)
P
5. Elastoplastic Stiffness Relation:
Substituting the plastic multiplier into the elastoplastic stress-strain relation yields:
n:€:€
-m
Hy+n:&:m

c=E:[e— m]=E:[é ] (86)

Rearranging results in the elasto—plastic tangent operator €., which relates the stress and strain

rates
oc=E&,:€ (87)
in the form of a rank—one update of the elastic material operator,
1 r
Ep=E——E mRAn:E=E—-—mQAn (88)
hp hp

where m = € : m and n = n : £. The update notation emphasizes that the elastic reference
tensor is being reduced by the plastic rank-one modification m®n. Note, that the critical softening
modulus is reached when hZ" = 0, or in other terms, when HI" = —n : £ : m. We also note
the loss of symmetry, i.e. €., # Sip for non-associated flow when n # m.

3.3 Special Case of J,-Plasticity

In J>-plasticity we combine the von Mises condition of plastic yielding with the plastic flow rule and the
additive decomposition of Prandtl-Reuss. In view of the deviatoric setting of plasticity we may restrict the
development of Jo-plasticity to a deviatoric stress-strain relation. For the sake of simplicity we describe
the resistance of the material by the yield strength in uniaxial tension, r, = o,, and we assume elastic
perfectly plastic behavior to eliminate the need for internal variables to describe hardening/softening.

Third Edition, Volume 3, pp. 603-633, Copyright by Academic Press, 2002. All Rights Reserved CMM-22



ENCYCLOPEDIA of PHYSICAL SCIENCE & TECHNOLOGY

1. Jy-Yield Function:

1
F(s):—szs—gaZ: (89)
2. Associated Plastic Flow Rule:
: oF
€, = \As where m=_-=s (90)
3. Plastic Consistency Condition:
. OF
F=—:5=58:5=0 91
5 (5818 (91)
The deviatoric stress-strain rates are related by
5§ =2G[é— e, =2G[é— \s] (92)
Substituting into the consistency condition
F=2Gs:[é—\s]=0 (93)
leads to the plastic multiplier: '
. s:e
A= 94
s:8 (94)
4. Deviatoric Stress-Strain Relation:
The deviatoric stress-strain rate expression may be written as
s—2Ge— 2 Cq—oaz- 299 ¢ (95)
s:8 s:s
or in short form as ®
S® s
$=G.,:€e whith G, =2G [T - ] (96)

s:8
5. Tangent Stiffness Operator of Jo-Elastoplasticity:

Including the elastic volumetric response, [tro] = 3K [tré], the elastoplastic stress-strain relation-

ship leads to:
.1 . . .
a':g[tra]1+3:K[tre]1+gep:e (97)
Considering
1
o =K[tre]l + G, : [€ — g[tré]l] (98)
The combined elastoplastic tangent relationship results in
G—E,:¢ with £,=AMo1+20[T—- 2% (99)
s:s

which has the same constitutive structure as the nonlinear K — GG model in Eq. 54.
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3.4 Example Problem of Simple Shear

In frictional materials the so-called Reynolds effect of shear dilatancy is one of the central mechanisms
which is responsible for the interaction of the volumetric and deviatoric components. In the case of
plastic loading the elastoplastic tangential stiffness relationship may be written as

1
£ep:€—h—Rp where R, =& m@n:E& (100)
P

Hereby, the plastic dyadic tensor product R, is the sole repository of stress- or strain-induced anisotropy
and for coupling between the direct and shear behavior in the case of isotropic elasticity.

For definiteness let us examine the relation between shear strains and normal stresses under simple
shear, a strain controlled test illustrated in Figure 7. The objective is to determine the source of coupling
of the direct stresses and shear strains in the case of elastoplastic formulations of increasing complexity.

€,

Y

Figure 7: Simple Shear Problem.

Figure 8 illustrates the fundamentally different response predictions of the pressure-independent von
Mises and a pressure-sensitive and dilatant two—invariant plasticity formulation in terms of I; = [tro]
and J, = L[trs®] as proposed by DRUCKER-PRAGER [1952]. A parabolic generalization of the original
two-parameter model may be developed in terms of the friction angle o and the cohesive resistance
ry = T, to define the shear strength in the form:

F(I,Js) = Jy+ap i —7, =0 (101)

The two parameters may be identified from uniaxial tension and compression test data f; and f. as
follows

"t [
anifCBft and r;:—fc?)ft (102)
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Figure 8: Simple Shear Response Behavior of One-Invariant vON MISES Model (left) and
Two-Invariant Parabolic DRUCKER-PRAGER Model (right).

The von Mises yield condition in shear, /.J, = 7, = 0.8 ksi reproduces the elastic-perfectly plastic
input, whereby the shear stress-strain relation coincides with the principal stress response. Note, strain
control coincides with the stress controlled situation of pure shear, 715 = 01 = —09 = 7, if there is
no coupling between the volumetric and deviatoric response behavior. In contrast, the simple shear
test exhibits apparent hardening, when an associated flow rule is used in conjunction of the parabolic
Drucker-Prager yield condition. Calibration of the two-parameter representation with the uniaxial tensile
and compressive strength values f! = 4 ksi and f; = 0.6 ksi leads to the same incipient shear strength as
the von Mises model. However, in contrast to the pressure-independent plasticity model, the parabolic
Drucker-Prager model exhibits very different behavior in the plastic regime because of the apparent
hardening under persistent plastic flow in spite of the underlying assumption of perfectly plastic behavior.
We observe a large increase of shear stress, which is accompanied by an equivalent increase of the minor
principal stress —o, >> 7, at the cost of reducing the major principal tensile stress from tension into
compression.

In view of these fundamental differences of pressure-sensitive vs pressure-insensitive plasticity models
we further investigate the source of these discrepancies. To this end we systematically examine the
influence of the three invariants in the plastic yield condition on the simple shear response and the shear

dilatancy in particular.

3.4.1 One-Invariant Plasticity Formulation

To start with, we consider the effect of the second invariant in the yield condition, ' = F'(p), where the
deviator p = /s : s, defines the radial distance of the yield condition from the hydrostatic axis of the
cylindrical Haigh-Westergaard coordinates &, p, 0 of stress. In this case the expression for the gradient of
the yield function defines the normal as

OF 0OF 0p F, op 1
n=o 0090~ » s where -~ ps (103)

The partial derivative, F, = OF/0p, is a positive scalar which determines the magnitude of the normal
shown in Figure 9.
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K C

Figure 9: Gradient of Generic Single-Invariant Yield Surface.

The plastic flow direction is defined by the gradient of the plastic potential. In the case of pressure-

insensitive plastic flow
mo2Q _0Q0 _Q
Jdo  0Jp do p

The expressions for n and m simplify considerably for loading in simple shear when 5,5 > 0, and when
all other strain components remain zero, €17 = €99 = €33 = Y23 = 713 = 0. At incipient yielding
the elastic shear stress is the only deviatoric component which is non-zero, s1o = T3 = G 2. With
p = /5 : 8 =/27,, the gradients of the yield function and plastic potential 7 and 1 in vector notation
reduce to,

(104)

n=[000 2F 0 0] ad m=[000 £, 00] (105)

For plastic loading in simple shear the elastoplastic tangent matrix has the simple format:

[ 4 2 2 : \
o1y K+3iG K-3%G K-32G 0 0 0 0
oo K-2G K+3iG K-3:G 0 0 0
33 K-32G K-2%G K+1iG 0 0 0 0
e (106)
T2 0 0 0 D Gl 532G FQ) 0 0 Y12
T23 0 0 0o 0 G 0 0
[ 713 ) 0 0 0 0 o g|L0

For von Mises plasticity the dyadic tensor product adds only a single term to £} on the principal diagonal.
Note that the off-diagonal partitions of the elastoplastic tangent operator are zero similar to isotropic
elasticity exhibiting no coupling between the normal stresses and shear strains and vice versa.

