
Exploring 2D Tensor Fields Using Stress Nets

Andrew Wilson Rebecca Brannon
Sandia National Laboratories

ABSTRACT
In this article we describe stress nets, a technique for exploring
2D tensor fields. Our method allows a user to examine
simultaneously the tensors' eigenvectors (both major and minor)
as well as scalar-valued tensor invariants. By avoiding noise-
advection techniques, we are able to display both principal
directions of the tensor field as well as the derived scalars without
cluttering the display. We present a GPU-only implementation of
stress nets as well as a hybrid CPU/GPU approach and discuss the
relative strengths and weaknesses of each.

Stress nets have been used as part of an investigation into crack
propagation. They were used to display the directions of
maximum shear in a slab of material under tension as well as the
magnitude of the shear forces acting on each point. Our methods
allowed users to find new features in the data that were not visible
on standard plots of tensor invariants. These features disagree
with commonly accepted analytical crack propagation solutions
and have sparked renewed investigation. Though developed for a
materials mechanics problem, our method applies equally well to
any 2D tensor field having unique characteristic directions.

CR Categories: I.3.3. [COMPUTER GRAPHICS]:
Picture/Image Generation–Line and curve generation; J.2.
[Physical science and engineering]–Engineering

Additional Keywords: tensor field, stress tensor, streamlines,
controlled density streamlines, crack propagation

1 INTRODUCTION
Tensor visualization is a relatively new area of study compared to
vector and scalar field visualization. It is difficult because the
meaning of a tensor is strongly problem-dependent. Whereas a
vector field usually has an intuitive meaning as a representation
either of flow or force, a single tensor can represent such disparate
entities as stress forces, strain stretches, the gradient of a velocity
field, and diffusion of water within tissue. There are also many
aspects of a tensor that can be displayed, including its invariants,
eigenvalues, eigenvectors, and even its individual components.

In light of this difficulty, the most successful tensor
visualization algorithms so far have been domain-specific. Rather
than attempting to display the whole of the tensor data at once,
such algorithms extract only the information necessary to the
user’s area of interest. Examples of such methods include Mohr’s
circles for stress/strain data [6] and geometric extraction methods
for diffusion tensor MRI data [28]. Although the search for a
universally useful tensor visualization method continues, we
believe that domain-specific methods will always have an
advantage in conveying meaning to a user.

After completing a simulation of crack propagation at atomic
scale, materials scientists within our laboratory sought to compare
their results with published asymptotic continuum-mechanics
solutions for a nearly equivalent problem. However, the
information they needed could not be seen in standard 2D plots of
tensor invariants. We were asked to develop a tool with the
following capabilities:

1. Display, at all points within the data, the orientation of the
maximum shear directions (which are simply 45°
rotations of the major and minor eigenvectors)

2. Provide a continuous global view of the data
3. Browse through the data and zoom in for higher-

resolution detail
4. Color the data using some scalar invariant derived from

the tensors

Contributions: In this paper we describe stress nets, a novel
visualization algorithm for exploring 2D tensor fields. A stress
net can display both major and minor eigenvector fields (or, as
needed by our customers, vectors derived from these
eigenvectors) as well as some scalar quantity derived from the
data. Moreover, our method does not limit the scalar display to
hue only, as is commonly the case in noise-based approaches.
Although we deal with non-isotropic symmetric tensors in this
paper, our method can handle asymmetric tensors as well (with
minor revisions). We have incorporated stress nets into an
application used by geomechanicists to investigate models of
crack propagation. Our application has allowed them to identify
discrepancies between the properties of a simulation of crack
propagation at atomic scale and the predictions made in the
continuum mechanics literature.

The rest of this paper is organized as follows. We survey
related work in Section 2. In Section 3, we describe the driving
problem in mechanics that led to the development of stress nets.
In Section 4 we present two different implementations of stress
nets, one using the GPU alone and one using both the CPU and

Sandia National Laboratories
PO Box 5800, M/S 0822
Albuquerque, NM 87185-0822, USA
{atwilso,rmbrann}@sandia.gov

Figure 1: A stress net for one time step in an atomistic
simulation of crack propagation. This image shows the
directions of maximum shear (the white grid lines) and the
magnitude of the deviatoric component of the stress tensor
(underlying color).

GPU. In Section 5 we discuss the performance, advantages, and
disadvantages of each approach as well as our customers’ reaction
to the method. In Section 6 we conclude with a brief discussion
of possible future work.

2 PREVIOUS WORK
In this section we survey related work in tensor visualization.

Compared with vector visualization, tensor visualization is a
relatively unexplored area of study. Moreover, it is difficult to
find generally applicable tensor visualization methods because the
meaning of a tensor is highly domain-specific. We give examples
of both general and domain-dependent visualization techniques.

