
6

Elements of Phenomenological Plasticity:
Geometrical Insight, Computational
Algorithms, and Topics in Shock Physics

R.M. Brannon

6.1 Introduction

This chapter reviews the terminology and governing equations of plasticity,
with emphasis on amending misconceptions, providing physical insights, and
outlining computational algorithms. Plasticity theory is part of a larger class
of material models in which a pronounced change in material response occurs
when the stress (or strain) reaches a critical threshold level. If the stress state
is subcritical, then the material is modeled by classical elasticity. The bound-
ary of the subcritical (elastic) stress states is called the yield surface. Plasticity
equations apply if continuing to apply elasticity theory would predict stress
states that extend beyond this the yield surface. The onset of plasticity is
typically characterized by a pronounced slope change in a stress–strain dia-
gram, but load reversals in experiments are necessary to verify that the slope
change is not merely nonlinear elasticity or reversible phase transformation.
The threshold yield surface can appear to be significantly affected by the
loading rate, which has a dominant effect in shock physics applications.

Following pioneering developments of the early 1900s, modern plasticity
theory quickly reached a relatively mature state in the 1950s and 1960s for
modeling metals. More recently, aspects of plasticity theory (as a mathemati-
cal formalism) have been adopted, rejected, or modified for more complicated
materials such as composites and rock-like materials where inelasticity origi-
nates from microscale imperfections other than dislocations. Many approxi-
mations for metals may not hold for other materials in this broader scope. It
is often asserted, e.g., that shock loading pushes stresses well beyond “the”
yield stress to make the material flow essentially like a fluid. However, given
that no single yield stress exists when strength is pressure-dependent, strength
actually affects shock waves across a significant range of shock pressures. Like-
wise, although separation of load–unload curves may be used to infer shear
strength for a von Mises material, this separation (in generalized plasticity)
is a complicated history-dependent function of pressure-dependent strength,
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226 R.M. Brannon

extension–compression strength differences, hardening, phase transformation,
rate dependence, and a host of other simultaneously acting effects.

Generalized plasticity models often assume nonassociativity (nonnormality
of the plastic strain rate relative to the yield surface). However, physically
undesirable consequences of nonassociativity will be described, along with a
list of ways that the direction of the plastic strain rate is often misassessed,
possibly giving a false impression of nonnormality when the material might
be, in fact, associative.

The first half of this chapter outlines the general framework of modern
rate-independent plasticity theory, with an emphasis on geometrical interpre-
tations of the equations that guide development of computational algorithms.
The second half of this chapter focuses on high-rate applications of plasticity,
where the influence of rate sensitivity is illustrated in the context of uniax-
ial strain loading, which is typical in shock physics applications. The scope of
this chapter is limited to plastic constitutive models, with essentially no discus-
sion (aside from wave propagation speeds) about the effect of the constitutive
model on field-scale simulations.

6.2 Notation and Terminology

Frequently used symbols (stress, strain, etc.) are defined on page 270. Defi-
nitions for well-known tensor operations (trace, determinant, etc.) may be
found in [5]. Repeated subscripts within indicial expressions are understood
to be summed from 1 to 3. Nonrepeated indices are free and take values
1–3. Several equations are written in “direct” notation, where scalars, vec-
tors, second-order tensors, and higher-order tensors are typeset as, e.g., s,
v, T, and E, respectively. For incremental equations, a superposed dot de-
notes a time derivative following the material particle (for rate-independent
plasticity, “time” is any monotonically increasing scalar that parameterizes
the deformation history). The derivative of a second-order tensor A with
respect to a second-order tensor B is a fourth-order tensor with ijkl compo-
nents ∂Aij/∂Bkl. In elasticity, the elastic stiffness is the derivative of stress
with respect to strain Eijkl = ∂σij/∂εkl. All second-order tensors are pre-
sumed symmetric Aij = Aji, and all fourth-order tensors are minor-symmetric
Eijkl = Ejikl = Eijlk. Unlike the plastic stiffness tensor, the elastic stiffness
tensor is presumed to be always major symmetric (Eijkl = Eklij).

This chapter follows the mechanics convention that stress and strain are
positive in tension. However, because problems in mechanics (especially shock
physics) involve compressive stresses and strains, we define an overbar such
that, for any variable x,

x̄ ≡ −x. (6.1)
For example, we define mean stress (positive in tension) by

p = 1
3 (trσ) ≡ 1

3σkk. (6.2)
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6 Elements of Phenomenological Plasticity 227

Then the pressure, which is the negative of mean stress (therefore positive in
compression), is denoted p̄.

In materials modeling, tensors are often regarded as higher-dimensional
vectors, which can be rigorously justified via the mathematical definition of a
vector. The inner product between two tensors (A :B = AijBij) is like the dot
product between two vectors (u ·v = ukvk). The “magnitude” and “direction”
of a tensor are defined analogous to ordinary vector definitions:

Magnitude of a vector : ‖v‖ =
√

vkvk =
√

v ·v. (6.3)

Magnitude of a tensor : ‖A‖ =
√

AijAij =
√

A : A. (6.4)

Direction of a vector v : v̂ = v/ ‖v‖ . (6.5)

Direction of a tensor A : Â = A/ ‖A‖ . (6.6)

In plasticity theory, the notion of tensor direction is used to define the out-
ward normal to the yield surface (which is actually a hypersurface in higher-
dimensional tensor space). The angle between two tensors (which is computed
analogously to vectors) is essential to quantify the concept of nonnormality,
discussed later.