For completeness let us examine under what conditions does the elastoplastic tangent operator E.,
become singular. To this end we partition the elastoplastic tangent matrix into the four components and
use the Schur theorem of determinants which states

det B, = det E,, det (E,, — B, B, E,,) (107)
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A necessary and sufficient condition for det E,, = 0 is reached, when either det E;; = 0 or when the

determinant of the so-called Schur complement is zero, det, (Enn — EnsE;lesn) = 0. In the case of
no coupling, E,; = E,, = 0, and with the positive partition of the elastic stiffness, det E,,, > 0, the
only possibility that the elastoplastic tangent operator turns singular, arises when det E,; = 0. This
condition is true, if and only if the diagonal term vanishes, i.e. Ej§ = 0. Substituting the normals n and
m in Eq. 105 into the denominator h, = H, + n: E : m = H, + ;G F,Q,,, the pastic degradation of
the elastic stiffness results in

2 H,
L+ GFpgp

o_al| L]
EP=Gl1-——— (108)
[ ]

As the shear modulus is strictly positive, G > 0, and as F,(), > 0 in the case of the von Mises yield
cylinder, the diagonal shear stiffness goes to zero, Ejf — 0, only if the hardening parameter goes to
zero, H, — 0. Consequently,

det E., =0 iff H,=0 (109)

3.4.2 Two-Invariant Plasticity Formulation

In the second stage, we examine the dilatational stress relation of a two-invariant Drucker-Prager yield
condition, which includes both hydrostatic and deviatoric plastic effects as shown in Figure 10.

AP
D

Ep‘\\ ?
£
= <>

Figure 10: Gradient of Generic Two-Invariant Yield Surface.

The normal gradient of the two-invariant formulation reads in the case of two-invariant plasticity:

_OF _9POC 0Py _Fe| F,
n_aa_3§30+3paa_\/§1+ps (110)

where £ = %0' : 1 denotes the dependence on the first stress invariant I; = [tro]. The scalar derivative

is in this case Fy = 0F/0¢, while the tensor derivatives are 0¢ /0o = %1.
In analogy to the normal n, the gradient of the non-associated plastic potential is expressed as
_0Q _0Q0of 0Q0p _ Qey @

7S 4 7% — xp
™= e 0 0o Op 0o \/§1+ ps (1)
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In vector form the two gradients read for simple shear:
n— |fe fe fe 1 Qe Q¢ Qe 1
The dyadic product R, = £ : m ® n : € of the plastic tangent stiffness leads to loss of symmetry if

Fp%@p or Ing?éQg

t t
Fp,0,0] and m = [ Qp,0,0] (112)

BKPFeQe  3K°FQe  3KFeQc | \JAKGFE,Qe 0 0
BK°FeQe  3K°FQe  3K’FQ¢ | \JAKGFE,Q¢ 0 0
BK°FeQe  3K°FQe  3KFQc | \JAKGF,Qe 0 0

Ry = | oo (113)
ViKGFQ, \[3KGFRQ, \[3KGFQ, i 1G°FQ, 0 0
0 0 0 : 0 0 0
i 0 0 0 : 0 0 0 |

The hardening parameter in the denominator is comprised of three terms,
1
hy, = H, + §G F,Q, + 3K F:Q);¢ (114)

whereby the third contribution introduces an additional term, which is positive as long as F¢Q¢ > 0.
As expected, now there is coupling between the normal stresses and the shear strain. This shows that
plastic loading in the two-invariant formulation results in normal stresses, which are negative, as long
as F,QQ¢ > 0 and vice versa F¢(), > 0. In other terms, pressure-sensitive plastic loading in simple
shear induces compressive confinement in the case of kinematic constraints. Thereby, the volumetric-
deviatoric interaction depends to a large extent on the volumetric component of the plastic flow rule,
which is positive in the conical region of the plastic potential, and which diminishes to zero, i.e. Q¢ — 0,
when the plastic potential approaches the von Mises condition.

The singularity of the elastoplastic tangent operator E,, is again determined in terms of singular
partitions using the Schur theorem of determinants. The diagonal format of the shear partition suggests
to examine the diagonal term

1
2H,+6K I,

1+ pGFprst
The elastic bulk and shear moduli, K, G, and the derivatives F¢, F,, and ()¢, (), are all positive in the
conical region of the yield surface and the plastic potential. Consequently, the diagonal term will remain
positive, Fi% > 0, and the simple shear response exhibits ‘apparent’ hardening in the case of perfectly
plastic behavior, when H, = 0. The tangent operator becomes singular only when the plastic modulus
reaches the limiting softening value

EP =@ |1 (115)

H'™" = —3K FeQ¢ (116)

In summary, softening is needed to compensate for the apparent hardening effect of the volumetric
dependence of the yield function and the plastic potential. Thereby, the singularity depends critically on
the volumetric components of the yield condition and the plastic potential , i.e. H, — 0 as F:Q¢ — 0.
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3.4.3 Three-Invariant Plasticity Formulation

In the third and final study we generalize the plasticity formulation and include the effect of the third
invariant in the yield function and the plastic potential. The effect of the third invariant leads to the
triple-symmetric shape of the yield function in the deviatoric plane as illustrated in Figure 11.

In this case the gradient operators are becoming considerably more involved in view of the definition
of the third invariant, which is here expressed in terms of the angle of similarity

6 = %cos%%ﬁf’] (117)
where .J; = det s.
The gradients nn, m are comprised of three contributions, i.e.
and L0Q  0QoE 0Qop Q00 Q. Q, o
m_a—a_6—§8_0'+8—pa_a' %87_%1+73+Q06_a (119)

The additional scalar derivatives include Fy = %_1; and Qy = %—Cg, while the tensor derivative is complicated,
as

@ = v3 L 0y _ 3 0T with % =8-8— 2J 1 and % =s (120)
0o 21 —cos230 | J2P 0o 2J3° 9o do 377 do
In vector form the gradients for simple shear appear as:
Fy Fy F Fy F F 1 ]t
n=|-ty_—0 &, 0 TE 0 F 00 121
[\/5 237, V3 2V3me V3 V3ma v2 (121)
and .
Q¢ Qo Q¢ Qo Q¢ Qs 1 ]
m=|—+ 7—+ 7—_—7—Q7070 122
5 s VS e e e (122
AP %?
/B

\Fp)
]

Figure 11: Gradients of Generic Three-Invariant Yield Surface.
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In short, the plastic contributions of the third invariant enter the dyadic product R, =€ : m®@n : £
affecting the coupling partitions RY_ and R” as well as the direct partition R?, . To understand their
effect we study the individual terms in the different 3 x 3 partitions below,

Ri, RY, Ri
R}, = RS RS, R§3 (123)
Ry Ry, R
where
G? Fy Qg

R11—R22—R12—R§71:3K2F§Q€+ 312 +T1 (F9Q€+F£Q9) (124)

4GP FQy 2K G

Riy =3 K® FeQ¢ + 5 (Fy Qe + Fe Qp) (125)
37—12 7—12
2G%2 Fy Q) Kd
RYy = Rb, = 3K? FQc — ; a2 (Fe Qo — 2Fp Q) (126)
Ti2 T12
2G2? F, Kd
RE = Ry = 3K FeQ¢ — 3729 ., - (Fy Qe — 2F¢ Qo) (127)
12

The individual terms indicate that the dependence on the third invariant, £} (), introduces different
terms in the in-plane and out-of-plane stiffness contributions as opposed to the dependence on the first
invariant, F ()¢. In contrast, the shear partition maintains the same format as the two-invariant model,

00
R, = 0 0 0 (128)
00

The coupling partitions exhibit a distinct difference between in-plane and out-of-plane stiffness contribu-
tions in simple shear,

VEKGE,Q+ S22 o, 0

R, = \[KGFQngGZF;l‘jﬂ, 0, 0 (129)

2G2 F,Q
VEKGE,Qe— 2259 o
and .

