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ABSTRACT 
In this article we describe stress nets, a technique for exploring 
2D tensor fields.  Our method allows a user to examine 
simultaneously the tensors' eigenvectors (both major and minor) 
as well as scalar-valued tensor invariants.  By avoiding noise-
advection techniques, we are able to display both principal 
directions of the tensor field as well as the derived scalars without 
cluttering the display.  We present a GPU-only implementation of 
stress nets as well as a hybrid CPU/GPU approach and discuss the 
relative strengths and weaknesses of each. 

Stress nets have been used as part of an investigation into crack 
propagation.  They were used to display the directions of 
maximum shear in a slab of material under tension as well as the 
magnitude of the shear forces acting on each point.  Our methods 
allowed users to find new features in the data that were not visible 
on standard plots of tensor invariants.  These features disagree 
with commonly accepted analytical crack propagation solutions 
and have sparked renewed investigation.  Though developed for a 
materials mechanics problem, our method applies equally well to 
any 2D tensor field having unique characteristic directions. 
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1 INTRODUCTION 
Tensor visualization is a relatively new area of study compared to 
vector and scalar field visualization.  It is difficult because the 
meaning of a tensor is strongly problem-dependent.  Whereas a 
vector field usually has an intuitive meaning as a representation 
either of flow or force, a single tensor can represent such disparate 
entities as stress forces, strain stretches, the gradient of a velocity 
field, and diffusion of water within tissue.  There are also many 
aspects of a tensor that can be displayed, including its invariants, 
eigenvalues, eigenvectors, and even its individual components. 

In light of this difficulty, the most successful tensor 
visualization algorithms so far have been domain-specific.  Rather 
than attempting to display the whole of the tensor data at once, 
such algorithms extract only the information necessary to the 
user’s area of interest.  Examples of such methods include Mohr’s 
circles for stress/strain data [6] and geometric extraction methods 
for diffusion tensor MRI data [28].  Although the search for a 
universally useful tensor visualization method continues, we 
believe that domain-specific methods will always have an 
advantage in conveying meaning to a user. 

After completing a simulation of crack propagation at atomic 
scale, materials scientists within our laboratory sought to compare 
their results with published asymptotic continuum-mechanics 
solutions for a nearly equivalent problem. However, the 
information they needed could not be seen in standard 2D plots of 
tensor invariants.  We were asked to develop a tool with the 
following capabilities: 

1. Display, at all points within the data, the orientation of the 
maximum shear directions (which are simply 45° 
rotations of the major and minor eigenvectors)  

2. Provide a continuous global view of the data 
3. Browse through the data and zoom in for higher-

resolution detail 
4. Color the data using some scalar invariant derived from 

the tensors 
 

Contributions: In this paper we describe stress nets, a novel 
visualization algorithm for exploring 2D tensor fields.  A stress 
net can display both major and minor eigenvector fields (or, as 
needed by our customers, vectors derived from these 
eigenvectors) as well as some scalar quantity derived from the 
data.  Moreover, our method does not limit the scalar display to 
hue only, as is commonly the case in noise-based approaches.  
Although we deal with non-isotropic symmetric tensors in this 
paper, our method can handle asymmetric tensors as well (with 
minor revisions).  We have incorporated stress nets into an 
application used by geomechanicists to investigate models of 
crack propagation.   Our application has allowed them to identify 
discrepancies between the properties of a simulation of crack 
propagation at atomic scale and the predictions made in the 
continuum mechanics literature. 

The rest of this paper is organized as follows.  We survey 
related work in Section 2.  In Section 3, we describe the driving 
problem in mechanics that led to the development of stress nets.  
In Section 4 we present two different implementations of stress 
nets, one using the GPU alone and one using both the CPU and 
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Figure 1: A stress net for one time step in an atomistic 
simulation of crack propagation.  This image shows the 
directions of maximum shear (the white grid lines) and the 
magnitude of the deviatoric component of the stress tensor 
(underlying color). 



GPU.  In Section 5 we discuss the performance, advantages, and 
disadvantages of each approach as well as our customers’ reaction 
to the method.  In Section 6 we conclude with a brief discussion 
of possible future work. 