The geometric analogy between the vector dot product and the tensor
double-dot extends rigorously to other operations as well. For example, a
vector-to-vector linear transformation (denoted y = A ·x in direct notation)
means yi = Aikxk. Similarly, a tensor-to-tensor linear transformation (denoted
Y = E : X) means Yij = EijklXkl. In materials modeling, transformations
from tensors to tensors (e.g., computing stress from strain) are more prevalent
than vector transformations. Just as a second-order tensor may be quantified
via a 3× 3 component matrix, a minor-symmetric fourth-order tensor is best
quantified via a 6 × 6 Mandel (not Voigt [53]) component matrix, the 6-D
eigenvectors of which correspond to symmetric eigentensors. For example,
any deviatoric second-order tensor is an eigentensor of a fourth-order isotropic
elastic stiffness, with associated eigenvalue 2G where G is the shear modulus.
Any isotropic second-order tensor is an eigentensor with eigenvalue 3K, where
K is the bulk modulus.

A vector–vector dyad, uv, is a second-order tensor with ij components
uivj . Similarly, a tensor–tensor dyad, AB, is a fourth-order tensor with ijkl
components AijBkl (not to be confused with tensor composition, which we
denote A ·B with components AikBkj).

In plasticity, the yield threshold is defined by a scalar-valued “yield func-
tion” f that depends on the stress (and perhaps a few internal state variables,
which we will denote η1, η2, . . .). Elastic states correspond to f < 0, and states
at the yield threshold correspond to f = 0. Because the equation f = 0 defines
an isosurface, the normal to the yield surface must be parallel to the gradient
of f with respect to stress. For isotropic plasticity, the yield function depends
on stress only through its invariants.
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Invariants for symmetric tensors always come in independent groups of
three. The “mechanics” invariants of a second-order tensor A are defined

IA
1 = trA = Akk, (6.7)

JA
2 = 1

2 tr(Ad)2, (6.8)

JA
3 = 1

3 tr(Ad)3, (6.9)

where “tr” denotes the trace and the superscript “d” denotes the deviatoric
part (Ad = A − 1

3 (trA) I). Invariants of the stress tensor σ are written
without a superscript identifier. For example, J2 means the same thing as
Jσ

2 . The stress deviator S= σd and Hill tensor T=
(
S2
)d, which are defined

on page 270, emerge naturally when computing the gradient of any isotropic
yield function:

∂f(I1, J2, J3, . . .)
∂σ

=
∂f

∂I1
I +

∂f

∂J2
S +

∂f

∂J3
T. (6.10)

In isotropic plasticity theory, the three eigenvalues of stress (principal stresses)
form an alternative invariant triplet, often regarded as Cartesian coordinates
in a 3-D “stress space” (Haigh–Westergaard space). When speaking specifi-
cally of ordered eigenvalues, we will subscript them with H, M, L (standing
for high, middle, and low) so that

σL ≤ σM ≤ σH (6.11)

Lode Invariants (r, θ, z) constitute an alternative invariant triplet that is far
more useful than mechanics invariants or principal stresses for geometrical
visualization of isotropic yield surfaces and for computational implementation.
For isotropic plasticity, the yield threshold is characterized by a surface in
principal stress space, in which principal stresses are regarded as Cartesian
coordinates. Because an isotropic function of principal stresses f(σ1, σ2, σ3)
must give the same result regardless of the ordering of the arguments, isotropic
yield surfaces have 120◦ reflective and rotational symmetry about the [111]
hydrostat, as in Figs. 6.1 and 6.2.

The Lode invariants merely represent a coordinate change from principal
stresses (which are Cartesian coordinates for stress space) to the natural cylin-
drical coordinates (r, θ, z) for which the z-axis points along the [111] hydrostat
(and therefore z̄ points along the compressive hydrostat). Lode invariants may
be computed directly from the mechanics invariants by

r =
√

2J2, sin 3θ =
J3

2

(
3
J2

)3/2

, z =
I1√
3
. (6.12)

As illustrated in Fig. 6.2, the Lode angle ranges from −30◦ in triaxial com-
pression (TXC) to +30◦ in triaxial extension (TXE). The Lode angle is zero
in “shear” states (SHR) where one eigenvalue of the stress deviator is zero and
the others are equal but opposite in sign. Triaxial stress states are axisym-
metric (two eigenvalues equal). The distinct eigenvalue is more compressive
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6 Elements of Phenomenological Plasticity 229

Fig. 6.1. Common isotropic yield surfaces. Von Mises and Drucker–Prager mod-
els are often used for metals. Gurson’s function [27], and others like it, are used for
porous media. Tresca and Mohr–Coulomb [10] models approximate the yield thresh-
old for brittle media. Fossum’s model [22], and others like it, combine these features
to model realistic geological media

than the double eigenvalue for TXC, and less compressive for TXE. Plate-slap
and Kolsky bar shock data give information about the TXC yield threshold,
whereas spall experiments identify the TXE failure point. Biaxial extension
(BXE) and biaxial compression (BXC) are special cases of TXC and TXE,
respectively, although the adjective “biaxial” is often used only when the dis-
tinct eigenvalue is zero. The adjective “uniaxial” is typically used when the
repeated eigenvalue (lateral stress) is zero.