VEKGFQ,+ %% o 0

Rign:— VEKGFQ,+ %% 0, 0 (130)
VEK GFQ,— 2220 o

We note that the entries of the dyadic product are no longer the same as in the two-invariant formulation.
In fact, the negative sign in the third entry introduces additional structure and distinguishes in-plane
from out-of-plane action, which reduces significantly the out-of-plane confining stress o33 under simple
shear. We also observe the loss of symmetry in all partitions except for the shear partition, when the
plastic dilatancy differs from the frictional resistance of the yield condition, Q¢ # F¢. It might surprise
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that the shear partition RZ, remains unchanged except for the denominator h, which is augmented by
an apparent hardening term from the contribution of the third invariant, i.e.

1 3 F
hy = Hy + G F,Q, + 3K FeQc + SK j?”
12

(131)

Analysis of the singularity in simple shear leads to the question, when does the diagonal term vanish,
ie. Eff — 0. The answer follows the previous argument of the two invariant formulation. In fact,
det E., = 0 when the plastic softening modulus reaches the limiting value,

o 1F,
Hlmt = 3 [FgQg - ——9?9] (132)
2 T
This indicates that dependence on the third invariant further stabilizes the elastoplastic tangent operator
beyond the limit point condition of the two-invariant format.

3.5 Concrete Plasticity Model

To illustrate the observations above we resort to numerical simulation of the simple shear test with the
help of the three-invariant plasticity model by KANG & WILLAM [1999]. In this case, the curvilinear
loading surface F'(£,p,0,qn,qs) = 0, is C'-continuous except at the vertex in equitriaxial tension, see
Figure 12a. The triaxial concrete model exhibits pressure-sensitivity of the deviatoric strength as a func-
tion of the third stress invariant, inelastic dilatancy during shearing, and brittle-ductile transition from
fragile behavior in tension to ductile behavior with increasing confinement.

Failure Envelope of New Triaxial Concrete Model
6.0

* High Conf. Tension Evolution of Deviatoric Section with &
x High Conf. Compression a,/f';
4.0 0 Uniaxial Tension 1
® Uniaxial Compression -0/t
Tensile Meridian + Vertex in Equitriaxial Tens.
20
, &
P00 °
-2.0
a, /f
-4.0 Compressive Meridian
_6.0 1 1 L L L
-100 -80 -60 -40 -20 00 2.0

gr,
Figure 12: (a) Tension and Compression Meridians, (b) Deviatoric Contours of Triaxial Concrete
Envelope, KANG & WILLAM [1999].

The plastic loading function is comprised of three components, the triaxial failure envelope, and a
hardening or softening contributions, which are mobilized alternatively in the pre- and post-peak regions:

F(f, P, 97 Ghs QS) - F(f, P, G)fail + F(é‘a P, 07 k(Qh))hardg + F(é‘; P, 0; C(Qs))softg (133)
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The failure envelope
o
p’I“(G, 6) P1 g B 50
F(&p,0)fait = —5— — & =0
T fc fc 51 _50
fixes the triaxial strength in stress space in terms of a curvilinear triple-symmetric cone. Figure 12 (a)
depicts the failure envelope in terms of the meridians in triaxial compression and extension, and (b) in
terms of the deviatoric traces at different levels of hydostatic stress.
The simple shear response is shown in Figure 13 for the three-invariant concrete model. In comparison
to the two-invariant formulation shown in Figure 8b, the shear strength and shear ductility are reduced,
because of the diminished out-of-plane confinement of the three-invariant model.

(134)

Stress—Strain Response in Simple Shear
Non-Associated

4.0
|Quanl=0
3.0 R
|E
@ O
< 2.0 :
= M
16°
1.0 R
00 L L L
0.000 0.005 0.010 0.015 0.020
yXZ

Figure 13: Simple Shear Response of Three-Invariant Concrete Model, KANG & WILLAM [1999].

Note:
The non-associated plasticity model exhibits loss of stability (det £2™ = det £)," = 0) and
discontinuous bifurcation in the form of localized failure (det Q,, = det Q,,, = 0) in the apparent
hardening regime before a limit point condition is reached. For an understanding of the different
failure diagnostics the reader is referred to Section 4 and to Appendix Il for additional comments

on elastoplastic failure in plane strain.

4  Analysis of Material Failure

In this section we examine different criteria for initiating failure at the constitutive level of materials.
The traditional approach in strength of materials is to probe demand versus resistance with the aid of
a limit state condition. This leads to the geometrical visualization of the triaxial state of stress and its
proximity to the envelope condition according to OTTO MOHR [1835-1918].

Note: The geometrical interpretation of the triaxial strength hypothesis F' = F(o) = 0 leads to
a critical combination of normal and shear tractions o, o7 on a critical failure plane 46 which
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T
F(o.1)=0
P
Cjzecr B,
0] O3 O g, (0) g,
5 A [
o, ' !
o,

Figure 13 MOHR Concept of Universal Failure Envelope

determines the mode of failure. Thereby the Mohr envelope criterion does not only tell us when
failure takes place, but also what kind of failure mode develops. The main draw-back is that it does
not depend on the intermediate principal stress since the major principal circle is governed by the
maximum and minimum values of stress, R,z = %|01 — o3]. Representative strength criteria for
cohesive-frictional materials include the maximum shear stress conditions of MOHR-COULOMB,
TRESCA, and LEON, as well as the maximum normal stress condition of RANKINE for tensile
cracking. Alternatively to strength of materials, failure has also been described by deformation
hypotheses F'(€) = 0 such as the SAINT VENANT criterion of maximum normal strain for tensile
cracking. Moreover, energy criteria F'(o : €) = 0 have been proposed to describe material failure
such as the BELTRAMI condition of maximum strain energy and the HUBER criterion of maximum
distortional energy. In fact, fracture criteria of a critical stress intensity factor or an equivalent
strain energy release rate may also be included in this list of failure criteria, F'(K;, K7, K1) =0
and F(Gf) = 0, though discrete fracture mechanics normally starts from the existence of a crack
or a notched defect, and defines crack propagation in terms of fracture concepts. In this sense,
failure criteria differ from fracture criteria in a fundamental fashion, the former indicate initiation
while the latter monitor propagation.

In the original envelope concept of O. Mohr the actual mechanism behind material failure was left
open in terms of its kinematic or static manifestation. There was the conceptual distinction between
tensile cracking and separation of material interfaces in mode |, and frictional slip among adjacent
material interfaces in mode Il. However, nothing was said about what happens after failure initiates. In
fact, failure initiation was assumed to be critical and trigger collapse of the entire structure.

In view of recent progress in localization analysis it is important to keep in mind that failure is a
process of events, which start small at the material level, and which leads to progressive deterioration
of the continuum into a discontinuum. Figure 14 illustrates thow his process leads to a progression of
kinematic deterioration. It initiates in the form of diffuse failure, and leads through localized, weakly
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discontinuous failure to discrete, or strongly discontinuous failure. The following discussion will be
restricted to the first two stages of failure, whereby diffuse failure is characterized by loss of material
stability and loss of uniqueness, while localized failure results in the formation of weak discontinuities,
which signal the onset of kinematic degradation of the continuum into a discontinuum synonymous with
loss of ellipticity.