2.1 General tensor visualization methods
One approach to tensor visualization is to exploit the fact that
tensors, like matrices, have eigenvalues and (possibly
indeterminate) eigenvectors. In this context, we can treat the
eigenvectors as velocity fields and apply generalizations of vector
visualization methods. The common hedgehog plot of a vector
field can be extended to a field of glyphs. For example, Haber [9]
and Kriz et al. [16] construct a field of ellipsoids to represent a
field of tensors. The major and minor axes of each ellipsoid are
aligned with the major and minor eigenvectors of the tensors and
scaled according to the corresponding eigenvalues. While these
plots can be useful for local inspection, the problems of clutter,
occlusion, and ambiguity in shape make it difficult to observe the
behavior of the tensor field over space. De Leeuw and van Wijk
[17] use a more complex glyph, the flow probe, to illustrate
several quantities within a flow field. This conveys more
information at the expense of more screen space for each glyph,
reducing further the number of glyphs that can be usefully
displayed. Hyperstreamlines [7] are an alternative approach that
combines aspects of glyphs and flow visualization. Streamlines
are traced through the velocity field formed by the major
eigenvectors of a set of tensors. Then, an ellipse is swept along
each streamline. The minor eigenvectors and eigenvalues of the
data are used as the direction and length of the axes of the ellipse.
Although this method illustrates changes in the eigenvectors over
a path in space, it introduces the common problem of choosing
appropriate seed points for the streamlines in order to display the
most important features in the data. Moreover, like fields of
glyphs, hyperstreamlines encounter problems of clutter and
occlusion as more lines are added to the display.

Another approach to conveying the global structure of a tensor
field is to decompose it into its topological structure [10,22]. This
structure consists of the field’s degenerate points, where the
tensors have duplicate eigenvalues, and a set of skeleton curves
connecting these points. Although this method allows for
reconstruction of the tensor field, interpretation can be difficult.

Noise-based vector visualization methods have also been
adapted for tensors. HyperLIC [27], a generalization of the line
integral convolution algorithm for vector fields [5], integrates a
noise field over many small regions of the data. The shape and
size of each region is determined by the eigenvectors and
eigenvalues of the tensors in that region. The resulting image
shows the field of major eigenvectors, smoothed in regions where
the tensors are (nearly) isotropic. Hotz et al. [12] take a different
approach. They use LIC to generate images for both the major
and minor fields of eigenvectors in tensor data, then overlay the
two images for display. This is similar in principle to our
approach. Their approach to displaying a scalar variable differs
from ours in that they use the variable to determine the hue of the
LIC image. It can be difficult to separate variability in the
luminance of the LIC image from differing values in the scalar
being displayed.

2.2 Domain-specific methods
In some cases, the problem domain that gives rise to the tensor
data being examined suggests a visualization technique.
Exploiting this technique allows us to present an image the users
will understand quickly by keying into metaphors they have
already learned. For example, Mohr’s circles, originally
developed around 1900, are commonly taught in undergraduate
engineering classes as a way to visualize and interpret stress
tensors. The circles provide a visual estimate of the tensor’s
eigenvalues as well as an overall measure of whether the tensor
represents a compressive, tensile, or combined force – all
properties that are important in mechanics and materials science.
Crossno et al. [6] use Mohr’s circles to convey an overview of the
forces within a finite-element geomechanical data set. Dickinson
[8] addresses stress/strain fields in a more general treatment of
interactive methods for scalar, vector, and tensor data. He points
out that the orientation components of tensor data are important in
their own right and shows an example of a method similar in spirit
to stress nets.

Diffusion tensor MRI (DT-MRI) can also produce tensor data
with a natural interpretation. The dominant eigenvectors of the
diffusion tensors indicate pathways of maximum diffusion,
corresponding to structures of interest such as neural fibers within
the brain. Methods such as streamtubes [26] and oriented tensor
reconstruction [28] work by recognizing and extracting those
structures for display. Weinstein and Kindlmann [25] combine a
glyph-based approach with direct volume rendering by mapping
the anisotropy of diffusion to both hue and the lighting model at
each point within the data.

Tchon et al. [21] apply tensor visualization in the context of
mesh generation and optimization for finite element simulations.
They use the Riemannian metric tensor, a measure of the “best”
shape of a mesh element at each point on a surface, and construct
two vector fields from the major and minor eigenvectors of the
metric tensor. They trace streamlines through these fields to
construct a net qualitatively similar to the optimal mesh for a
particular metric and data set. Their method differs from ours in
that the step size taken at each point during streamline integration
is governed by the magnitude of the eigenvalue at that point. This
is entirely appropriate for mesh construction and optimization,
producing larger elements in regions where the data are smoother,
but not as helpful for visual inspection. We achieve similar
effects by allowing the user to zoom in and out to view the data
and the stress net at different scales.

3 DRIVING PROBLEM
We developed stress nets in response to a request from a materials
scientist studying the propagation of cracks through an elastic-
plastic material. The simulation setup for this study is illustrated
in Figure 2. We begin with a 2D rectangular slab of some
notional material. Tension is applied to the material by pulling
vertically on the upper and lower faces A and B. Eventually, the
stress near the crack tip exceeds the material’s failure threshold.
When this happens, a crack at point C will propagate from left to
right along the material’s center line.