2 PREVIOUS WORK 
In this section we survey related work in tensor visualization.  

Compared with vector visualization, tensor visualization is a 
relatively unexplored area of study.  Moreover, it is difficult to 
find generally applicable tensor visualization methods because the 
meaning of a tensor is highly domain-specific.  We give examples 
of both general and domain-dependent visualization techniques.   

2.1 General tensor visualization methods 
One approach to tensor visualization is to exploit the fact that 
tensors, like matrices, have eigenvalues and (possibly 
indeterminate) eigenvectors. In this context, we can treat the 
eigenvectors as velocity fields and apply generalizations of vector 
visualization methods.  The common hedgehog plot of a vector 
field can be extended to a field of glyphs.  For example, Haber [9] 
and Kriz et al. [16] construct a field of ellipsoids to represent a 
field of tensors.  The major and minor axes of each ellipsoid are 
aligned with the major and minor eigenvectors of the tensors and 
scaled according to the corresponding eigenvalues.  While these 
plots can be useful for local inspection, the problems of clutter, 
occlusion, and ambiguity in shape make it difficult to observe the 
behavior of the tensor field over space.  De Leeuw and van Wijk 
[17] use a more complex glyph, the flow probe, to illustrate 
several quantities within a flow field.  This conveys more 
information at the expense of more screen space for each glyph, 
reducing further the number of glyphs that can be usefully 
displayed.  Hyperstreamlines [7] are an alternative approach that 
combines aspects of glyphs and flow visualization.  Streamlines 
are traced through the velocity field formed by the major 
eigenvectors of a set of tensors.  Then, an ellipse is swept along 
each streamline.  The minor eigenvectors and eigenvalues of the 
data are used as the direction and length of the axes of the ellipse.  
Although this method illustrates changes in the eigenvectors over 
a path in space, it introduces the common problem of choosing 
appropriate seed points for the streamlines in order to display the 
most important features in the data.  Moreover, like fields of 
glyphs, hyperstreamlines encounter problems of clutter and 
occlusion as more lines are added to the display. 

Another approach to conveying the global structure of a tensor 
field is to decompose it into its topological structure [10,22].  This 
structure consists of the field’s degenerate points, where the 
tensors have duplicate eigenvalues, and a set of skeleton curves 
connecting these points.  Although this method allows for 
reconstruction of the tensor field, interpretation can be difficult.     

Noise-based vector visualization methods have also been 
adapted for tensors.  HyperLIC [27], a generalization of the line 
integral convolution algorithm for vector fields [5], integrates a 
noise field over many small regions of the data.  The shape and 
size of each region is determined by the eigenvectors and 
eigenvalues of the tensors in that region.  The resulting image 
shows the field of major eigenvectors, smoothed in regions where 
the tensors are (nearly) isotropic.  Hotz et al. [12] take a different 
approach.  They use LIC to generate images for both the major 
and minor fields of eigenvectors in tensor data, then overlay the 
two images for display.  This is similar in principle to our 
approach.  Their approach to displaying a scalar variable differs 
from ours in that they use the variable to determine the hue of the 
LIC image. It can be difficult to separate variability in the 
luminance of the LIC image from differing values in the scalar 
being displayed.   

2.2 Domain-specific methods 
In some cases, the problem domain that gives rise to the tensor 
data being examined suggests a visualization technique.  
Exploiting this technique allows us to present an image the users 
will understand quickly by keying into metaphors they have 
already learned.  For example, Mohr’s circles, originally 
developed around 1900, are commonly taught in undergraduate 
engineering classes as a way to visualize and interpret stress 
tensors.  The circles provide a visual estimate of the tensor’s 
eigenvalues as well as an overall measure of whether the tensor 
represents a compressive, tensile, or combined force – all 
properties that are important in mechanics and materials science.  
Crossno et al. [6] use Mohr’s circles to convey an overview of the 
forces within a finite-element geomechanical data set.   Dickinson 
[8] addresses stress/strain fields in a more general treatment of 
interactive methods for scalar, vector, and tensor data.  He points 
out that the orientation components of tensor data are important in 
their own right and shows an example of a method similar in spirit 
to stress nets.   