DIFFUSE FAILURE LOCALIZED FAILURE || DISCRETE FAILURE
Bt B+ Bt
X"
n
B~ P P
continuity weak discontinuity strong discontinuity
at = A Wt = 4 at £
vat = Va~ vat # Via© vat # Vi~

Figure 14: Kinematic Deterioration of the Continuum into a Discontinuum

4.1 Loss of Stability—Material Instability

The loss of material stability was identified early on by D. DRUCKER and R. HILL with the loss of
positive internal work. In fact, the exclusion functional of positive second order work density,

1 1
dQW:§d:é:§é:5t:é>0,Vé7éO (135)

is widely accepted as a sufficient condition for material stability.
In the case of non-associated elastoplasticity, where €., # £, this criterion leads to

1 1 1 1
2 _ .. Lo .. t Lo .. Lo .. — — — — Lo
d W—§e.8ep.e—ze.[88p+5ep].6—56.8.6—4—%6.[m®n+n®m].e (136)
In this context, it is important to recall, that the energy functional extracts only the symmetric part
of the tangent operator which leads to the following observation based on the Bromwich eigenvalue
bounds of non-symmetric matrices:

)‘min(gzzm) < §R()‘min(‘gep))-- < )‘ma:v (5Z§m) (137)
In other terms, the instability argument coincides with the loss of positive definiteness of the symmetric

material operator, oo ! .
det £ =0 — )\mm(é'eg )=0 (138)
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This argument leads to the critical value of plastic hardening for stability, see MAIER & HUECKL
[1979]:

;1
tabil __
Hy = 2

Therefore, the sufficient condition for stability may be turned around into a upper bound argument of
loss of stability in terms of the maximum plastic modulus H st > Fylimit,

{\/(n:ﬁ'o:n)(m:ﬁ'o:m)—n;go;m (139)

4.2 Diffuse Failure — Loss of Uniqueness

According to Figure 14, diffuse failure maintains continuity in the rate of displacement and the dis-
placement gradient fields. It corresponds to a stationary stress state which defines a limit point on the

response path of the material:
=0 (140)

For incrementally linear materials with o = &; : €, this infers that,
E,:6€=0 (141)

Thus the condition for the loss of uniqueness is equivalent to a singular behavior of the tangent operator
&
detE& =0 = Apm(E) =0 (142)

Recall, that the elastoplastic tangent operator involves a rank—one (rank—two for pressure sensitive
plasticity) update of the elastic material operator,

1
Ep=E——mOn (143)
hp
whereby the update tensors are defined as follows:
n = &:
m m (144)
n = n &

Pre—conditioning of the elasto—plastic tangent operator with the inverse elasticity tensor the following
relation appears.

m@n
h’P
Due to the rank—one update structure of the elasto—plastic tangent operator, the critical eigenvalue A,
of the generalized eigenvalue problem may be evaluated in closed form. This motivates the introduction

of the scalar—valued measure of material integrity de,

E.EP=T-E": (145)

B n:€E:m
_Hp—i—n:ﬁ:m'

Amin (E71 1 EP)=1—de  with  dg: (146)
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From the above definition, a necessary condition for loss of uniqueness leads to the critical hardening
modulus Hzl,“”’mt = ( associated with full loss of integrity,

1—de =0 (147)

The criterion presented above can only be understood as a necessary condition for the loss of uniqueness.
For non—symmetric elasto—plastic tangent operators, which arise in non—associated plasticity formula-
tions, loss of stability in the form of det £ = 0, provides a lower bound condition according to
the Bromwich bounds. Consequently, loss of stability which is synonymous with a singularity of the
symmetric tangent operator, takes place before the limit point condition in Eq.(142) is reached.

4.3 Localized Failure — Loss of Ellipticity

The localization condition is based on the early works of J. HADAMARD and R. HILL. In contrast
to the diffuse failure mode described in the previous section, localized failure of weak discontinuities
is characterized through a discontinuity in the rate of the displacement gradient, while the field of the
displacement rate itself is still continuous. According to the Maxwell compatibility condition, the jump
in the rate of the displacement gradient may be expressed in terms of a scalar—valued jump amplitude «,
the unit jump vector M and the unit normal vector to the discontinuity surface N shown in Figure 14.

|Viu]]=a M @ N — e =a [ M &N "™ (148)

Equilibrium along the discontinuity surface requires that the traction vectors are equal and opposite on
both sides of the discontinuity
i) =t" - =0 (149)

According to Cauchy’s theorem, we have
lt] =N -[lo]=N-[€:¢é]=0 (150)

E,]] = & — €7 =0, the localization condition may

With the assumption of a linear comparison solid, |
be expressed in the form of an eigenvalue problem,

whereby @Q; denotes the tangential localization tensor. The necessary condition for the onset of local-
ization is thus characterized through the singularity of the localization tensor which happens to coincide
with the acoustic tensor in wave propagation.

det@Q =0 = Apn(@Q,) =0 (152)

The elasto—plastic localization tensor may be expressed as a rank—one update of the elastic acoustic
tensor

1
Qp=Q—-—e,Qe, (153)
h’P
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whereby the following abbreviations have been introduced for the update vectors e, and e,,.

e, = N-E:m

(154)
e, = n:E-N

Instead of probing the lowest eigenvalue of the localization tensor Eq.(152), we resort to the generalized
eigenvalue problem det[Q ™" - Q] £ 0 in order to detect whether the localization tensor turns singular,
see OTTOSEN & RUNESSON [1991]. Pre—conditioning of the elasto—plastic acoustic tensor with the
inverse of the elastic acoustic tensor leads to:

en Xe,

Qil'erzl_Qil' hp

(155)

The closed form solution for the lowest eigenvalue A,,;, introduces a scalar—valued measure of integrity
with respect to localization in the form of

€n 'Q_l =

:Hp+n:5:m

Mnin (Q7' Qe ) =1—dg  with  dg (156)

It defines a necessary condition for localization as well as the critical hardening modulus H};’C indicating
loss of ellipticity, when

l—dQé() — Hlﬂoczen-Q_l-em—n:S:m (157)

For non—symmetric elasto—plastic tangent operators in non—associated plasticity, loss of strong ellipticity
in terms of a vanishing determinant of the symmetric part of the tangent acoustic operator, det Q7)™ <

det Q,, = 0, provides a lower bound condition according to the Bromwich theorem. Consequently,
loss of strong ellipticity, which is synonymous with a singularity of the symmetric localization operator
may take place before the limit point condition Eq.(142) is reached. But most importantly, the critical
hardening modulus for localization may still be positive, compare RUDNICKI&RICE [1975] before a limit
point is reached because of the symmetric features of the second order localization tensor when compared
to the fourth order material tensor.

4.4 Geometric Localization Condition

The analytical localization condition Eq.(152) may be illustrated geometrically in the form of an envelope
condition in analogy to the contact condition of O. Mohr. In the case of the two-invariant plasticity
model the localization condition plots as an ellipse in the & — o Mohr coordinates. The localization
envelope was developed by BENALLAL&CowmI [1996] for elasto—plastic material models.

In the following, the geometric localization format will be established reproducing some results from
KuHL, RAMM & WILLAM [2000] to illustrate the model problem of simple shear. To this end we
briefly summarize the basic ideas of the geometric localization analysis for the non—associated parabolic
Drucker-Prager model introduced in the previous section. Eq.(157) indicates the onset of localization
when,

H*+n:E:m=e, - Q e (158)
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Herein, € denotes the fourth order elasticity tensor, while Q! is the inverse of the elastic acoustic tensor

which can be determined analytically.