The reason for this study is that there are multiple models in the
materials science literature that describe crack propagation. One
solution, due to Leighton, Champion and Freund [18], describes
cases where the crack is propagating at some non-negligible
velocity v (the dynamic case). Another solution, due to
Achenbach and Dunayevsky [1], describes the behavior of the
material as v vanishes (the quasi-static case). Intuition would
suggest that the dynamic solution should converge to the quasi-
static one as v approaches zero. This is not the case: the models
make qualitatively different predictions about the shear forces
within the material. Our customers sought to determine whether

or not independent atomistic solutions to a nearly equivalent
problem could offer insight leading to revisions in the continuum
mechanics solutions that might resolve this discrepancy.

3.1 Customer Requirements
Our customers asked for a tool that would allow them to inspect
the structure of shear forces within their simulation results. This
includes the directions of maximum shear, which are derived from
the eigenvectors at each data point, and any one of several scalar
quantities derived from the stress tensor. These quantities
included the tensor’s eigenvalues, its other invariants (such as the
trace and the magnitude of the deviatoric part), and its individual
components. All of this had to be derived from the raw
simulation data, which was supplied as a series of points. Each
point represents a single atom and specifies a 2D position in space
as well as a symmetric 2D tensor representing the stress forces
incident upon that atom. Both the orientations of the shear forces
and the underlying scalar field had to be shown simultaneously
across the visible extent of the data. The goal of this study was to
compare qualitatively the simulation results with the predictions
made in [18] and to look especially for abrupt changes of
direction in the shear forces near the crack tip. Such changes are
not permitted by those predictions. This information does not
appear in standard 2D plots of tensor invariants: it is only visible
in the orientation portion of the tensors.

3.2 Stress Nets
We chose as a model for our solution a deformed grid whose lines
reflect the orientation of the underlying tensor data. Instead of
tying the grid’s density to the magnitude of the eigenvalues of the
tensor field, as is done in [21], we attempt to keep the size of the
grid cells roughly constant over the whole of the data. This sort
of display is similar in spirit to an electric field diagram including
both field lines and equipotential lines, as shown in Figure 3.
Moreover, the derived scalar must be clearly visible along with
the net itself: the two must not obscure one another. When color
is used to display a scalar variable in noise-based methods such as
LIC and HyperLIC, the variation in color (due to the scalar
variable) and the variation in luminance (due to the noise texture)

can be difficult to disambiguate. By creating a grid instead of a
space-filling texture, we leave plenty of room free for displaying
the scalar variable exclusively. We refer to the orientation
component of the display as the stress net and the derived scalar
variable as the scalar field.

We addressed the following issues while developing stress nets:
1. The data are supplied as atoms without extent. How do

we construct a space-filling representation that can be
used for display or query?

2. How do we construct and render the stress net?
3. How does the system respond to zooming in and out?

Should the net be recomputed automatically at each
frame?

4. How do we handle situations where the eigenvectors are
poorly defined because of repeated eigenvalues?

4 STRESS NETS
We have implemented two different versions of stress nets in a
tool used in our customers’ study. We used VTK [19] for the
rendering components of our system and Qt [3] for its user
interface. In the rest of this section we describe the two
implementations and the design decisions that guide them.

4.1 GPU-only implementation
Our first implementation of stress nets computed both the scalar
field and the stress net on programmable graphics hardware. This
implementation is separated conceptually into rendering the scalar
field and rendering the stress net, although the actual code
performs both tasks in a single pass. First we discuss the
rendering of the scalar field using a discrete Voronoi diagram of
the input data. Next, we show how the stress net is rendered as a
texture map on top of the scalar field.

4.1.1 Discrete Voronoi diagram and Scalar Field
We draw the scalar field by building a discrete Voronoi diagram
of the input points using the GPU. There are several methods in
the literature for accomplishing this. We adopted the method
described in [11] for simplicity. At each data point, we draw a
cone whose apex points straight up toward the view plane. All
cones have the same slope and radius. The radius is chosen
empirically so that the only gap visible in the scalar field is in the
interior of the crack.

After rendering, we are left with an image where the fragment
with the lowest Z value at each pixel is part of the cone belonging
to the data point nearest that pixel. The visible portion of each
cone is therefore a sampled representation of its data point’s
Voronoi region. We can use this to render the scalar field simply
by using the currently selected scalar to assign a color to each
cone.

4.1.2 Drawing the Stress Net
We render the stress net as a texture map on top of the scalar field.
Texture coordinates are defined in screen space rather than world
space so that the net’s resolution will adapt automatically to the
visible extent of the data. The user can specify a scaling factor to
determine how many times the texture repeats across the screen
and thus how fine the net itself is.