Diffusion tensor MRI (DT-MRI) can also produce tensor data 
with a natural interpretation.  The dominant eigenvectors of the 
diffusion tensors indicate pathways of maximum diffusion, 
corresponding to structures of interest such as neural fibers within 
the brain.  Methods such as streamtubes [26] and oriented tensor 
reconstruction [28] work by recognizing and extracting those 
structures for display.  Weinstein and Kindlmann [25] combine a 
glyph-based approach with direct volume rendering by mapping 
the anisotropy of diffusion to both hue and the lighting model at 
each point within the data. 

Tchon et al. [21] apply tensor visualization in the context of 
mesh generation and optimization for finite element simulations.  
They use the Riemannian metric tensor, a measure of the “best” 
shape of a mesh element at each point on a surface, and construct 
two vector fields from the major and minor eigenvectors of the 
metric tensor.  They trace streamlines through these fields to 
construct a net qualitatively similar to the optimal mesh for a 
particular metric and data set.  Their method differs from ours in 
that the step size taken at each point during streamline integration 
is governed by the magnitude of the eigenvalue at that point.  This 
is entirely appropriate for mesh construction and optimization, 
producing larger elements in regions where the data are smoother, 
but not as helpful for visual inspection.  We achieve similar 
effects by allowing the user to zoom in and out to view the data 
and the stress net at different scales.   

3 DRIVING PROBLEM 
We developed stress nets in response to a request from a materials 
scientist studying the propagation of cracks through an elastic-
plastic material.  The simulation setup for this study is illustrated 
in Figure 2.  We begin with a 2D rectangular slab of some 
notional material.  Tension is applied to the material by pulling 
vertically on the upper and lower faces A and B.  Eventually, the 
stress near the crack tip exceeds the material’s failure threshold.  
When this happens, a crack at point C will propagate from left to 
right along the material’s center line.   

The reason for this study is that there are multiple models in the 
materials science literature that describe crack propagation.  One 
solution, due to Leighton, Champion and Freund [18], describes 
cases where the crack is propagating at some non-negligible 
velocity v (the dynamic case).  Another solution, due to 
Achenbach and Dunayevsky [1], describes the behavior of the 
material as v vanishes (the quasi-static case).  Intuition would 
suggest that the dynamic solution should converge to the quasi-
static one as v approaches zero.  This is not the case: the models 
make qualitatively different predictions about the shear forces 
within the material.  Our customers sought to determine whether 



or not independent atomistic solutions to a nearly equivalent 
problem could offer insight leading to revisions in the continuum 
mechanics solutions that might resolve this discrepancy.     

3.1 Customer Requirements 
Our customers asked for a tool that would allow them to inspect 
the structure of shear forces within their simulation results.  This 
includes the directions of maximum shear, which are derived from 
the eigenvectors at each data point, and any one of several scalar 
quantities derived from the stress tensor.  These quantities 
included the tensor’s eigenvalues, its other invariants (such as the 
trace and the magnitude of the deviatoric part), and its individual 
components.  All of this had to be derived from the raw 
simulation data, which was supplied as a series of points.  Each 
point represents a single atom and specifies a 2D position in space 
as well as a symmetric 2D tensor representing the stress forces 
incident upon that atom.  Both the orientations of the shear forces 
and the underlying scalar field had to be shown simultaneously 
across the visible extent of the data.  The goal of this study was to 
compare qualitatively the simulation results with the predictions 
made in [18] and to look especially for abrupt changes of 
direction in the shear forces near the crack tip.  Such changes are 
not permitted by those predictions.  This information does not 
appear in standard 2D plots of tensor invariants: it is only visible 
in the orientation portion of the tensors.   

3.2 Stress Nets 
We chose as a model for our solution a deformed grid whose lines 
reflect the orientation of the underlying tensor data.  Instead of 
tying the grid’s density to the magnitude of the eigenvalues of the 
tensor field, as is done in [21], we attempt to keep the size of the 
grid cells roughly constant over the whole of the data.  This sort 
of display is similar in spirit to an electric field diagram including 
both field lines and equipotential lines, as shown in Figure 3.  
Moreover, the derived scalar must be clearly visible along with 
the net itself: the two must not obscure one another.  When color 
is used to display a scalar variable in noise-based methods such as 
LIC and HyperLIC, the variation in color (due to the scalar 
variable) and the variation in luminance (due to the noise texture) 

can be difficult to disambiguate.  By creating a grid instead of a 
space-filling texture, we leave plenty of room free for displaying 
the scalar variable exclusively.  We refer to the orientation 
component of the display as the stress net and the derived scalar 
variable as the scalar field.   