£ = A 1®1 + 2G T
01 _ i ) # NN (159)
e 2G [1 — V]
In the following, the localization condition Eq.(158) is recast in the Mohr coordinates o and or,
o = N.-o-N
(160)
02 = [o6-N]-[e-N]— o>
Combination of these terms defines the localization ellipse in the Mohr coordinates,
[0 — 00]2 oz B
— + B = 1, (161)

where o, locates the center, while A and B determine the half axes of the ellipse in the normal and
tangential stress components, respectively. In the case of the parabolic Drucker-Prager two-invariant
model, the normal to the yield surface n and the normal to the plastic potential m take the form.

oF
n = — = s+apl
do (162)
m = 3_@ = s+apl
- 0o @
The abbreviations introduced in Eq.(154) result in the following expressions,
e, =2Gs - N+3Kar N (163)
en=2Gs - N+3Kag N (164)
The localization ellipse is defined in terms of the parameters
1 1+v lar + ag]
o = — - V| (0%
37 o2t e
42— o LTV (165)
1—2v )
1+ v s 14+v
B = —H,+J [
et gyl Feel i araq
where ap, ag denote the friction and dilatancy parameters of the parabolic Drucker-Prager model.
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Zecrit

to,

Figure 15: Mohr Representation of Localization Ellipse and Major Stress Circle

The geometrical properties of the localization ellipse is illustrated in Figure 15. Note, that the center
and the shape of the ellipse are not influenced by the plastic hardening modulus H,. The hardening
modulus only influences the size of the ellipse. Figure 15 depicts also the major Mohr circle of stress,

[0 —0)* + 0% = R?, (166)

which characterizes the actual stress state. Herein, 0. and R denote the center and the radius of the
circle, respectively in terms of the principal stresses o; and o3.

o1+ 03
O, =
2 (167)
R — 01 — 03
2

The tangency condition results in a quadratic equation, which defines the analytical solutions for critical
failure angle 0" and the critical hardening modulus Hzl,"c. For the non—associated Drucker—Prager
plasticity model, the critical failure angle may be expressed as follows:

2 gorit _ B —[[1 = 2v][oc — I /3] + [1 + V][ar + aq] /2]

TR+ [L-2v]fo.— L /3] + 1+ v][ar + aq] /2] (168)

tan

The critical failure angle is strongly influenced by the friction coefficient o and the dilatancy parameter
aq. Furthermore, the failure angle is also influenced by Poisson’s ratio. The analytical solution for the
critical localization modulus takes the following form.

, 140 2 [+
R e LA = L]

which may be positive only in the case of non-associative flow when ap # ag.
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4.5 Model Problem of Simple Shear

Under strain control the direct shear experiment exhibits different levels of dilatancy depending on the
dyadic product in the plastic portion of the elastoplastic operator assuming that the elastic behavior is
isotropic. The confinement of full strain control introduces failure modes that vary from a ductile shear
failure mode under high confinement to brittle failure under zero confinement. Thereby, an intriguing
consequence of the Reynolds effect is the apparent hardening of the perfectly plastic material model
which arises because of the constrained dilatancy.

MODEL PROBLEM DUCTILE FAILURE  BRITTLE FAILURE

2@“;? it
/o |

4_

<_

high confinement

simple shear low confinement

Figure 16: Model Problem — Simple Shear

In the numerical simulation of simple shear the in—plane shear strain 7,5 increases monotonically. The
critical directions of localized failure are studied by means of the non—associated parabolic Drucker—
Prager plasticity formulation when ag = 0 which corresponds to incompressible plastic flow. Thereby,
the influence of lateral confinement is increased gradually by increasing the contrast ratio of compressive
to tensile strength, f! : f/. This ratio directly affects the value of the friction coefficient avp, whereas
the parameter o is kept zero according to a plastic potential of the von Mises type.

1 f v=0.000 v=0.125 v=0.250 v=0.375 1=0.499
1:1 45.00° 45.00° 45.00° 45.00° 45.00"
3:1 35.26" 33.99" 32.69° 31.36" 30.01°
5:1 29.45° 27.240 24.90° 22.38" 19.64°
8:1 22.20° 18.26° 13.37° 5.39° 0.00°

12:1 11.78° 0.00° 0.00° 0.00° 0.00°

Table 1: Critical Failure Angle of Parabolic Drucker-Prager Model — Simple Shear Problem

Table 1 summarizes the critical failure angle 6" for different Poisson’s ratios and strength ratios f! : f/.
The critical failure angles range from 0° to 45°, thus including failure modes which range from pure
mode | decohesive failure to mode Il slip failure. As expected, the critical failure angle decreases with an
increase of lateral confinement which is caused by increasing the contrast of the compressive to tensile
strength. Moreover, the influence of lateral confinement increases for larger values of Poisson’s ratio.

Figures 17 to 19 show the result of the corresponding geometric localization analysis for Poisson’s ratio
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of v = 0.2. The first figure is for a strength ratio of f. : f/ = 1 : 1. This choice corresponds to a
vanishing friction coefficient, ap = 0.0, representing the classical yield function of the von Mises type.
For this analysis, two critical directions are found under % = 45° and 6" = 135° indicating mode I
shear failure. This mode is typically observed in pressure-insensitive metals exhibiting Luders bands.

v

—

Figure 17: Geometric Localization Analysis — f/: f/ = 1:1, KunL & AL [2000].

Figure 18 depicts the result of localization analysis for the strength ratio f! : f/ = 3 : 1 representative
for cast iron. The corresponding friction coefficient of ap = 0.667 induces relatively low confinement.
Again, two critical directions are found, which have rotated slightly towards the direction of maximum
principal strain at 45°. The corresponding critical failure angles of # = 33.211° and § = 146.79° indicate
mixed shear-compression failure.

A o1
\\\ 1.0
A
?

zecrit

o

Figure 18: Geometric Localization Analysis — f/: f/ = 3: 1, KunL & AL [2000].

Finally, the compressive strength is assumed to be twelve times the tensile strength, f! : f/ =12 : 1,
which introduces high confinement. The friction coefficient takes a very large value of ar = 3.667,
which is representative of cementitious materials like concrete. For this class of materials with a very
large contrast between compressive and tensile strength values, a brittle mode of failure is observed.
Figure 19 illustrates mode | decohesive failure for which the critical direction corresponds to the direction
of maximum principal stress, where §7* = (°.
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Figure 19: Geometric Localization Analysis — f! : f/ =12 : 1, KuHL & AL [2000].

5 Elastic Damage Models

Elastic degradation formulations have received increasing attention since their inception by LAZAR
MARKOVICH KACHANOV (1914-1993). Nowadays damage models are used regularly to describe the
reduction of the elastic stiffness properties in quasi-brittle materials, such as concrete, rocks, ceramics
etc, see LEMAITRE [1992]. For improved realism, additional features have been incorporated beyond
the basic format of a scalar damage factor in order to account for different stiffness properties in tension
and compression, to capture stiffness recovery due to micro-crack closure, and to model the interaction
of damage and plasticity processes.

As indicated in the earlier Section 2.2.1 the basic secant formulation encompasses the simplest format
of isotropic damage, which has emerged in the literature. Most scalar damage models start from the
basic notion of the effective area concept by Kachanov,

A
Agp=A—Ag=[1—dA  where d:jf

according to which the internal stresses are transferred by the intact material skeleton. In other terms,
distributed microdefects and stress concentrators reduce the effective load bearing area as compared
to the nominal area. This argument leads directly to the effective stress concept through equilibrium
considerations, whereby

and  0<d<1 (170)

O’A:O'effAeff leads to o= [1 —d]O'eff (171)
The strain equivalence concept €.r¢ = € of a parallel system of damaging elements leads to the classical
scalar format of elastic damage,

Ocff = EGeff such that o= [1 — d]EG (172)

The [1 — d] factor reduces the elastic stiffness properties, when d = 0 — 1. In summary, the elementary
damage model leads to the secant stress-strain relationship,

Es
E
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For a more differentiated isotropic approach the degradation distinguishes between volumetric and
deviatoric damage. In the case of anisotropic degradation a number of representations have been pro-
posed, starting from vector, to second, fourth and eight order tensor formulations. Thereby, the most
popular concept is the second order damage tensor [d;;] = d and its equivalent integrity tensor,

(b =1—-d or ¢ij = 61‘]‘ — dij (174)

Whereas the secant formulation of elastic stiffness degradation is well established for isotropic as well
as anisotropic damage, the constitutive formulation of the damage process requires a loading function,
a damage rule and some hardening softening laws that describe the degradation process in terms of a
reduced number of internal variables. In the spirit of the internal variable theory they need to be defined
in the space of conjugate thermodynamic forces, which turns out to be the strain energy density function
when a scalar damage variable is used.