Lode invariants can be determined without having to first compute me-
chanics invariants. They can be found directly from a stress tensor σ via

z =
1√
3
trσ, r = ‖S‖, sin 3θ = 3

√
6 detŜ, (6.13)

where “det” denotes the determinant, and Ŝ is a unit tensor in the direction
of the stress deviator S. Just as the mechanics invariants (I1, J2, J3) were
intimately related to three tensors (I,S,T), the Lode invariants are associated
with three unit tensors (Er,Eθ,Ez), analogous to cylindrical base vectors,
defined

Er ≡ Ŝ, Eθ =
T̂ − (sin 3θ) Ŝ

cos 3θ
, Ez ≡ I

‖I‖ =
I√
3
. (6.14)
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Fig. 6.2. Periodicity of the Lode angle in an octahedral plane

Here

T̂ ≡ T
‖T‖ =

√
6T
r2

=
√

6
[
Ŝ2 − 1

3
I
]

=
√

6EC
r +

Ez√
2
, (6.15)

where EC
r is the cofactor of Er (i.e., matrix of signed minors [5]). These formu-

las (offered without proof) should not be considered self-evident. The divisor√
3 in the definition of Ez occurs for the same reason that a

√
3 appears

when normalizing the [111] hydrostat vector. As typical for any cylindrical
coordinate system, Er becomes undefined when r = 0 (i.e., when the stress
is isotropic and therefore has three equal eigenvalues). The tensor Eθ is anal-
ogous to the 3-D angular base vector eθ = ez × er; the cofactor operation
in (6.15) is somewhat analogous the 3-D vector cross product, which is not
defined in 6-D stress space. Unlike an ordinary cylindrical basis, Eθ becomes
undefined when cos 3θ = 0 (i.e., when the stress is triaxial, and therefore has
two equal eigenvalues). The stress may be written in terms of the Lode basis as

σ = rEr + zEz. (6.16)

When the yield function is expressed in terms of Lode invariants, its gradient is

∂f

∂σ
=

∂f

∂r
Er +

1
r

∂f

∂θ
Eθ +

∂f

∂z
Ez. (6.17)

Any yield function expressed in terms of principal stresses may be converted
to a function of Lode invariants via the following coordinate transformations:
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6 Elements of Phenomenological Plasticity 231

LOW: σL =
z√
3
− r√

2

[
cos θ − sin θ√

3

]
(6.18)

MIDDLE: σM =
z√
3
−
√

2
3

r sin θ (6.19)

HIGH: σH =
z√
3

+
r√
2

[
cos θ +

sin θ√
3

]
(6.20)

Though presented in the context of stress, these formulas give the ordered
eigenvalues of any real symmetric tensor. This solution differs from similar
formulas presented elsewhere [52,88] in that our definition of the Lode angle is
zero in shear and our solution emphasizes that the ordering of the eigenvalues
may be deduced in closed form.

Lode invariants facilitate drawing geometrically accurate cross-sections of
a yield surface. A plot of r vs. z (called a meridional profile of the yield
surface) indicates how strength varies with pressure, but the axes are scaled
to make the plot isomorphic to stress space, which means that lengths and
angles are preserved as illustrated in Fig. 6.3. Because most materials have
greater strength under pressure, Fig. 6.3 uses the “overbar” from (6.1) on
the abscissas. Being essentially a “side view” of the yield surfaces in Fig. 6.1,
the meridional profile is a horizontal line for von Mises and Tresca models,
a sloped straight line for Drucker–Prager and Mohr-Coulomb models, and a
curved “capped” line for Gurson’s and Fossum’s models.

Now consider viewing Fig. 6.1 down the hydrostat rather than from the
side. An octahedral profile is a constant-z (constant pressure) cross-section of
a yield surface. When z is held constant, a yield criterion f(r, θ, z) = 0 may
be solved for r(θ). Recalling that the Lode angle varies only over the range
−30◦ to 30◦, a full octahedral profile with the correct 120◦ rotational and
reflective symmetry may be generated by parametrically plotting y = r(θ) sin θ
vs. x = r(θ) cos θ in which θ varies over the full range from 0◦ to 360◦ and
θ = 1

3ArcSin(sin 3θ).
Drucker–Prager yield models (top row of Fig. 6.1) presume that the octa-

hedral yield profile is circular. This means that a material is as strong in TXE
as it is in TXC at the same pressure. Real materials, however, are generally

Fig. 6.3. Distortion of a meridional profile when using nonisomorphic stress
invariants
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232 R.M. Brannon

weaker in TXE than in TXC, making the distance from the origin to the
yield threshold smaller in TXE than in TXC at the same pressure. This well-
documented strength difference, which is especially noticeable in geological
materials, makes the octahedral yield profile somewhat triangular, as illus-
trated in Fig. 6.2.

