
Abstract

Formulas for finding a weighted least-squares fit to a vector-to-vector
transformation are provided in two cases: (1) when the mapping is avail-
able as a continuous analytical function on a known domain, and (2) when
the mapping function is available only approximately through knowledge
of a finite collection of input and output sample vector pairs. The formu-
las in each case are very similar to each other, and also similar to more
familiar linear regression formulas described in elementary linear-algebra
textbooks.
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1 Introduction

A vector transformation y
∼

= y
∼
(x∼) takes a vector x∼ as input and returns a vector

y
∼

as output. Figure 1 shows a square domain, Ω, in gray. For each x∼ ∈ Ω, the
mapping function may be applied to generate a transformed shape. The left
side of Fig. 1 shows, in blue, the result of applying a nonlinear transformation
to the square domain Ω. The nonlinearity is evident since the deformed (i.e.,
transformed) shape is distorted into curves. An affine transformation is the
generalization of the affine scalar equation y = mx + b; specifically, an affine
transformation can always be written in the form y

∼
= M

∼∼
·x∼+b∼, for some second-

order tensor M
∼∼

and vector b∼. An affine transformation will always transform a
square domain into a parallelogram. In particular, the right-hand side of Fig. 1
depicts a least-squares “best-fit” of the nonlinear transformation. The goal of
this document is to illustrate how to find the best affine fit to a nonlinear vector-
to-vector transformation. The formulas will be very similar to those for fitting
nonlinear scalar funtions y(x) to a straight line.

Figure 1: Left: continuous data. Right: continuous affine fit

In numerical work, an analytic continuous mapping function y
∼
(x∼) might not

be available. Instead, a discrete approximate sampling of the mapping might be
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the only information available to approximately characterize the transformation.
In other words, numerical methods often describe a mapping transformation
only by knowing how, as illustrated in Fig. 2(a), a collection of discrete points
in the initial domain transform. Below, we will demonstrate that finding the
best fit to this type of discrete data is very similar to the continuous case. The
formulas will be very similar to classical linear regression for fitting to scalar
(x,y) data pairs.

Figure 2: Left: Discrete data. Right: continuous affine fit.

When finding an approximate affine fit to data, continuous or discrete, you
might wish for the fit to be better near some points of interest. This is ac-
complished by specifying a weighting function w(x∼) or, in the discrete case,
by giving weights wi for each discrete input-output vector pair. The effect of
weighting is illustrated in Fig. 3.

Figure 3: Left: Equally weighted fit. Right: A fit that is weighted to improve
the approximation near the upper-left cusp on the mapped region (with the
price being, of course, a poorer fit away from that cusp).

3



2 Problem Statement

Suppose that you have a nonlinear vector-to-vector function, y
∼

= y
∼
(x∼), and

you seek a constant tensor M
∼∼

and vector b∼ such that the affine transformation,
y
∼

= M
∼∼
·x∼+b∼ is a “best fit” to the nonlinear function y

∼
(x∼) over a specified region

in space, x∼ ∈ Ω. Below, we provide an algorithm corresponding to minimizing
the weighted mean square residual, R2 = R2(M

∼∼
, b∼), defined by

R2 =

∫
Ω
r∼ · r∼ wdV∫
Ω

wdV
(1)

in which dV is the volume element for integration over the input domain x∼ ∈ Ω,
w = w(x∼) is a scalar-valued weighting function (e.g., it could be the mass
density if you want to have a mass-weighted residual in a mechanics problem),
and r∼ = r∼(x∼;M

∼∼
, b∼) is the local residual vector field defined by

r∼(x∼;M
∼∼

, b∼) = y
∼
(x∼) −

(
M
∼∼

· x∼ + b∼

)
. (2)

Note that the local residual vector r∼ depends on the location x∼ and on
the unknown (sought) tensor M

∼∼
and vector b∼. Thus, after integration over

x∼ ∈ Ω, the resulting weighted mean square residual, R2 depends only on the
unknowns, and may therefore be minimized in by setting each partial derivative
of R2 with respect to the components of M

∼∼
and b∼ equal to zero. This provides a

set of equations solvable for these unknowns. Rather than showing this tedious
analysis, this document provides only the algorithm for the final answer.