The net texture is applied using vertex and fragment shaders. A
texture coordinate register is used to pass in the orientation of the
stress net for each point in the scalar field. Within each cell, the
screen-space texture coordinates are rotated to match this
orientation. Since we know that the eigenvectors and hence the
shear directions in the original data will always be perpendicular
to one another where they exist at all, we can render both grid
directions at once. Our particular application contained no

Figure 2: Simulation of crack propagation. A 2D slab of
material is stressed by pulling vertically on faces A and B.
When the tension exceeds the material’s failure threshold, a
crack beginning at point C will propagate from left to right.

A

B

C
Crack

Figure 3: A notional stress net for a circular field. We attempt
to keep the size of the cells of the net constant across space
to avoid crowding the display.

isotropic regions where the eigenvectors become non-unique
because of equal eigenvalues. If isotropic or nearly isotropic states
are possible, an appropriate generalization of our method would
be to make the opacity of the stress net texture proportional to the
magnitude of the stress deviator (hence making the net disappear
at isotropic states where the deviator is zero). The choice of the
threshold below which the net is completely transparent should be
application- and data-dependent in order to show the net only
where there is enough anisotropy for the characteristic directions
to be meaningful.

 Pseudocode for computing and applying the net texture is
shown in Figure 4. The texture map used by the fragment shader
is shown in Figure 5. In practice, we render both the scalar field
and the stress net in a single pass.

4.2 CPU/GPU implementation
Our second implementation focused on the goal of computing a
smooth, continuous stress net across the whole of the data at the
possible expense of speed and memory. This task requires global
knowledge. For the lines of the stress net in one cell to connect to
lines in a neighboring cell, the start and end positions of that cell’s
lines must be known in advance. The same is true for connecting
a neighboring cell’s net to its neighbors, and so on through the
entire data set.

The streaming nature of programmable graphics hardware
makes it difficult to provide such information. Although an
iterative process could be used to adjust the positions of the net
incrementally within each cell, this would carry the high cost of
copying the frame buffer into texture memory after each step.
Rather than incur that overhead, we moved the computation of the
stress net back onto the CPU to take advantage of random access
to global information. Instead of generating the stress net using
texture maps, we treated it as two independent sets of streamlines:
one set each for the two sets of directions displayed by the stress
net. This is similar in concept to the noise-based approach
presented by Hotz et al. [12]

4.2.1 Space-filling representation
As before, we begin with the problem of converting the
simulation data into a space-filling representation. This
representation will be used as the vector field through which the
streamlines composing the stress net will be drawn. Our data

were provided as a set of points in space, each associated with a
symmetric 2x2 tensor. We convert these points into a space-
filling representation by inserting them into a data structure that
allows nearest-neighbor queries. Once again, we perform no
blending of nearby points in order to avoid introducing extra
information into the data.

We use a kd-tree for simplicity. There are a plethora of other
suitable data structures, including the Voronoi diagram,
constrained Delaunay triangulations, a spatial hash table, and even
a uniform grid. Our choice of the kd-tree was wholly pragmatic:
it is available already within VTK. By selecting this rather than
implementing a (potentially) more efficient structure from scratch,
we were able to deliver tools to our customers more quickly.

4.2.2 Generating the Stress Net
Once we have a space-filling representation of the data, the
construction of the stress net is straightforward. We create two
independent sets of streamlines to follow the two different sets of
directions in the net. We use Jobard and Lefer’s method [13] to
help ensure consistent spacing between adjacent streamlines. The
user is permitted to control the streamline density by specifying
the separation distance as a fraction of screen space. A streamline
is terminated if it enters a region where the eigenvectors are ill-
defined or if it comes within a threshold distance of another
streamline. The streamlines composing the stress net are stored as
line segments for later rendering.

Explicit computation and storage of the stress net raises
scalability concerns. In order to keep memory requirements low
and performance high, we do not recompute the net every time the
streamline density or view region changes. Instead, we generate
the net only upon request and restrict the region through which it
propagates. The streamline region is always centered on the
current view and is typically 1.5 times the size of the visible
extent of the data. This allows for limited panning and zooming
while still covering the visible region with the stress net. Both the
extent and the regeneration of the stress net are placed within the
user’s control.

4.3 Rendering the Combined Display
The scalar field is rendered directly from the input points using
the algorithm in Section 4.1.1 in both GPU-only and CPU/GPU
implementations. Since the stress net is available as actual
geometry (the line segments of the streamlines), we render it on
top of the scalar field in a single pass instead of displaying it using
textures. Vertex and fragment programs are not necessary in the
CPU/GPU implementation.

5 PERFORMANCE AND RESULTS
In this section we discuss the performance, advantages, and
drawbacks of the two different implementations of stress nets. All
statistics were acquired using one processor of a PC with two 2.6
GHz Pentium IV processors, 4GB of main memory, and an
NVIDIA QuadroFX 3000 graphics card with 256MB of memory.
The texture map used to display the stress net in the GPU-only
implementation took 256KB of this memory.