Except where otherwise noted, our upcoming discussion of plasticity the-
ory permits the yield criterion to be arbitrarily anisotropic. Myriad yield
functions have been developed for isotropic materials (common ones are illus-
trated in Fig. 6.1). If a material is isotropic in its virgin state, it is unlikely
to remain isotropic. For computational tractability, many plasticity models
have nevertheless ignored deformation-induced anisotropy. Models that sup-
port intrinsic or deformation-induced anisotropy typically do so by using an
isotropic reference configuration [60] or, somewhat equivalently, transform-
ing the actual stress to an effective stress that is used within an isotropic
plasticity framework. For example, kinematic hardening is modeled by sim-
ply replacing all occurrences of the stress deviator S in an isotropic model
with S − α where α is a history-dependent backstress internal state variable
that characterizes the deformation-induced anisotropy associated with the
Bauschinger effect. More generally, if f [σ] is an isotropic yield function, the
vast majority of anisotropic yield functions [1, 8, 38, 96], dating back to Hill’s
orthotropy model [29], are expressible in the form F (σ) = f [U : (σ − α)] in
which the fourth-order tensor U is a “texture” tensor. Care must be taken
to ensure that the texture tensor generates a convex yield surface. Calibrat-
ing a texture model from experimental data can be extraordinarily difficult
because the required load paths are not usually achievable with standard
laboratory equipment. Recognizing that a yield surface is the boundary of
elastic stresses, Schreyer and Zuo [50, 85] proposed that the texture tensor
and the elastic stiffness should share the same eigentensors; this assumption
can simplify model calibration and help ensure convexity. Brünig [8] pro-
vides a nice review of other effective stress approaches to anisotropic damage
evolution.

6.3 Rate-Independent Plasticity

This section reverses the historical development of elastoplasticity theory by
summarizing the basic mathematics before describing the physical founda-
tions of the theory. The physical meaning of the equations, their domain of
applicability, and several examples are discussed extensively only after the
governing equations and their solution have been presented.

Elastic Loading. Solution of a plasticity problem always begins with a test
elastic stress rate,

σ̇
test = E : ε̇ (σ̇test

ij = Eijklε̇kl). (6.21)
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6 Elements of Phenomenological Plasticity 233

Plasticity theory is distinguished from viscoelasticity and creep in that it as-
sumes that reversible elastic deformation is possible. For shock physics codes
(which typically do not solve the heat conduction equation), E is the isentropic
fourth-order elastic stiffness and Eijkl are its components. Hence, despite ap-
pearances, (6.21) is not purely mechanical. The linear system in (6.21) may
be solved for unknown stress or strain rate components, which are then inte-
grated to obtain a time-varying test solution σtest. This test solution is the
actual solution until the predicted stresses fall outside the yield surface. In
other words, σ̇ = σ̇

test as long as f < 0 (or f = 0 and ḟ ≤ 0), where f is the
yield function.

The elasticity equation (6.21), applies for arbitrary anisotropic nonlinear
elasticity. The tangent stiffness of an isotropic material will be itself isotropic
if and only if the shear modulus G is constant. The tangent bulk modulus K
may vary arbitrarily as determined from an EOS. For these conditions,

σ̇
test = 2Gε̇

d + 3Kε̇
iso, (6.22)

where ε̇
d is the strain-rate deviator, and ε̇

iso is the isotropic part.

Plastic Loading. Plasticity theory applies when the test elastic stress moves
beyond the yield surface. During intervals of plastic loading, the governing
equations are

Strain rate decomposition: ε̇ = ε̇
e + ε̇

p. (6.23)

Nonlinear coupled elasticity : σ̇ = E : ε̇
ε − Zλ̇. (6.24)

Flow rule : ε̇
p = λ̇M. (6.25)

Consistency: N : σ̇ = Hλ̇. (6.26)

In computational plasticity, the following quantities are presumed known:

ε̇ the total strain rate (the “driving” input)
E the fourth-order elastic tangent stiffness tensor
H the ensemble hardening modulus [defined later in (6.47)]
Z the elastic–plastic coupling tensor [defined later in (6.39)]
N the unit normal to the yield surface, N = ∂f/∂σ

‖∂f/∂σ‖
M the unit tensor in the direction of the plastic strain rate

(see p. 238).

The following are unknown:

σ̇ the rate of stress
ε̇

e the elastic part of the strain rate
ε̇

p the plastic part of the strain rate
λ̇ the “consistency parameter” (magnitude of the plastic strain rate).

Equations (6.23) and (6.25) combine to give ε̇
e = ε̇ − λ̇M, so that (6.24)

becomes
σ̇ = E : (ε̇ − λ̇M) − Zλ̇. (6.27)
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For convenience, we write this in a more compact form

σ̇ = σ̇
trial − Pλ̇, (6.28)

where the “trial elastic stress rate” σ̇
trial is defined

σ̇
trial = E : ε̇, (6.29)

and P (which, as explained later in the context of Fig. 6.7, is the unique
projection direction that must be used in return algorithms) is defined

P ≡ E : M + Z. (6.30)

Both σ̇
trial and P may themselves be regarded as known because they

are expressed in terms of known quantities. Substituting (6.28) into (6.26)
gives

N : (σ̇trial − Pλ̇) = Hλ̇. (6.31)

Solving for λ̇ gives

λ̇ =
N : σ̇

trial

P : N + H
. (6.32)

With the consistency parameter known, the other unknowns in the problem
may be determined by back substitution. In particular, putting (6.32) back
into (6.28) gives the equation governing the stress rate:

σ̇ = σ̇
trial − P(N : σ̇trial)

P :N + H

[
σ̇ij = σ̇trial

ij − Pij(Nklσ̇
trial
kl )

PrsNrs + H

]
. (6.33)

The solution in (6.33) lends itself well to physical interpretation and is
expressed in a form that is most useful in the strain-driven context of finite
element codes where σ̇

trial identically equals σ̇
test from the elastic phase of the

analysis. For fully or partly stress-controlled problems, the list of unknowns
changes, and, although (6.33) remains valid, it no longer represents a final
solution because σ̇

trial can no longer be regarded as known (it is certainly a
well-defined symbol, but it is constructed, in part, from unknown strain rates).
Replacing σ̇

trial in (6.33) with its definition in (6.29), the solution in (6.33)
may be written in an equivalent form as