In addition to providing the algorithm for this continuous fitting exercise,
we will also provide very similar formulas for fitting discrete mapping data.
Unlike the continuous fitting problem described above, which presumed that
the mapping function y

∼
(x∼) was known, the discrete problem presumes that

you have only discrete values of the mapping function’s output, {y
∼1

,y
∼2

, ...y
∼N

}
corresponding to a finite discrete set of inputs {x∼1

,x∼2
, ...,x∼N

}. Rather than
having a continuous weighting function w(x∼), the discrete multi-linear regression
problem presumes that you have a table of weight values {w1, w2, ..., wN} for
each discrete point. For the discrete problem, the mean square residual is defined
similarly to that in Eq. (1), except that the integral is replaced by summation

R2 =

∑N
i=1 r∼i

· r∼i
wi∑N

i=1 wi

. (3)

Here, analogous to Eq. (2), the discrete residual vectors {r∼1
, r∼2

, ..., r∼N
} are

defined by

r∼i
(M
∼∼

, b∼) = y
∼i

−
(
M
∼∼

· x∼i
+ b∼

)
. (4)
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3 Algorithm

To find the desired tensor M
∼∼

and vector b∼, the calculations shown below should
be performed in sequence (using the continuous or discrete formula as appro-
priate).

Begin by evaluating the “weight” of the domain:

W =
∫

Ω

wdV =
N∑

i=1

wi (5)

Next, evaluate the first moment vectors x∼ and y
∼
, which would be called the

centers of mass in mechanics:

x∼ =
1
W

∫
Ω

x∼ wdV =
1
W

N∑
i=1

x∼i
wi (6)

y
∼

=
1
W

∫
Ω

y
∼

wdV =
1
W

N∑
i=1

y
∼i

wi (7)

Evaluate two “helper” tensors:

g
∼∼

=
(

1
W

∫
Ω

y
∼
x∼ wdV

)
− y
∼
x∼ =

(
1
W

N∑
i=1

y
∼i

x∼i
wi

)
− y
∼
x∼ (8)

G
∼∼

=
(

1
W

∫
Ω

x∼x∼ wdV

)
− x∼ x∼ =

(
1
W

N∑
i=1

x∼i
x∼i

wi

)
− x∼ x∼ (9)

Then the final answer for the affine mapping tensor M
∼∼

is

M
∼∼

= g
∼∼
·G
∼∼
−1 (10)

and the final answer for the “intercept” is

b∼ = y
∼
−M
∼∼

· x∼ (11)

Note that the affine mapping, y
∼

= M
∼∼
·x∼+b∼ may be written more intuitively

in the “point-slope” form,

y
∼
− y
∼

= M
∼∼

· (x∼ − x∼) (12)

4 Example

Let e∼1
and e∼2

denote base vectors in a 2D space. Consider a function y
∼

= y
∼
(x∼)

that takes a vector,
x∼ = x1e∼1

+ x∼2
e∼2

(13)

5



as input, and returns a vector

y
∼

= y1e∼1
+ y2e∼2

(14)

as output. In particular, consider the mapping function that was used in the
graphics of Figs. 1, 2, and 3:

y1 =
1
50
(
2x1

2 + 5x1(3x2 − 7) + 3(x2 − 17)x2 + 38
)

(15)

y2 =
1
50
(
−2x1

2 − 5x1(x2 − 6) + 10
(
x2

2 − 2
))

(16)

Carrying out the above steps for a uniform weighting function (viz. w(x∼) = 1
or wi = 1) gives the following results:

W = 4.F0F0F0F0 (17)
{x∼} = {0.F0F, 0.0F0F0} (18)

{y
∼
} = {0.F9F6F7,−0.F4F3F3} (19)[

g
∼∼

]
= {{−0.F5F6F7,−0.F7F}, {0.F2, 0}} (20)[

G
∼∼

]
= {{0.F6F6F7, 0}, {0, 0.F6F6F7}} (21)[

M
∼∼

]
= {{−0.F,−1.F2}, {0.F, 0}} (22)

Here, some of the digits have been replaced with “F” to allow this problem to
be given as a homework assignment in a university setting. Data files (x.dat,
y.dat, and w.dat) containing the discrete x∼, y

∼
, and w values may be found in

an online compressed archive file (2dAffineRegression.zip) at the University of
Utah CSM website. The archive also contains a data file of the non-uniform
weights (wstar.dat) that were used to generate the results in Fig. 3.
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