StressNetVertexShader(float4 worldPosition,
 float netOrientation,
 float4 netOrigin,
 float textureScale,
 float windowAspectRatio)
{
 float4 screenPosition = mul(ModelViewProjection,
 worldPosition);
 float4x4 netRotation =rotateAroundZAxis(netOrientation);

 // Make the grid cells square in screen space
 screenPosition.x *= windowAspectRatio;
 // Normalize after projection
 screenPosition /= screenPosition.w;

 float4 normalizedPosition = screenPosition - netOrigin;
 float4 netTextureCoords = normalizedPosition * netRotation;
 netTextureCoords *= textureScale;

 return normalizedPosition;
}

ApplyStressNetTexture(float4 netTextureCoords,
 float textureWeight,
 float4 scalarFieldColor,
 uniform sampler2D OrientationTexture)
{
 float4 textureColor =

 tex2D(orientationTexture, netTextureCoords);
 return scalarFieldColor + textureWeight * textureColor;
}

Figure 4: Pseudocode for vertex and fragment programs
that generate the stress net in the GPU implementation.

Figure 5: Texture map used for the GPU implementation of the
stress net. Black areas of the texture are transparent and allow the
underlying scalar field to show through. White areas are opaque.

5.1 GPU-only implementation
Figure 6 shows examples of the output of the GPU-only
implementation. The scalar field alone is shown in Figure 6(a).
The stress net alone is shown in Fig. 6(b). The two fields
combined are shown in Fig. 6(c).

The orientation of the stress net at points across the image can
be observed by focusing on the area in question. Since the net is
computed in screen space and is recomputed for every frame,
zooming into the data permits examination of its orientation at
finer scales.

The chief advantages of this implementation are its low
overhead and quick startup. Since the stress net is rendered
directly from the orientation data within the vertex and fragment
programs, there is no need for auxiliary data structures like the
kd-tree. Moreover, this implementation will run at the same
frame rate regardless of the net’s density. This automaticity
comes at the expense of slower frame rates, as shown in Table 1.

The major drawbacks of the GPU-only implementation are the
rendering artifacts visible in the stress net. We observe two types
of artifacts. First, moiré patterns (Figure 11) often become visible
when looking at large parts of the data. These occur when the
individual cells in the scalar field are much smaller in screen
space than the area covered by a single grid cell. In such a
situation, the orientation of the net can change drastically between
one grid line and the next or even within the area covered by a
single grid line. Moreover, the origin about which the grid texture
is rotated remains constant across all the data. We made this
assumption in an attempt to produce a coherent net in as much of
the display as possible. This is a reasonable restriction near the
crack tip, which forms the center of rotation for the net in that
region. However, it is incorrect in areas such as the wake
singularity shown in Figures 1, 7, and 10. We attempted to
compute a center of curvature at each data point in order to
alleviate this but were unable to achieve useful results due to rapid
changes in curvature. In severe cases, such as in Figure 11, the
moiré patterns can totally obscure the actual orientations of the
stress net.

The moiré artifacts disappear as the user zooms in to view
smaller parts of the data. At smaller scales, however, the net
appears broken and discontinuous along cell boundaries, as shown
in Figure 12. This happens because the vertex program that
computes the stress net has no way to ensure the continuity of grid
lines from one cell to the next: indeed, the vertex program is not
even aware of other cells. While it may be possible to introduce
such information using recent graphics hardware that permits
texture lookups within a vertex shader, we believe that these
shortcomings are inherent to the use of a single-pass GPU-only
algorithm for computing stress nets.

5.2 CPU/GPU implementation
The hybrid CPU/GPU implementation eliminates nearly all of the
artifacts within the stress net as shown in Figures 6 and 7. We
observe that the moiré artifacts are no longer present. This is
because the lines composing the net are constructed specifically to
be continuous and are represented explicitly as geometry instead
of existing only as a combination of single-pixel textures. There
are still a few discontinuities in the net, produced when grid lines
approach too closely to one another and are terminated by the
streamline generation algorithm. Also, the spacing between lines
(and thus the size of the cells of the net) is not everywhere
constant. Nonetheless, the overall display is far more coherent
than with the GPU implementation. Rendering speed has also
been increased since we no longer recompute the stress net from
scratch at every frame.

The greatest advantage of the CPU-based stress net algorithm is
that the net’s coherence makes it simple to observe the way the

stress net changes over a region. We illustrate this in Figure 12.
Although both images show the same feature in the data, it is
much easier to see in the absence of the discontinuity artifacts
present in the GPU-only version.