σ̇ = T : ε̇ [σ̇ij = Tijklε̇kl] . (6.34)

Here, the plastic tangent stiffness tensor is

T = E = −1
η
PQ

[
Tijkl = Eijkl −

1
η
PijQkl

]
, (6.35)
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6 Elements of Phenomenological Plasticity 235

where
P ≡ A + Z , A ≡ E : M , Q = E : N , (6.36)

and
η = P : N + H . (6.37)

Indicial formulas are given in the list of symbols at the end of the chapter. For
fully or partially stress-controlled problems (6.34) is a linear system that may
be solved for the unknown strain and stress rates, which are then integrated
through time to obtain the material response. Though functionally similar in
form, (6.34) and (6.21) are different. One corresponds to an exact differential
(no hysteresis), while the other gives an inexact differential, which implies
history dependence and hysteresis.

6.3.1 Applicability of the Governing Equations

The governing equations in the previous section apply under the following
restrictions (or freedoms) for very broad class of material behavior:

• Arbitrary elastic anisotropy. The elastic stiffness tensor may be anisotropic.
• Nonlinear elasticity. The stress is a proper, permissibly nonlinear, function

of the elastic strain, which makes the stress rate linear with respect to the
elastic strain rate.

• Arbitrary plastic anisotropy. The yield function may depend on the entire
stress tensor (rather than just invariants) as long as the function is convex.

• Nearly arbitrary hardening or softening . In addition to depending on stress,
the yield function is allowed to also depend on any number of internal state
variables (ISVs), η1, η2, . . ., that characterize the material’s microstruc-
tural state. The yield surface moves when ISVs change. The hardening is
“nearly” arbitrary because the ISVs must not change during elastic loading
(see p. 239).

• Admissible yield function. So that the yield normal may be determined
from the yield function gradient, elastic stresses must correspond to nega-
tive values of the yield function f and stresses outside the yield surface
must correspond to f > 0.

• Local differentiability of the yield function. The yield surface normal can be
defined only at stress states where the yield function is differentiable. At
nondifferentiable points, such as the corners on a Tresca hexagon, vertex
theory [40,56,70,89] must be used.

• Rate independence. A constitutive model is rate independent if multiplying
the strain rate ε̇ by an arbitrary positive scalar α will produce ασ̇ as the
predicted stress rate. This idealization plays a pivotal role on p. 255 where
we generalize the theory to include rate effects.

• Rate independence of the plastic strain rate “direction”. The total strain
rate is presumed to influence only the magnitude λ̇ of the plastic strain
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rate tensor ε̇
p. Though rarely validated experimentally, the plastic strain

rate direction M is routinely presumed to depend only on the material
state, not its rate.

• Arbitrary ISV coupling of the elastic properties to the plastic flow. For
hardening or softening plasticity where the yield surface changes upon
changes of the ISVs, it stands to reason that the elastic properties, which
are also tied to the microstructure, might change as well. If, for example,
porosity is an ISV, then not only might the yield surface expand (increasing
material strength) upon pore collapse, but the material is also likely to
become elastically stiffer. Elastic–plastic coupling corresponds to a nonzero
Z tensor in (6.24) (see p. 237).

• Work conjugate stress and strain definitions. Plasticity algorithms typi-
cally operate internally with alternative stress–strain definitions, but their
final results are usually transformed back to more conventional stress and
strain measures. In terms of Cauchy stress Σ (i.e., the “usual” stress fa-
miliar to most engineers), the work rate per unit mass required to deform
a material is JΣ : D where J is the Jacobian of the deformation (current
volume divided by initial volume) and D is the symmetric part of the ve-
locity gradient. Demanding that the alternative stress σ and strain ε be
work conjugate means that σ : ε̇ = JΣ : D.

• Stress and strain definitions that permit the use of true rates rather than
corotational rates. The principle of material frame indifference requires
that a material model must predict consistent results when applied to two
deformations that are identical to each other aside from a rigid motion.
Plasticity models that are cast in a spatial frame will involve so-called coro-
tational rates, requiring computationally expensive extra steps to convert
corotational rates to true rates before integration and to update material
directions (such as fiber orientations). On the other hand, material models
that are phrased in terms of a nonrotating reference material configuration
suffer few of these drawbacks, and the rates that appear in these formu-
lations are true rates from the outset. Before calling the model, the host
finite-element code must transform input to the reference configuration
and then transform the output back to the spatial frame. This strategy
can, by the way, significantly improve accuracy for problems involving
massive rotations (e.g., turbine blades) [73].

• The formulation must allow elastic–plastic decomposition of the total strain
rate. While some stress–strain definitions might satisfy all of the restric-
tions cited so far, they might not allow the total strain rate to be decom-
posed into elastic plus plastic parts, which was a fundamental assumption
in (6.23).

Small errors in driving strain can produce massive errors in predicted stress.
Though not the focus of this chapter, stress and strain definitions, as well as
frame indifference, are clearly important topics about which literally thou-
sands of papers have been written [45,74,83,104].
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6.3.2 Discussion of the Governing Equations

Decomposition of the total strain rate into elastic and plastic parts in (6.23)
follows from the observation that plastic flow induces a residual size and/or
shape change (plastic strain) even after loads are removed. The elastic strain
rate, which adds to the plastic strain rate, is the recoverable part of the total
strain rate.