We addressed the following issues while developing stress nets: 
1. The data are supplied as atoms without extent.  How do 

we construct a space-filling representation that can be 
used for display or query? 

2. How do we construct and render the stress net? 
3. How does the system respond to zooming in and out?  

Should the net be recomputed automatically at each 
frame? 

4. How do we handle situations where the eigenvectors are 
poorly defined because of repeated eigenvalues? 

 

4 STRESS NETS 
We have implemented two different versions of stress nets in a 
tool used in our customers’ study.  We used VTK [19] for the 
rendering components of our system and Qt [3] for its user 
interface.  In the rest of this section we describe the two 
implementations and the design decisions that guide them. 

4.1  GPU-only implementation 
Our first implementation of stress nets computed both the scalar 
field and the stress net on programmable graphics hardware.  This 
implementation is separated conceptually into rendering the scalar 
field and rendering the stress net, although the actual code 
performs both tasks in a single pass.  First we discuss the 
rendering of the scalar field using a discrete Voronoi diagram of 
the input data.  Next, we show how the stress net is rendered as a 
texture map on top of the scalar field. 

4.1.1 Discrete Voronoi diagram and Scalar Field 
We draw the scalar field by building a discrete Voronoi diagram 
of the input points using the GPU.  There are several methods in 
the literature for accomplishing this.  We adopted the method 
described in [11] for simplicity.  At each data point, we draw a 
cone whose apex points straight up toward the view plane.  All 
cones have the same slope and radius.  The radius is chosen 
empirically so that the only gap visible in the scalar field is in the 
interior of the crack.   

After rendering, we are left with an image where the fragment 
with the lowest Z value at each pixel is part of the cone belonging 
to the data point nearest that pixel.  The visible portion of each 
cone is therefore a sampled representation of its data point’s 
Voronoi region.  We can use this to render the scalar field simply 
by using the currently selected scalar to assign a color to each 
cone. 

4.1.2 Drawing the Stress Net 
We render the stress net as a texture map on top of the scalar field.  
Texture coordinates are defined in screen space rather than world 
space so that the net’s resolution will adapt automatically to the 
visible extent of the data.  The user can specify a scaling factor to 
determine how many times the texture repeats across the screen 
and thus how fine the net itself is.   

The net texture is applied using vertex and fragment shaders.  A 
texture coordinate register is used to pass in the orientation of the 
stress net for each point in the scalar field.  Within each cell, the 
screen-space texture coordinates are rotated to match this 
orientation.  Since we know that the eigenvectors and hence the 
shear directions in the original data will always be perpendicular 
to one another where they exist at all, we can render both grid 
directions at once.  Our particular application contained no 

Figure 2: Simulation of crack propagation.   A 2D slab of 
material is stressed by pulling vertically on faces A and B.  
When the tension exceeds the material’s failure threshold, a 
crack beginning at point C will propagate from left to right. 

A 

B 

C 
Crack 

Figure 3: A notional stress net for a circular field.  We attempt 
to keep the size of the cells of the net constant across space 
to avoid crowding the display.   



isotropic regions where the eigenvectors become non-unique 
because of equal eigenvalues. If isotropic or nearly isotropic states 
are possible, an appropriate generalization of our method would 
be to make the opacity of the stress net texture proportional to the 
magnitude of the stress deviator (hence making the net disappear 
at isotropic states where the deviator is zero).  The choice of the 
threshold below which the net is completely transparent should be 
application- and data-dependent in order to show the net only 
where there is enough anisotropy for the characteristic directions 
to be meaningful. 

  Pseudocode for computing and applying the net texture is 
shown in Figure 4.  The texture map used by the fragment shader 
is shown in Figure 5. In practice, we render both the scalar field 
and the stress net in a single pass.   

4.2 CPU/GPU implementation 
Our second implementation focused on the goal of computing a 
smooth, continuous stress net across the whole of the data at the 
possible expense of speed and memory.  This task requires global 
knowledge.  For the lines of the stress net in one cell to connect to 
lines in a neighboring cell, the start and end positions of that cell’s 
lines must be known in advance.  The same is true for connecting 
a neighboring cell’s net to its neighbors, and so on through the 
entire data set. 