The increased image quality and rendering speed of this
approach are balanced by its increased overhead. As seen in
Table 1, computing and storing the stress net using the CPU
requires more storage space and a substantial startup time. Both
of these are due to the kd-tree that we use to look up directions for
the stress net during streamline integration. However, there are at
least two simple ways to reduce this expense. First, we could
substitute some other, more compact spatial data structure for the
kd-tree. In the case of the crack-propagation data our customers
provided, a geometric hash table or a uniform grid might work
well. Second, we could save the kd-tree for a data set to disk after
computing it once, then simply reload it during future runs. This
would reduce the 11-minute construction time to the few seconds
it would take to read the tree from disk. Many different data sets
(corresponding to different time steps in the simulation) could be
preprocessed in a few hours and then made available for rapid
browsing using this approach. It is also possible to optimize the
kd-tree implementation itself.

Finally, since we do not recompute the stress net automatically
in this implementation, it is possible for the user to outrun it by
panning beyond its extent or zooming in or out to the point where
its cells are too large or small to be useful. Recomputing the
stress net when the user changes either the desired viewing region
or the net’s density typically takes 5-15 seconds. In practice, we
feel that this is not a serious problem. We observe that users tend
to spend most of their time examining one small region of the
data, then moving rapidly to another area. The brief pause
required to recompute the stress net after zooming in or out is
small compared to the time spent focusing on an area of interest.

5.2.1 User Reactions
Our customers reacted positively to the results they obtained using
our tools. Their first comments did not concern the tool at all, but
instead the fact that the structure (now revealed) in their data did
not match what the literature predicted. This discrepancy is
illustrated in Figures 8-10. This is the goal of any successful
visualization tool: to be so transparent that the users see meaning
within their data instead of the software used to display it.

After their initial positive response, our customers began to
express dissatisfaction with the artifacts in the display. They
reported that the moiré patterns and discontinuities in the stress
net made it difficult to interpret what was really present in the
data. This dissatisfaction led eventually to the hybrid CPU/GPU
implementation. The drastic reduction of artifacts in that version
enabled our customers to discover a feature in the data (the
“wake” of the crack visible in Figures 1, 7, and 10) that had been
obscured by artifacts in the GPU-only implementation. They
have since asked us to incorporate stress nets into Paraview, an

 Memory
use

Startup
time (sec)

Frame rate
 (net
enabled)

Frame rate
 (net disabled)

CPU 336M 9 170 270
GPU 252M 1 14.5 14.3

Table 1: Performance statistics for the GPU and CPU
implementations of stress nets on a data set containing 342,000
points and 8 derived quantities. Memory use is measured when
the net is visible on the screen with equal density in both
implementations. Startup time is the length of time between
loading a data set and the appearance of the stress net. The CPU
implementation achieves a much higher frame rate because it
does not incur the overhead of vertex and fragment programs.

open-source visualization platform used within our laboratory, so
that our method can be applied to other data in other domains.

6 CONCLUSIONS AND FUTURE WORK
We have presented stress nets, a novel visualization algorithm for
fields of 2D tensors, and discussed the advantages and
disadvantages of two different methods for generating and
rendering the net. Our first implementation, using only the GPU,
automatically recomputed the net to fit the visible extent of the
data exactly. However, the streaming nature of programmable
graphics hardware resulted in artifacts that ultimately proved
unacceptable to our customers. A second implementation using
the GPU for the scalar field and the CPU for the stress net yielded
faster rendering and much higher image quality at the cost of
increased preprocessing time and memory overhead.

We incorporated stress nets into a tool used to explore the
results of a simulation of crack propagation. This tool allowed
our customers to identify discrepancies between their simulation
results and the predictions made by the prevailing model in the
literature. Future investigation of these discrepancies may lead to
unifying revisions of conflicting continuum solutions and/or
changes in the theory by which interatomic forces are converted
to stress tensors in atomistic simulations. We consider the use of
our tools to advance a completely separate area of science to be a
validation of the utility of our approach.

Stress nets are applicable to a broader range of tensor
visualization problems, including nearly any problem that
involves a symmetric tensor field or, with some revision, even
non-symmetric tensor fields as well. Within the geomechanics
arena, drilling paths for oil wells must closely follow the
eigenvectors associated with maximum stress to ensure well-bore
viability. Stress nets can provide a simple and intuitive view of
these preferred paths. In biomechanics, we could apply stress nets
to visualize the stresses and strains operating within the heart, and
“diffusion nets” can be generated in perfect analogy with stress
nets. As described here, our method applies to any 2D symmetric
tensor field.

Stress nets may be extended to support 2D non-symmetric
tensor fields whose eigenvectors are not orthogonal. The key is to
compute a set of lines for the major and minor fields of
eigenvectors separately, then overlay them on one another for
display. In the GPU implementation, the net texture would
change to a line segment instead of a cross. Two separate texture
lookups would be required: one for each field of eigenvectors.
The fragment program would combine both textures with the
scalar field just as it currently does the single net texture. The
CPU/GPU implementation needs no modification to its algorithm,
as its two sets of streamlines are already computed separately
using the major and minor eigenvectors.