During elastic loading (when λ̇ = 0, ε̇
p = 0, and therefore ε̇ = ε̇

e),
the stress is a function of the strain as well as material properties, such as
the unloaded porosity, that do not change during elastic loading (yes, poros-
ity changes during elastic loading, but it returns to its unloaded value upon
removal of the load). During plastic loading (when λ̇ 
= 0), some of these ma-
terial properties that were formerly implicit constants in the elasticity model
become explicit variables during plastic loading (e.g., pores can irreversibly
collapse). Poroelastic–plastic coupling has been used here as an example, but
plastic flow can also affect elastic properties via thermoelastic-plastic coupling
(see p. 242), chemelastic–plastic [86] coupling, and/or kinematic coupling
(in which plastic loading makes the origin of stress space no longer reside
within the yield surface, necessitating a change in the elastic reference config-
uration [7]). Applying a principle of equipresence, any internal state variable
(ISV) that can affect the yield surface might also affect the elastic response.
Consequently, rather than regarding stress to be simply a function of elastic
strain, a more general formulation allows it to additionally depend on the
ISVs η1, η2, . . . . By the chain rule, the rate of stress is then

σ̇ =
∂σ

∂εe
: ε̇

e +
∂σ

∂η1
η̇1 +

∂σ

∂η2
η̇2 + · · · (6.38)

As discussed later, rates of ISVs are typically presumed expressible in the
form η̇k = hkλ̇, where λ̇ is the plastic consistency parameter (magnitude of
the plastic strain rate) and hk is an “ISV modulus” material state function
(determined experimentally or through microphysical considerations). When
the ISVs are presumed to vary in this way, substituting η̇k = hkλ̇ into (6.38)
gives the ISV-dependent generalized Hooke’s law cited in (6.24), in which

Eijkl =
∂σij

∂εe
kl

and Z = −
(

∂σ

∂η1
h1 +

∂σ

∂η2
h2 + · · ·

)
(6.39)

Elastic–plastic coupling can result from changes in micromorphology or
from other sources. In the first category, consider the influence of porosity
φ (= void volume fraction) on elastic properties. If pores collapse under plas-
tic loading, the elastic response usually stiffens. Consider, for example, the
following idealized model [6, 106] for the elastic shear and bulk modulus of a
porous material [38,46,87]:

G

Gm
= (1 + γmψ)−1 where γm =

5 (4Gm + 3Km)
8Gm + 9Km

, (6.40)
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K

Km
= (1 + κmψ)−1 where κm =

4Gm + 3Km

4Gm
. (6.41)

Here, Gm and Km are the shear and bulk moduli of the matrix material, and

ψ =
φ

1−φ
≈ φ if φ 	 1 (6.42)

Recognizing φ to be an ISV, using these formulas in Hooke’s law allows one
to compute the derivative ∂σ/∂φ needed in (6.39). Combining this derivative
with the porosity hardening rule (presented later in (6.49)), the elastic–plastic
coupling tensor eventually reduces to

Z = (1 + ψ)
(

γm

1 + γmψ
S +

κmp

1 + κmψ
I
)

trM, (6.43)

where S is the stress deviator and p is the mean stress (negative of pressure).
Of all the variables that appear in the governing equations, the plastic

flow direction M in (6.25) is most shrouded in mystery, or at least ongoing
debate. Early observations of plasticity revealed that, for unconstrained uni-
axial tension, a metal can support a certain level of load, after which strain
continues to increase without a significant increase in load. This behavior,
which is similar to the “Jenkins” element (spring and friction element con-
nected in series) in Fig. 6.4, is well explained through dislocation slip theory.
When there are multiple slip planes, the onset of slip depends on the loading
direction, which therefore implies existence of a yield surface, and it can be
shown in this context that the direction of plastic strain rate will be normal to
the yield surface (M = N). Even simple 2-D systems, like the one in Fig. 6.4,
that are constructed from multiple Jenkins elements have “yield” surfaces
[the diamond-shaped domain in (P1, P2) “stress” space] and obey plastic nor-
mality (M = N) with respect to the work conjugate “strains” (∆1,∆2). As
discussed on p. 250, plastic normality seems essential from a thermodynam-
ics perspective. Nonetheless, many researchers, especially in the geomechanics
community, have reported that nonnormality, M 
= N (also called nonasso-
ciativity because the flow direction is not associated with the yield surface),
is required to obtain good agreement with experimental data [43,62].

In quasistatic geomechanics as well as high-rate impact problems [103], a
normality rule is usually claimed to predict larger permanent volume changes
than exhibited in the data, and “frictional effects” are often nebulously cited
as the cause [64]. However, the unquestionably frictional system in Fig. 6.4 can
be easily shown to obey a normality rule, so friction cannot per se be the sole
cause of apparent non-normality. Lacking precise materials science justifica-
tions for nonnormality (along with a proof of thermodynamic admissibility),
we leave the flow direction M undefined. See p. 250 for further discussion.