The streaming nature of programmable graphics hardware 
makes it difficult to provide such information.  Although an 
iterative process could be used to adjust the positions of the net 
incrementally within each cell, this would carry the high cost of 
copying the frame buffer into texture memory after each step.   
Rather than incur that overhead, we moved the computation of the 
stress net back onto the CPU to take advantage of random access 
to global information.  Instead of generating the stress net using 
texture maps, we treated it as two independent sets of streamlines: 
one set each for the two sets of directions displayed by the stress 
net.  This is similar in concept to the noise-based approach 
presented by Hotz et al. [12] 

4.2.1 Space-filling representation 
As before, we begin with the problem of converting the 
simulation data into a space-filling representation.  This 
representation will be used as the vector field through which the 
streamlines composing the stress net will be drawn.  Our data 

were provided as a set of points in space, each associated with a 
symmetric 2x2 tensor.  We convert these points into a space-
filling representation by inserting them into a data structure that 
allows nearest-neighbor queries.  Once again, we perform no 
blending of nearby points in order to avoid introducing extra 
information into the data. 

We use a kd-tree for simplicity.  There are a plethora of other 
suitable data structures, including the Voronoi diagram, 
constrained Delaunay triangulations, a spatial hash table, and even 
a uniform grid.  Our choice of the kd-tree was wholly pragmatic: 
it is available already within VTK.  By selecting this rather than 
implementing a (potentially) more efficient structure from scratch, 
we were able to deliver tools to our customers more quickly.  

4.2.2 Generating the Stress Net 
Once we have a space-filling representation of the data, the 
construction of the stress net is straightforward.  We create two 
independent sets of streamlines to follow the two different sets of 
directions in the net.  We use Jobard and Lefer’s method [13] to 
help ensure consistent spacing between adjacent streamlines.  The 
user is permitted to control the streamline density by specifying 
the separation distance as a fraction of screen space.  A streamline 
is terminated if it enters a region where the eigenvectors are ill-
defined or if it comes within a threshold distance of another 
streamline.  The streamlines composing the stress net are stored as 
line segments for later rendering. 

Explicit computation and storage of the stress net raises 
scalability concerns.  In order to keep memory requirements low 
and performance high, we do not recompute the net every time the 
streamline density or view region changes.  Instead, we generate 
the net only upon request and restrict the region through which it 
propagates.  The streamline region is always centered on the 
current view and is typically 1.5 times the size of the visible 
extent of the data.  This allows for limited panning and zooming 
while still covering the visible region with the stress net.  Both the 
extent and the regeneration of the stress net are placed within the 
user’s control. 

4.3 Rendering the Combined Display 
The scalar field is rendered directly from the input points using 
the algorithm in Section 4.1.1 in both GPU-only and CPU/GPU 
implementations.  Since the stress net is available as actual 
geometry (the line segments of the streamlines), we render it on 
top of the scalar field in a single pass instead of displaying it using 
textures.  Vertex and fragment programs are not necessary in the 
CPU/GPU implementation. 

5 PERFORMANCE AND RESULTS 
In this section we discuss the performance, advantages, and 
drawbacks of the two different implementations of stress nets.  All 
statistics were acquired using one processor of a PC with two 2.6 
GHz Pentium IV processors, 4GB of main memory, and an 
NVIDIA QuadroFX 3000 graphics card with 256MB of memory.  
The texture map used to display the stress net in the GPU-only 
implementation took 256KB of this memory. 

StressNetVertexShader( float4 worldPosition,  
               float  netOrientation,  
               float4 netOrigin,  
               float  textureScale,  
                    float  windowAspectRatio ) 
{ 
   float4 screenPosition = mul(ModelViewProjection,  
                               worldPosition); 
   float4x4 netRotation =rotateAroundZAxis(netOrientation); 
 
   // Make the grid cells square in screen space 
   screenPosition.x *= windowAspectRatio; 
   // Normalize after projection 
   screenPosition /= screenPosition.w;  
  
   float4 normalizedPosition = screenPosition - netOrigin; 
   float4 netTextureCoords = normalizedPosition * netRotation; 
   netTextureCoords *= textureScale; 
 
   return normalizedPosition; 
} 
 
ApplyStressNetTexture(float4 netTextureCoords, 
      float textureWeight, 
              float4 scalarFieldColor, 
                uniform sampler2D OrientationTexture) 
{ 
   float4 textureColor =  

          tex2D(orientationTexture, netTextureCoords); 
   return scalarFieldColor + textureWeight * textureColor; 
} 

Figure 4: Pseudocode for vertex and fragment programs 
that generate the stress net in the GPU implementation.   