5.1 Basic Format of Elastic Scalar Damage

In the traditional [1 — d] model of scalar damage, the isotropic stiffness and compliance tensors are
replaced by their secant values,

1

gs = []_ - d]go and Cs = mco (175)
Differentiation of the secant relations leads to,
. . . d
gs = —dgo and Cs = mcs (176)

The compliance term suggests to change variables and to use the logarithmic scalar damage variable,

: d : 1
E_?d where E—/E—ln(l_d

This permits us to rewrite the secant tensors and the derivative of the compliance in the form of

) and d=1-¢* (177)

E,=e '€, and C,=¢'C, suchthat C,=/C, (178)

In analogy to plastic associativity we need to examine the thermodynamic force conjugate to the

damage variable in the dissipation inequality. The recoverable part of the elastic energy density is a
function of the current secant stiffness or compliance properties, i.e.

2W=€:E:e=0:C;: 0 (179)

Differentiation leads to the following energy exchange

. 1 .
W:a:é—ia:cs:a (180)

where o : € is the external energy supply and W the increase of elastic strain energy density. Thus, the
difference defines the dissipation rate, which must remain positive according to the second thermodynamic
law,
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. .1 .
D:J:é—Wzia:Cs:a'ZO (181)

The thermodynamic force Y, which is taken to be conjugate to the basic change of the secant compliance,
is

. . 1
D=-Y:C, where —y:§a®0' (182)

In the scalar format of logarithmic damage, the thermodynamic conjugate force reduces to the elastic
strain energy density function W, as

. .1 . .
D:—y::Cs€:§a:CS:a€:W€ (183)

For associativity, the damage function needs to be expressed in terms of the conjugate thermodynamic
force, which delimits the undamaged response regime of the strain energy resistance function r4 in
analogy to the yield condition of plasticity,

Fy=F(W,0) = W — rg(f) = 0 (184)

In other terms, the resistance function r4 = W is the internal strain energy of a specific test environment
following the classical argument of Beltrami, or its deviatoric component in the case of the distortional
energy criterion of Huber.

JEO 6

e T &

\ESNES -

¢ €

Figure 20: Response Behavior of Elastic Degradation

The derivation follows the elastoplastic format developed by CArROL, Ri1zz1 & WiLLAm [2001] for
elastic dagradation. Starting from the decomposition of strain rate into an elastic stress producing and
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a degrading strain component, € = €. + €4, illustrated in Figure 20, the current secant stiffness is being
used to differentiate between the elastic stress producing deformations and the inelastic damage stress.
This results in zero permanent deformations under load-unload cycles, though dissipation will take place
according to the degree of nonlinearity during loading as opposed to linear unloading.

The set of rate equations which describes progressive degradation follows the individual steps of the
flow theory of plasticity:

1. Stress-Strain Rate Relation: o = E;: € and 6 = &, : [€ — &4]
where the rate of damage strain defines the deviation from linearity with regard to the linear secant
stiffness as indicated n Figure 20.

2. Damage Rule: €5 = }\md,
where m; = C; : o = € defines the directional properties of elastic degradation, and where the
damage multiplier A\ defines the magnitude of the inelastic damage strain.

3. Damage Threshold Condition: Fy = f(Y) —rq(A) =0,
where f(Y) denotes the demand in terms of a scalar-valued representation of the conjugate force
in the dissipation inequality, and where r; defines the threshold resistance function.

4. Consistency Condition for Persistent Elastic Damage: Fy =ng: 6 — Hy\ =0,

where ng = % is the gradient of the damage function and where H; = —% denotes the

hardening/softening modulus of the resistance function.

5. Damage Multiplier: A= h—ldn €, €
where the strain-driven format of damage introduces the denominator hy = Hy; + ny @ € :
my which is subject to the same constraint, hy; > 0, as the analogous denominator term in
elastoplasticity. This leads to the critical softening modulus for elastic damage H{" = —ny: €, :
my.

6. Tangential Scalar Damage Properties: E.q = €5 — h—ldgs TMmgQng: E;
where the main difference from elastoplasticity is the secant reference stiffness. The constitutive
format has the same structure as elastoplasticity except that £ # const..

In the isotropic case of the logarithmic scalar damage model, A =/, and both, the damage rule as
well as the gradient of the damage function are associative as long as the damage function is expressed
in terms of the conjugate force,

oF,
Fy=W —ry(f) =0 with nd:a—aflzcs:a:e (185)
The hardening/softening modulus Hy at constant stress is defined as,
8Fd aTd
Hj=——=— 1
T o (186)

From these terms the tangent stiffness of elastic degradation may be assembled in the standard manner
which yields,
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1
Eu=¢€,——00 (187)
hq
— Org

where the denominator iy = %4 +0 : € must remain strictly positive under strain control. The symmetric
format of the tangent stiffness operator is a consequence of the associative damage function, in contrast

to damage functions such as the strain-based damage model of Mazars and his co-workers.

5.2  Simple Shear Response of Logarithmic Scalar Damage Model

In what follows we compare the results of the scalar-valued damage formulation with the corresponding
elastoplastic results in Section 3.4 in order to assess their volumetric-deviatoric interaction.

In analogy to plasticity, the elastic damage matrix may be partitioned into four submatrices which
correspond to the normal and shear components of stress and strain. In the case of isotropic elasticity,
there is no coupling between elastic normal and shear stresses, and normal and shear strains in the initial
stage before damage takes place.

Strain control of the simple shear test results in 75 = G712 at the onset of damage. Substituting
into the elastic damage operator leads to the rate equations

o K, + 4G, K,-2%G, K,-2G, : 0 0 0 .
o11 .

2 4 2 -
. K,-%G, K,+3%G, K,-32G, 0 0 0 0
b33 K,—2G, K,—2G, K,+1G, : 0 0 0 0

= (188)
12 0 0 0 D G-l 00 T2
Ta3 . 0
| s 0 0 0 : 0 Go 0 (| o |
i 0 0 0 : 0 0 G, |

The coupling partitions are zero showing no interaction between the normal stresses and the shear strains,
when the material experiences damage in analogy to the relation in Eq.(106) for Jo-plasticity.

5.2.1 Singularity of Tangent Damage Operator

Possible singularities of E.; may be studied again with the Schur theorem of zero sub-determinant. We
note that the normal partition of the stiffness matrix E° simply reflects the degradation of the intact
elastic partition E° by the integrity factor e = 1 — d as £ — oo. The second possibility, which could
cause the tangent operator to become singular, is the shear partition, E°?. The two diagonal terms E¢¢
and E¢d are affected by degradation of the elastic properties, they will induce a singularity only when
e~* — 0. The diagonal term E$¢ however, can diminish to zero before the material is fully damaged,
since

1
Eff = e™'G, — h—dT122 =0 (189)
when ) )
T T
ha = 6_g1é0 = G% = T12712 (190)
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The damage denominator hy = H; + o : € infers that the hardening modulus must be zero, i.e.

or
Hd = & =0 when hd = T12712 (191)
for any value of damage, ¢. Thus for perfectly damaging behavior, when H; = 0 we have E§{ = 0, and
consequently the tangent operator turns singular, det E.; = 0. This behavior is very much analogous
to pressure-insensitive von Mises plasticity and holds independently of the load condition, when elastic
damage is restricted to the deviatoric response behavior.