These examples raise the question of how best to extend our
method into three dimensions. The simplest approach may be to
draw the net on a cutting plane or some other surface. A stress net
itself can be computed in three (or more) dimensions with little
change to the algorithm, but visualizing the results presents a
challenge. We note that the problem of robust visualization
methods for 3D vector flow fields is still an active area of
research. We could also compute stress nets at several different
resolutions simultaneously using a method similar to the one
presented by Jobard and Lefer [14] to reduce the number of times
the net must be recomputed during viewing.

Finally, our method does not preclude the simultaneous use of
other tensor visualization methods. A stress net could be overlaid
on a topological decomposition of a tensor field, such as the
methods described by Hesselink et al., or used in concert with an
alternate display method such as Mohr diagrams. We feel that

multiple linked views of a single data set are a promising area for
future research.

The authors are grateful to Jon Zimmerman of Sandia National
Laboratories for providing the atomistic simulation data and to the
anonymous reviewers for their helpful comments. The
Department of Energy (DOE) Mathematics, Information, and
Computer Science Office funded the visualization portion of this
work. This work was performed at Sandia National Laboratories,
a multi-program laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of
Energy’s National Nuclear Security Administration under
Contract DE-AC04-94AL85000.

REFERENCES
[1] J.D. Achenbach and V. Dunayevsky, “Crack-Tip Plasticity for Rapid

Crack Propagation”, in Advances in Fracture Research (Fracture 81)
5, ICF5, pp. 2205-2213, 1981.

[2] Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy,
and Mathieu Desbrun. "Anisotropic Polygonal Remeshing". in
ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003),
vol. 22, ACM Press, San Diego, California, pp. 485-493, July 2003.

[3] Jasmine Blanchett and Mark Summerfield, “C++ GUI Programming
with Qt 3”, Prentice Hall, January 2004.

[4] Ed Boring and Alex Pang. "Interactive deformations from tensor
fields." in Proceedings of IEEE Visualization 1998, IEEE Computer
Press, Research Triangle Park, North Carolina, pp. 297-304, October
1998.

[5] Brian Cabral and Leith Leedom. “Imaging vector fields using line
integral convolution”, in Computer Graphics (SIGGRAPH 1993
Proceedings), vol. 27, ACM Press, pp. 263-272, August 1993.

[6] Patricia Crossno, David H. Rogers, Rebecca M. Brannon, David
Coblentz, and Joanne T. Fredrich. "Visualizing of Geologic Stress
Perturbations using Mohr Diagrams". To appear in IEEE
Transactions on Visualization and Computer Graphics.

[7] Thierry Delmarcelle and Lambertus Hesselink, "Visualizing second-
order tensor fields with hyperstreamlines", IEEE Computer Graphics
and Applications, vol. 13, IEEE Computer Press, pp. 25-33, July
1993.

[8] Robert R. Dickinson, “A unified approach to the design of
visualization software for the analysis of field problems”, in Three-
Dimensional Visualization and Display Technologies, SPIE
Proceedings, vol. 1083, pp. 173-180, January 1989.

[9] Robert B. Haber, "Visualization techniques for engineering
mechanics," in Computing Systems in Engineering, 1:37-50, 1990.

[10] Lambertus Hesselink, Yuval Levy, and Yingmei Lavin, "The
topology of symmetric, second-order 3D tensor fields", in IEEE
Transactions on Visualization and Computer Graphics, 3(1):1-11,
January/March 1997.

[11] Kenneth Hoff III, Tim Culver, John Keyser, Ming Lin, and Dinesh
Manocha, “Fast Computation of Generalized Voronoi Diagrams
using Graphics Hardware”, in Computer Graphics (SIGGRAPH ’99
Conference Proceedings), ACM Press, Los Angeles, California, pp.
277-286, August 1999.

[12] Ingrid Hotz, Louis Feng, Hans Hagen, Bernd Hamann, Kenneth Joy,
and Boris Jeremic. "Physically Based Methods for Tensor
Visualization", in Proceedings of IEEE Visualization 2004, IEEE
Computer Press, Austin, Texas, pp. 123-130, October 2004.

[13] Bruno Jobard and Wilfrid Lefer, "Creating evenly-spaced
streamlines of arbitrary density", in 8th Eurographics Workshop on
Visualization in Scientific Computing, Boulogne-sur-Mer, France,
pp. 45-55, April 1997.

[14] Bruno Jobard and Wilfrid Lefer, "Multiresolution flow
visualization", in Proceedings of the 9thth International Conference
in Central Europe on Computer Graphics, Visualization and
Computer Vision (WSCG '01), Plzen, Czech Republic, February
2001.

[15] Gordon Kindlmann, "Superquadric Tensor Glyphs". in O. Deussen,
C. Hansen, D. A. Keim, and D. Saupe, editors, Joint Eurographics -

IEEE TCVG Symposium on Visualization 2004, Konstanz,
Germany, 2004.

[16] Ron D. Kriz, Edward H. Glaessgen, and J. D. MacRae,
"Visualization blackboard: Visualizing gradients in composite
design and fabrication", in IEEE Computer Graphics &
Applications, 15(6):10-13, IEEE Computer Press, November 1995.