 

Figure 5: Texture map used for the GPU implementation of the 
stress net.  Black areas of the texture are transparent and allow the 
underlying scalar field to show through.  White areas are opaque. 



5.1 GPU-only implementation 
Figure 6 shows examples of the output of the GPU-only 
implementation.  The scalar field alone is shown in Figure 6(a).   
The stress net alone is shown in Fig. 6(b).  The two fields 
combined are shown in Fig. 6(c). 

The orientation of the stress net at points across the image can 
be observed by focusing on the area in question.  Since the net is 
computed in screen space and is recomputed for every frame, 
zooming into the data permits examination of its orientation at 
finer scales. 

The chief advantages of this implementation are its low 
overhead and quick startup.  Since the stress net is rendered 
directly from the orientation data within the vertex and fragment 
programs, there is no need for auxiliary data structures like the 
kd-tree.  Moreover, this implementation will run at the same 
frame rate regardless of the net’s density.  This automaticity 
comes at the expense of slower frame rates, as shown in Table 1. 

The major drawbacks of the GPU-only implementation are the 
rendering artifacts visible in the stress net.  We observe two types 
of artifacts.  First, moiré patterns (Figure 11) often become visible 
when looking at large parts of the data.  These occur when the 
individual cells in the scalar field are much smaller in screen 
space than the area covered by a single grid cell.  In such a 
situation, the orientation of the net can change drastically between 
one grid line and the next or even within the area covered by a 
single grid line.  Moreover, the origin about which the grid texture 
is rotated remains constant across all the data.  We made this 
assumption in an attempt to produce a coherent net in as much of 
the display as possible.  This is a reasonable restriction near the 
crack tip, which forms the center of rotation for the net in that 
region.  However, it is incorrect in areas such as the wake 
singularity shown in Figures 1, 7, and 10.  We attempted to 
compute a center of curvature at each data point in order to 
alleviate this but were unable to achieve useful results due to rapid 
changes in curvature.  In severe cases, such as in Figure 11, the 
moiré patterns can totally obscure the actual orientations of the 
stress net. 

The moiré artifacts disappear as the user zooms in to view 
smaller parts of the data.  At smaller scales, however, the net 
appears broken and discontinuous along cell boundaries, as shown 
in Figure 12.  This happens because the vertex program that 
computes the stress net has no way to ensure the continuity of grid 
lines from one cell to the next: indeed, the vertex program is not 
even aware of other cells.  While it may be possible to introduce 
such information using recent graphics hardware that permits 
texture lookups within a vertex shader, we believe that these 
shortcomings are inherent to the use of a single-pass GPU-only 
algorithm for computing stress nets. 

5.2  CPU/GPU implementation 
The hybrid CPU/GPU implementation eliminates nearly all of the 
artifacts within the stress net as shown in Figures 6 and 7.  We 
observe that the moiré artifacts are no longer present.  This is 
because the lines composing the net are constructed specifically to 
be continuous and are represented explicitly as geometry instead 
of existing only as a combination of single-pixel textures.  There 
are still a few discontinuities in the net, produced when grid lines 
approach too closely to one another and are terminated by the 
streamline generation algorithm.  Also, the spacing between lines 
(and thus the size of the cells of the net) is not everywhere 
constant.  Nonetheless, the overall display is far more coherent 
than with the GPU implementation.  Rendering speed has also 
been increased since we no longer recompute the stress net from 
scratch at every frame.   

The greatest advantage of the CPU-based stress net algorithm is 
that the net’s coherence makes it simple to observe the way the 

stress net changes over a region.  We illustrate this in Figure 12.  
Although both images show the same feature in the data, it is 
much easier to see in the absence of the discontinuity artifacts 
present in the GPU-only version.   