We have now completed a discussion of the physical meaning of all of the
rate-independent plasticity equations except the last one, (6.26). Continued
yield requires that the stress must remain on the yield surface throughout
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Fig. 6.4. Jenkins element (lower-left) and a 2-D structure containing internal Jenk-
ins elements. Arrows normal to the “yield surface” indicate the direction of plastic
flow. Labels indicate whether one or both Jenkins elements are responding elastically
(E) or plastically (P)

a plastic loading interval. In other words, not only must the yield function
f (σ, η1, η2, · · ·) be zero, its rate must also be zero:

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂η1
η̇1 +

∂f

∂η2
η̇2 + · · · = 0. (6.44)

Plasticity theory is distinguished from viscoelasticity and creep in that it
supports the approximation that is possible for a material to respond elasticity
(producing no irreversible structural changes in the material). During elastic
loading, the yield surface will not move. Therefore, ISVs are almost always
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selected so that they themselves do not change during elastic loading. For
example, rather than using the current loaded porosity (which varies with
stress), the unloaded porosity is used as an ISV so that it will not vary during
elastic loading. Consistent with the assumption that ISVs can change only
during plastic loading, their rates are typically governed by an evolution law
of the form

η̇k = hkλ̇, (6.45)

where λ̇ is the consistency parameter (magnitude of the plastic strain rate)
and hk is the ISV modulus, which must be determined from experiment or
microphysical considerations (as clarified in upcoming examples). In general,
when a material is deforming plastically, all of the ISVs will change simulta-
neously. Because the yield surface depends on the ISVs, it will move in stress
space as well. Substituting (6.45) into (6.44) gives the result

∂f

∂σ
: σ̇ = −

(
∂f

∂η1
h1 +

∂f

∂η2
h2 + · · ·

)
. (6.46)

Dividing both sides by ‖∂f/∂σ‖ gives the consistency condition in (6.26)
where

N =
∂f/∂σ

‖∂f/∂σ‖ and H ≡
−
(

∂f
∂η1

h1 + ∂f
∂η2

h2 + · · ·
)

‖∂f/∂σ‖ . (6.47)

Dividing by the magnitude of the yield gradient is essential to obtain a phy-
sically meaningful (unique) ensemble hardening modulus H that is unaffected
by nonuniqueness of yield functions.

Classical nonhardening rate-independent plasticity theory presumes that
the yield surface is immovable. Hardening theory (which phenomenologically
accounts for dislocation pileups or other changes in micromorphology) per-
mits the yield surface to grow and/or translate, permitting initially inadmis-
sible stress states to be realizable under sufficient continued loading. Softening
theory (which, for example, accounts for material weakening arising from mi-
croflaw generation and/or dissipative heating) permits the yield surface to
shrink. The ensemble hardening modulus H quantifies the combined effect of
all ISVs changing simultaneously, resulting in movement of the yield surface.
Knowing that the ensemble hardening modulus H follows from the require-
ment (6.38) that the stress must “keep up” with the moving yield surface
during plastic intervals, the consistency condition in (6.26) now has a clear
interpretation. Geometrically, N : σ̇ is the stress “velocity” in the direction of
yield surface normal. Hence, because the stress is “keeping up” with the yield
surface, the right-hand side of (6.26) represents the local outward velocity of
the yield surface. Being the magnitude of the plastic strain rate, λ̇ is always
positive. Therefore, H > 0 corresponds to hardening, whereas H < 0 cor-
responds to softening (negative hardening). Incidentally, softening can occur
before a stress–strain plot has a zero slope.
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This concludes our outline of the physical meaning of the equations that
govern rate-independent plasticity. Further insights can be gained by inter-
preting the equations in the context of strain-based plasticity [7] rather than
the more conventional (but equivalent) stress-based plasticity discussed here.
Before interpreting the solution of the plasticity equations, we now give some
examples that clarify the meaning of an ISV modulus hk.

Hardening Example: Poroplasticity

A porous material can exhibit permanent volume changes as a result of pore
collapse. If the matrix material is plastically incompressible, then permanent
volume changes observed on the macroscale must result from a change in
porosity. Hence, the microscale variable φ (porosity) can be related to the
macroscopically observable plastic strain [63]. Specifically, assuming plastic
incompressibility of the matrix material implies that

φ̇ = (1 − φ) trε̇p, (6.48)

or, since ε̇
p = λ̇M, the microphysically derived hardening law is

φ̇ = hφλ̇, where hφ = (1 − φ) trM (6.49)

To illustrate an empirically based hardening law, consider Fig. 6.5. As the solid
aluminum is deformed plastically, its uniaxial yield stress Y increases. An ISV
modulus for Y is needed because (1) the yield criterion presumably depends
on Y and (2) Y varies in response to plastic flow. A phenomenological model
presumes a power–law relationship,

Y = Y0 + k (γp)m
, (6.50)

where Y0 is the initial strength, k and m are fitting parameters, and γ p is the
effective distortional plastic strain defined in the symbol definitions list on
page 270. Taking the rate of (6.50) and substituting the definition of γ̇p al-
lows the ISV rate to be written in the form required in (6.45):

Ẏ = hY λ̇, where hY = mk [(Y − Y0) /k](m−1)/m
√

Md : Md. (6.51)

Fig. 6.5. Hardening (increasing yield strength) for aluminum
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Equation (6.50) is a strain hardening model. When additionally considering
porosity, work hardening (in which γp is replaced by plastic work) may be more
appropriate because it would allow matrix hardening even under hydrostatic
loading.