[17] Willem C. de Leeuw and Jarke J. van Wijk, "A probe for local flow
field visualization". in Proceedings of the 4th conference on
Visualization '93, IEEE Computer Press, pp. 39-45, 1993.

[18] J.T. Leighton, C.R. Champion, and L. B. Freund, “Asymptotic
analysis of steady dynamic crack growth in an elastic/plastic
material”, in J. Mech. Phys. Solids 35 (1987), 541.

[19] Will Schroeder, Ken Martin and Bill Lorensen, “The Visualization
Toolkit”, Pearson Education, Inc., 2002.

[20] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis,
“OpenGL Programming Guide, Fourth Edition”, Addison-Wesley,
Boston, Massachusetts, 2004.

[21] Ko-Foa Tchon, Julien Dompierre, Marie-Gabrielle Vallet, and
Ricardo Camarero, "Visualizing Mesh Adaptation Metric Tensors",
in Proceedings of the 13th international Meshing Round Table,
Sandia National Laboratories, Williamsburg, Virginia, pp. 353-363,
2003.

[22] X. Tricoche, G. Scheuermann, and Hans Hagen, "Tensor topology
tracking: A visualization method for time-dependent 2D symmetric
tensor fields", in A. Chalmers and T.-M. Rhyne, editors, EG 2001
Proceedings, volume 29)3) of Computer Graphics Forum, Blackwell
Publishing, pp. 461-470, 2001.

[23] Greg Turk and David Banks, "Image-guided streamline placement",
in Proceedings of SIGGRAPH 96, ACM Press, New Orleans,
Louisiana, pp. 453-460, August 1996.

[24] Vivek Verma, David Kao, and Alex Pang, "A flow-guided
streamline seeding strategy", in Proceedings of IEEE Visualization
2000, IEEE Computer Press, Salt Lake City, Utah, pp. 163-170,
2000.

[25] David M. Weinstein, Gordon L. Kindlmann, and Eric C. Lundberg.
“Tensorlines: Advection-diffusion based propagation through
diffusion tensor fields”, in Proc. of IEEE Visualization '99, IEEE
Computer Press, San Francisco, California, pp. 249-253, October
1999.

[26] Song Zhang, Charles T. Curry, Daniel S. Morris, and David H.
Laidlaw. “Streamtubes and streamsurfaces for visualizing diffusion
tensor MRI volume images”, in IEEE Transactions on Visualization
and Computer Graphics, vol. 9, n.4, pp. 454-462, October 2003.

[27] Xiaoqiang Zheng and Alex Pang, "HyperLIC”, in Proceedings of
IEEE Visualization ’03, IEEE Computer Press, Seattle, WA, pp.
249-256, October 2003.

[28] Leonid Zhukov and Alan Barr. Oriented Tensor Reconstruction:
Tracing Neural Pathways from Diffusion Tensor MRI. in
Proceedings of IEEE Visualization 2002, IEEE Computer Press,
Boston, Massachusetts, pp. 387-394, October 2002.

Figure 6(a): Scalar field in GPU implementation

Figure 6(b): GPU stress net

Figure 6(c): Combined scalar field and stress net for the
GPU-only implementation. Although it is possible to discern
the orientation of the stress field at any point, the rendering
artifacts make it difficult to observe its behavior over a wide
region.

Figure 7(a): Scalar field in CPU/GPU implementation

Figure 7(b): CPU/GPU stress net

Figure 7(c): Combined scalar field and stress net in the
CPU/GPU implementation. Computation of the stress net
itself is moved back onto the CPU. The rendering artifacts
have disappeared, leaving the features of the data much
clearer at the cost of some additional preprocessing.

GPU implementation

CPU/GPU implementation

Figure 12: When the user zooms into the data, the moiré
patterns in the GPU implementation disappear but the
stress net appears to break. This happens because the
GPU has no way to ensure continuity of the net from cell
to cell. The CPU implementation remains continuous at
all scales.

GPU implementation

CPU/GPU implementation
Figure 11: Moiré artifacts appear in the GPU implementation
when the cells of the stress net are large compared to the
individual data cells. This is an extreme example. These
artifacts are not present in the CPU/GPU implementation.

Figure 8: This style of orientation plot
was in use by our customers prior to our
development of stress nets. Each glyph
corresponds to a single data point. The
crack tip is in the center of the image.
The discontinuous glyphs make it difficult
to discern the structure of the changes in
the tensor field.

Figure 10: Stress net created from
atomistic simulation data. It differs
substantially from the predicted structures.
The angles around the crack tip (again, in
the center of the image) differ from
predictions. The structures in the crack’s
wake, spreading diagonally up and down to
the left of the crack, are not present at all in
the analytical solution.

Figure 9: Stress net created from the
tensor field shown in Figure 8. This is
the asymptotic, analytical solution in the
literature. Our customers expected to
see this structure.