5.3 Damage Models under Simple Shear

To illustrate the performance of damage models let us consider again the strain-controlled load case
of simple shear. To start with, we examine the relationship between scalar damage mechanics and the
earlier development of one-invariant von Mises plasticity. Comparing the governing tangent operators in
Eqgs.(88) and (188) we recognize the same structure except for the integrity factor e ¢ in the case of scalar
damage. Using the equivalent energy density value to calibrate the damage threshold r, = %75 Figure
21a shows that the response behavior is identical to that of elastoplasticity shown for monotonic loading in
Figure 8a. The basic difference between damage and plasticity shows up when we consider cyclic loading
which takes place along the degraded secant stiffness, and which does not distinguish between tension
and compression because of the underlying Beltrami condition of a maximum strain energy threshold.
There is no confinement effect and the shear strength in this strain-controlled problem coincides with the
tensile strength. Since the simple shear response may be viewed as an equi-biaxial tension-compression
test with no direct-shear coupling, all damage stresses degrade exponentially according to the logarithmic

damage evolution, in tension as well as in compression and shear.
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Figure 21: Simple Shear Response: (a) Scalar Damage Model, (b) Anisotropic Damage Model, CAROL
ET AL [2001].

In contrast, we consider the recent anisotropic damage formulation of CAROL, Ri1zz1 & WILLAM
[2001] to examine the influence of anisotropy on the volumetric-deviatoric interaction. In this case a
second order integrity tensor ¢ = 1 — d is adopted in extension of the pseudo-logarithmic scalar format
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above. Resorting to the so-called energy equivalence of Cordebois & Sidoroff, where neither effective
stress nor effective strain coincides with their nominal counterparts, we develop a fourth order damage
effect tensor,

Ocff=0Q:0 and e=a': €y (192)

Assuming linear elastic behavior at the level of effective stress and effective strain, the resulting secant

compliance retains symmetry,
C.=a':C:a (193)

In the principal axes of damage, the damage effect tensor reduces to diagonal form,

(¢ 0 0
0 ¢ O 0
a=| L0 % (194)

V102
0 \% ¢2¢)3

V3o |

Consequently, the corresponding secant compliance of anisotropic damage has the format,

¢% —Vp1s —VP1P3 |
—VQa1 o —V a3 0
1| —vospr —vosps 3
C,=— 195
E 2[1 + v]p1¢o (195)
0 2[1 + Va3
L 2[1 + v]ps¢; |

where the secant stiffness involves five independent material parameters as opposed to nine in orthotropic
elasticity. For damage evolution we need to define a damage criterion. For associated damage the
demand function F; = f(Y) — r4(¢) = 0 is based on the conjugate force which is in this case the
second order energy tensor Y = o - €. In this case, we resort to the Rankine criterion of maximum
‘principal energy’ where the scalar damage function is Fj; = YV — ra(¢) = 0. Adopting a no damage
switch in compression, the simple shear response results in the response behavior shown in Figure 21b.
In comparison to the scalar damage format in Figure 21a, the simple shear response of the anisotropic
damage model in Figure 21b shows some very interesting features: (i) after reaching the damage threshold
at 715 = 0.8 ksi, the principal tensile stress diminishes again exponentially, (ii) the shear stress and the
compressive principal stress increase without bounds because of volumetric-deviatoric interaction which
introduces increasing confinement. Moreover, there is no damage in compression, and unloading occurs
at the secant stiffness in tension leaving no permanent deformation, while the compressive stiffness
remains intact.

In contrast to the scalar damage model, we notice that the anisotropic damage model does exhibit
volumetric-deviatoric coupling. Thereby, the shear stress increases far beyond the initial shear strength
threshold 7, = 0.8 kst in the presence of out-of-plane confinement. At the same time, the nominal tensile
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stress is subject to softening due to progressive tensile damage according to the logarithmic degradation
law.

In summary, isotropic scalar damage models do not exhibit shear dilatancy, while anisotropic models
do reproduce the Reynolds dilatancy effect of frictional materials similarly to pressure-sensitive plasticity.

6 Conclusions

The present state-of-the art report focused on major developments in rate independent elasticity and in-
elasticty. Many topics have not been covered for the sake of brevity, most notably are nonlinear hardening
and softening formats in plasticity and damage, LUBLINER [1990], the general form of the internal vari-
able description, HALPHEN & NGUYEN [1975], the microstructural features thereof, KRONER [1963],
the size and gradient effects, BAZANT & PLANAs [1997], and last but not least, the computational
aspects of inelastic analysis.

The exposition presented an apercu of linear and nonlinear elastic constitutive models as well as
plastic and elastic damage models. Specifically we have examined the interaction of normal and shear
components which is directly related to the population in the constitutive gradients n, m responsible for
stress- and/or strain-induced anisotropy in the tangent operator.
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8 Appendix |: Some Results of Matrix and Tensor Analysis

The mathematical tools behind material models are housed in linear algebra and tensor analysis in par-
ticular. For this reason we revisit a few well-established relationships, which hopefully provide additional
insight beyond the mere mechanics of elementary matrix and tensor manipulation.
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8.1 Voigt Notation

In this review Voigt notation is used to compact symmetric stress and strain tensors and their inter-
relationship. Here we briefly summarize results of inner and dyadic products which have important
consequences when anisotropic stiffness and compliance relations are considered. For the sake of argu-
ment we compare the matrix notation of non-symmetric stress and strain tensors with the corresponding
reduced matrix notation of Voigt which is based on the technical definition of shear strain.

For simplicity we consider the state of plane stress and strain and express the second order tensors
in terms of Cartesian coordinates

011 012 €11 €12
o= ;€= (196)

021 092 €21 €22
In vector notation the stress and strain tensors write as,
t t

Utens:[all O922 O12 021 ; Gtens:[ﬁn €22 €12 €21 (197)

Consequently, the scalar product of the internal energy 2WW = o : € is in vector notation,

_ ot _
2W = 0,pps€tens = O11€11 + 022622 + 021621 + T12€12 (198)
The corresponding dyadic product o ® € results in the matrix representation of the fourth order
tensor,
011€11 O11€22 O11€12 O11€21
0922€11 O92€22 022€12 0922€21
t
Otens€iens — (199)
O012€11 O12€22 O012€12 O012€91
0921€11 O91€22 021€12 021€21

Linear elasticity o0 = £ : € exhibits general anisotropy in matrix notation,

Eun Fuze © Euiz Euxn
011 €11
0922 Es11 Ezzo @ FEaogn FEagog €22

T . (200)

012 . €12

Eis11 Ei22o @ Eio12 Eiao1
021 . €21

| Eo111 Eoi22 @ Eoi12 Eoion |

where the elastic stiffness matrix involves ten in-plane elastic moduli in the case of material symme-
try when € = £'. The anisotropy reduces to six moduli in the case of symmetric stress and strain
tensors, when o = o' and € = €.

Restricting the exposition to symmetric stress and strain tensors, Voigt notation takes advantage
the reduced dimension from four to three components in the case of plane stress.

t t
O voigt — [ 011 O92 Ti12 5 €Ewoigt = | €11 €22 Y12 (201)

where Tij = Oij, Vij = 2€ij,Vi §£ j
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The scalar product of internal energy 2W = o : € writes in Voigt notation,

t
2W = 0 pig1€voigt = O11€11 + O22€22 + To1721 (202)

Reducing the dimension of the strain tensor corresponds to the kinematic constraint €;eps = T €40igs
which takes advantage of symmetric shear strains,

€11 10 0
¢ 01 0 ‘u
22

_ 203
€1 00 05]|) (203)
o1 00 05| "

Using the principle of virtual work to preserve the energy of the unreduced format, the conjugate
transformation of the symmetrized stress and strain follows as,
Ol Oions = 5ef}oigtawigt; and thus 6efmigtthrtens = 5ef}oigtavoi9t (204)

In other terms, the reduction of the stress tensor follow the transposed transformation, ,4ig =
Tto-tens-

o
o1 10 0 H
o
Op =101 0 0 2 (205)
012
Tio 0 0 05 0.5
021
Consequently the scalar energy product leads to the compact format,
2V = a-iensetens = o-floigtT_lTGUOigt = a-f)oithUOigt (206)
The linear elastic material relation o = € : € compacts in Voigt notation into
Otens — Etensetens; Or  Oyoigt = Evoigtevoigt (207)
where
Evoigt = TtEtensT (208)

In other terms the 4 x 4 elasticity matrix reduces to the traditional 3 x 3 format of E,,, = E
commonly used in engineering notation with six moduli of anisotropy in planar elasticity.