The increased image quality and rendering speed of this 
approach are balanced by its increased overhead.  As seen in 
Table 1, computing and storing the stress net using the CPU 
requires more storage space and a substantial startup time.  Both 
of these are due to the kd-tree that we use to look up directions for 
the stress net during streamline integration.  However, there are at 
least two simple ways to reduce this expense.  First, we could 
substitute some other, more compact spatial data structure for the 
kd-tree.  In the case of the crack-propagation data our customers 
provided, a geometric hash table or a uniform grid might work 
well.  Second, we could save the kd-tree for a data set to disk after 
computing it once, then simply reload it during future runs.  This 
would reduce the 11-minute construction time to the few seconds 
it would take to read the tree from disk.  Many different data sets 
(corresponding to different time steps in the simulation) could be 
preprocessed in a few hours and then made available for rapid 
browsing using this approach.  It is also possible to optimize the 
kd-tree implementation itself.   

Finally, since we do not recompute the stress net automatically 
in this implementation, it is possible for the user to outrun it by 
panning beyond its extent or zooming in or out to the point where 
its cells are too large or small to be useful.  Recomputing the 
stress net when the user changes either the desired viewing region 
or the net’s density typically takes 5-15 seconds.  In practice, we 
feel that this is not a serious problem. We observe that users tend 
to spend most of their time examining one small region of the 
data, then moving rapidly to another area.  The brief pause 
required to recompute the stress net after zooming in or out is 
small compared to the time spent focusing on an area of interest. 

5.2.1 User Reactions 
Our customers reacted positively to the results they obtained using 
our tools.  Their first comments did not concern the tool at all, but 
instead the fact that the structure (now revealed) in their data did 
not match what the literature predicted.  This discrepancy is 
illustrated in Figures 8-10.  This is the goal of any successful 
visualization tool: to be so transparent that the users see meaning 
within their data instead of the software used to display it.   

After their initial positive response, our customers began to 
express dissatisfaction with the artifacts in the display.  They 
reported that the moiré patterns and discontinuities in the stress 
net made it difficult to interpret what was really present in the 
data.  This dissatisfaction led eventually to the hybrid CPU/GPU 
implementation.  The drastic reduction of artifacts in that version 
enabled our customers to discover a feature in the data (the 
“wake” of the crack visible in Figures 1, 7, and 10) that had been 
obscured by artifacts in the GPU-only implementation.  They 
have since asked us to incorporate stress nets into Paraview, an 

 Memory 
use 

Startup 
time (sec) 

Frame rate 
 (net 
enabled) 

Frame rate 
 (net disabled) 

CPU 336M 9 170 270 
GPU 252M 1 14.5 14.3 

Table 1: Performance statistics for the GPU and CPU 
implementations of stress nets on a data set containing 342,000 
points and 8 derived quantities.  Memory use is measured when 
the net is visible on the screen with equal density in both 
implementations.  Startup time is the length of time between 
loading a data set and the appearance of the stress net.  The CPU 
implementation achieves a much higher frame rate because it 
does not incur the overhead of vertex and fragment programs. 



open-source visualization platform used within our laboratory, so 
that our method can be applied to other data in other domains.   

6 CONCLUSIONS AND FUTURE WORK 
We have presented stress nets, a novel visualization algorithm for 
fields of 2D tensors, and discussed the advantages and 
disadvantages of two different methods for generating and 
rendering the net.  Our first implementation, using only the GPU, 
automatically recomputed the net to fit the visible extent of the 
data exactly.  However, the streaming nature of programmable 
graphics hardware resulted in artifacts that ultimately proved 
unacceptable to our customers.  A second implementation using 
the GPU for the scalar field and the CPU for the stress net yielded 
faster rendering and much higher image quality at the cost of 
increased preprocessing time and memory overhead.   

We incorporated stress nets into a tool used to explore the 
results of a simulation of crack propagation.  This tool allowed 
our customers to identify discrepancies between their simulation 
results and the predictions made by the prevailing model in the 
literature.  Future investigation of these discrepancies may lead to 
unifying revisions of conflicting continuum solutions and/or 
changes in the theory by which interatomic forces are converted 
to stress tensors in atomistic simulations.  We consider the use of 
our tools to advance a completely separate area of science to be a 
validation of the utility of our approach. 