Eiin Ei129 : 0.5[F1112 + E1121]

J11 €11
722\ _ Ez211 E3322 0.5[Ea212 + Ea221] €22 (209)
T12 V12

0.5[F1211 + E2111]  0.5[F1222 + Eo122] : 0.25[F1212 + E1991 + E2112 + Ez11]

In engineering notation we normally refer to the elasticity matrix which for isotropic plane strain
conditions reduces to the traditional format,
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E11 E12 E13 A + 2G A 0
Evoigt — E21 E22 . E23 N A A4+2G 0 (210)
Ey Esp : Es 0 0 e

To amplify the reduction process we consider the case of stress-induced anisotropy in plasticity
where the dyadic product involves the gradient of the plastic potential and the yield function, m®mn.
Tensor notation of the unreduced 4 x 4 system reads

miiniy Mg MM Mi1Ng

mtensnims _ MoaN11 MM MogNi2 MM (21 1)
Mi2N11 MagNg2  MigNi2 MigN2a
Mmo1N11 Moo Ma1N1e  Mao1Ng

Reduction to Voigt notation,

my1n11 m11N22 0.5[m11n12 + M11no1]

¢
MyoigtT M22M11 M22M22 0.5[masmn12 + Maano]

voigt =
0.5[m1an11 + maini1]  0.5[mi2nas + mainaz]  0.25[mianiz + miangy + mainia + maina ]
(212)

Henceforth, the dyadic product s® s in the case of von Mises plasticity with m = n = s reduces
to the standard form,

S11511 S11822  S11512
t _
SvoigtSvoigt — | S22511 522522 522512 (213)
512511 S12822  S12512

taking advantage of symmetry, when s5 = s91.

8.2 Tensors

1. Stress and Strain Tensors: a set of objects o, € € R which may be represented as (3 x 3)
matrices whose coefficients are the coordinates of a set of orthonormal base vectors.

(a) Scalar (inner) product of o, e€ R3: Double Contraction
This product operation generates a scalar value:

2W =0 :€= Oij€ij (214)

Direction between two tensors: o e

cosf = (215)

o€

where 0 < 6 < 7/2, and where 0 = (¢ : )7 and € = (e : €)? are the Euclidean lengths
of the two vectors.
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Note: The internal strain energy is directly related to the scalar product of stress and
strain.

(b) Outer product of o, ee R*: Single Contraction This product operation generates a second
order tensor:
2w =0 -€= Oij€jk (216)

Note: The thermodynamic force in the form of a tensor product of stress and strain is
conjugate to the second order damage tensor.

(¢) Dyadic or tensor product of o, e€ R*: No Contraction
This product operation generates a fourth order rank-one tensor:

2W =0 ® € = Oij€kl (217)

Note: the tensorial order of the dyadic product is the sum the tensorial order of each
factor. E.g. the dyadic product of two second order tensors generates a fourth order
tensor, etc.

(d) Inverse of Rank-One Modification of Unit Tensor I:

1

B=I+a®b then B'=T-—"—a®b (218)
l+a-b
as long as a - b # —1.
(e) Sherman-Morrison Formula of Inversion:
B=A+XQ®Y (219)
then .
B'=A"-————A'XeYyA™ 220
1+YA'X @ (220)
(f) Outer products do not commute:
A-B#B-A, however B-A=[A"- B (221)

This also holds for tensor products.

8.3 Determinant:

The determinant of a second order tensor is a single number which summarizes the
tensorial property in the form of a multi-linear functional.

i. Determinant of tensor products:

det(A - B) = det Adet B (222)
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ii. The Schur theorem states that the determinant of partitions in tensor A may be
written in terms of the determinant product of partitions:

det A = det Ay det A" = det Ayy det(A — A Ay Agy) (223)

Note: The Schur complement couples the partitions and leads to the bound det A <
det Ay det Aqy as long as @ - Ay - @ > 0 is positive definite.

8.4 Eigenvalues and Eigenvectors:

There exist a nonzero vector & such that the linear transformation o - @ is a multiple of
T

o-x=)\x (224)

Note: The eigenvector x; spans the triad of principal directions and the eigenvalues \;
define the three principal values of stress.

i. Characteristic Polynomial:
The eigenvalue problem is equivalent to stating that

(o —AX)-z=0 (225)
For a non-trivial solution & # 0 then (o — \;I) must be singular. Consequently,
det(oc — AI) =0 (226)
generates the characteristic polynomial
p(A) = det(o — A1) (227)

the roots of which are the eigenvalues A\(o). According to the fundamental theorem
of algebra, a polynomial of degree 3 has exactly 3 roots, thus each matrix o € R*
has 3 eigenvalues.

Note: all three eigenvalues are real as long as & = o is symmetric which is the case
for non-polar materials because of conjugate shear stresses o;; = 0;;.

ii. Cayley-Hamilton Theorem:
This theorem states that every square matrix satisfies its own characteristic equation.
In other terms the scalar polynomial p(A) = det(A — o) also holds for the stress
polynomial p(e). One important application of the Cayley-Hamilton theorem is to
express powers of the stress tensor o as linear combination of the irreducible bases
I,o0, 0% for k> 2.

iii. Spectral Properties of Rank-One Update of Unit Tensor:
Spectral analysis of square matrix generated by a rank-one update of the unit tensor
of second order

B=I+a®b (228)
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reduces to the eigenvalue analysis
(b-ra—(A—=1)]a=0 (229)

The eigenvalues and eigenvectors of B = I + a ® b are related to the eigenpairs of
the update matrix, i.e.

A(B)=1+X and «(B)=a (230)

In the case of a single rank-one update of the unit matrix we find A\;(B) = 1+ \ and
M\(B) = 1VE = 2,3..n with the determinant det(B) = det(I + a ® b) =1+ a - b,
and A =a-b.

9 Appendix ll: Plane Strain Constraint of Elastoplastic Limit Point

On a final note, we observe that the kinematic constraint of zero out-of-plane defor-
mations delays and may suppress altogether the formation of a limit point associated
with peak strength in pressure-sensitive plasticity. We recall the shear response does not
reach a limit point under plane strain. The reason for this puzzling observation is the
kinematic constraint which restricts the formation of a limit point when

og=E:[e—¢) =0 where & =2Am (231)

In the plastic flow rule \ denotes the plastic multiplier, which is strictly positive under
sustained plastic flow, and m = g—g the direction of plastic flow in terms of the gradient
of the plastic potential. Consequently, the only possibility to form a limit point at peak
occurs if the strain rate equals the plastic strain rate, € = €, and the elastic strain rate
remains zero, €, = 0.

The plane strain constraint infers that the out-of-plane strain rate must vanish, i.e.

L 0Q

€33 = Am3z = A
80'33

0 (232)

In the three-invariant plasticity formulation above this constraint implies that

1 Qo Qo

V3 S 12 T 12
In short, pressure sensitive plastic flow, Q)¢ # 0, does not permit formation of a limit
point as shown in Figures 8 and 13. And even if this would be the case, the shear stress
would never reach the peak value because loss of stability and localization take place
much earlier in the ascending regime of apparent hardening.

mgaz =
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