Stress nets are applicable to a broader range of tensor 
visualization problems, including nearly any problem that 
involves a symmetric tensor field or, with some revision, even 
non-symmetric tensor fields as well.  Within the geomechanics 
arena, drilling paths for oil wells must closely follow the 
eigenvectors associated with maximum stress to ensure well-bore 
viability.  Stress nets can provide a simple and intuitive view of 
these preferred paths.  In biomechanics, we could apply stress nets 
to visualize the stresses and strains operating within the heart, and 
“diffusion nets” can be generated in perfect analogy with stress 
nets. As described here, our method applies to any 2D symmetric 
tensor field.  

Stress nets may be extended to support 2D non-symmetric 
tensor fields whose eigenvectors are not orthogonal.  The key is to 
compute a set of lines for the major and minor fields of 
eigenvectors separately, then overlay them on one another for 
display.  In the GPU implementation, the net texture would 
change to a line segment instead of a cross.  Two separate texture 
lookups would be required: one for each field of eigenvectors.  
The fragment program would combine both textures with the 
scalar field just as it currently does the single net texture. The 
CPU/GPU implementation needs no modification to its algorithm, 
as its two sets of streamlines are already computed separately 
using the major and minor eigenvectors.  

These examples raise the question of how best to extend our 
method into three dimensions.  The simplest approach may be to 
draw the net on a cutting plane or some other surface.  A stress net 
itself can be computed in three (or more) dimensions with little 
change to the algorithm, but visualizing the results presents a 
challenge.  We note that the problem of robust visualization 
methods for 3D vector flow fields is still an active area of 
research.  We could also compute stress nets at several different 
resolutions simultaneously using a method similar to the one 
presented by Jobard and Lefer [14] to reduce the number of times 
the net must be recomputed during viewing. 

Finally, our method does not preclude the simultaneous use of 
other tensor visualization methods.  A stress net could be overlaid 
on a topological decomposition of a tensor field, such as the 
methods described by Hesselink et al., or used in concert with an 
alternate display method such as Mohr diagrams.  We feel that 

multiple linked views of a single data set are a promising area for 
future research. 
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Figure 6(a): Scalar field in GPU implementation 

Figure 6(b): GPU stress net 

Figure 6(c): Combined scalar field and stress net for the 
GPU-only implementation.  Although it is possible to discern 
the orientation of the stress field at any point, the rendering 
artifacts make it difficult to observe its behavior over a wide 
region. 
 
 

Figure 7(a): Scalar field in CPU/GPU implementation 

Figure 7(b): CPU/GPU stress net 

Figure 7(c): Combined scalar field and stress net in the 
CPU/GPU implementation.   Computation of the stress net 
itself is moved back onto the CPU.  The rendering artifacts 
have disappeared, leaving the features of the data much 
clearer at the cost of some additional preprocessing. 
 



 

GPU implementation 

CPU/GPU implementation 

Figure 12: When the user zooms into the data, the moiré 
patterns in the GPU implementation disappear but the 
stress net appears to break.  This happens because the 
GPU has no way to ensure continuity of the net from cell 
to cell. The CPU implementation remains continuous at 
all scales. 

GPU implementation 

CPU/GPU implementation 
Figure 11: Moiré artifacts appear in the GPU implementation 
when the cells of the stress net are large compared to the 
individual data cells.  This is an extreme example.  These 
artifacts are not present in the CPU/GPU implementation. 
 
 

Figure 8: This style of orientation plot 
was in use by our customers prior to our 
development of stress nets.  Each glyph 
corresponds to a single data point. The 
crack tip is in the center of the image. 
The discontinuous glyphs make it difficult 
to discern the structure of the changes in 
the tensor field. 

 

Figure 10: Stress net created from 
atomistic simulation data.  It differs 
substantially from the predicted structures.  
The angles around the crack tip (again, in 
the center of the image) differ from 
predictions.  The structures in the crack’s 
wake, spreading diagonally up and down to 
the left of the crack, are not present at all in 
the analytical solution. 

Figure 9: Stress net created from the 
tensor field shown in Figure 8.  This is 
the asymptotic, analytical solution in the 
literature.  Our customers expected to 
see this structure. 