Given individual porosity and hardening ISV moduli (hφ and hY ), like
those in (6.49) and (6.51), the ensemble hardening modulus H for a porous
composite can be determined if it is known how the yield function depends on
the matrix strength Y and porosity φ. Though numerous yield functions have
been offered for porous media [21, 48, 67, 72, 107], the quintessential example
is Gurson’s function [27] (which is actually only an upper bound):

f =
3J2

Y2
+ 2φ cosh

(
2I1

Y

)
− [1 + φ2]. (6.52)

Derivatives of this yield function with respect to the ISVs, Y and φ, can be
readily computed, and (6.1) may be used to obtain the yield gradient. Then
the ensemble hardening modulus for this porous composite is determined from
(6.47):

H =
−
(

∂f
∂Y hY + ∂f

∂φhφ

)

‖∂f/∂σ‖ . (6.53)

In general, both Y and φ will change simultaneously, possibly with compet-
itive effects. The sign of H indicates whether the net strength increases or
decreases.

Coupling and Hardening Example: Thermoelastoplasticity

The vast majority of shock-physics codes do not solve the heat conduction
equation, which (though debatable [101]) seems reasonable because high-rate
processes lack sufficient time to conduct heat. Consequently, all problems
solved in these codes must be adiabatic. “Adiabatic,” which means no heat
flow, is not synonymous with “isentropic” except during reversible processes
such as elastic loading. During adiabatic plastic loading, many plasticity mod-
els presume that entropy, s, evolves according to

T ṡ = 1
ρσ : ε̇

p, (6.54)

where T is temperature and ρ is mass density (or reference density when
reference stress–strain measures are used). Because entropy cannot change
during adiabatic elastic loading, the entropy s can be formally regarded as
an internal state variable for which (6.54) gives an evolution equation of the
form required in (6.45). Namely,

ṡ = hsλ̇, where hs =
1

ρT
σ : M. (6.55)

When thermal effects are included, the elastic Hooke’s law is replaced by a
thermoelastic constitutive law in which stress depends not only on the elastic
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strain, but also on the entropy. Hence, the ISV-dependent (thermoelastic)
Hooke’s law must be of the form in (6.24) for which (6.39) requires

E ≡ ∂σ

∂εe
and Z ≡ −

(
∂σ

∂s

)
hs. (6.56)

The partial derivative ∂σ/∂s, in which elastic strain is held constant, can be
written

∂σ

∂s
= −ρTΓ, (6.57)

where Γ is the Grüneisen tensor. For an isotropic material, Γ = γI, where γ is
the Grüneisen parameter, which appears frequently in shock-physics analyses
(and whose value is often found in material property tables). Substituting
(6.55) and (6.57) into (6.56), the thermoelastic–plastic coupling tensor is

Z = Γ (σ : M) . (6.58)

Thermoelastic–plastic coupling (in particular its tendency to produce appar-
ent nonnormality) was first noted by Tvergaard [97]. Properly incorporating
thermoelastic–plastic coupling with other features in a plasticity model natu-
rally requires a more sophisticated analysis than the simple example presented
here [39,44,58,80]. For example, (6.54) requires revision when only a portion
of the plastic work rate is dissipative (typically 90% for solid metals); this
behavior is usually ascribed to “ratcheting” (see p. 252).

6.3.3 Interpreting and Integrating the Stress Rate

Numerically integrating the stress rate in (6.33) over a period of plastic loading
is facilitated by first interpreting the solution geometrically. Consider a simple
nonhardening idealization where the yield surface is fixed in stress space (no
ISVs). Then both the hardening modulus H and the elastic–plastic coupling
tensor Z are zero, and (6.33) reduces to

σ̇ = σ̇
trial −

A
(
N : σ̇

trial
)

A : N
, (6.59)

where
A ≡ E : M. (6.60)

As discussed on page 227, second-order symmetric tensors are also 6-D
vectors for which the double dot product plays a role analogous to the single
vector dot product for ordinary 3-D vectors. Therefore, to interpret (6.59)
geometrically, consider the following similar operation on ordinary 3-D vectors:

P (x) = x − a (n ·x)
a ·n . (6.61)

This operation obliquely projects the vector x onto a plane whose unit normal
is n, essentially giving the “shadow” cast by x in the late afternoon sun. The
“light rays” (properly called level sets) are parallel to a. The magnitude of a is
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Fig. 6.6. Oblique projection

inconsequential; all that matters is its orientation. The projection is “closest
point” (high noon) if and only if a is parallel to n.

The plasticity solution in (6.59) is structured like (6.61), and its geomet-
rical interpretation is identical. The yield normal N defines the target surface
for the projection. Because N is normal to the yield surface, (6.39) states that
the actual stress rate is an oblique projection of the trial stress rate onto the
yield surface. The projection is oblique because, in general, A is not a mul-
tiple of N–not even for associative plasticity where M = N. The projection
direction is not generally aligned with the plastic flow direction either. The
projection direction is parallel to the plastic flow direction if and only if the
plastic flow direction is an eigentensor of the elastic stiffness. For isotropic lin-
ear elasticity, the flow and projection directions will be parallel if one assumes
plastic incompressibility. However, for plastically compressible materials such
as porous media, these tensors point in different directions.

The 3-D geometrical analog of the 6-D stress rate solution in (6.59) helps
formulate extremely efficient elastic-predictor/plastic-corrector return algo-
rithms [76, 102] for nonhardening plasticity. Numerical evaluation of elasto-
plasticity equations is complicated by the fact that one set of equations applies
during elastic loading, while a different set applies during plastic loading. A
time step that begins elastic but ends plastic could be problematic were it not
for the fact that the actual stress rate during (nonhardening) plastic loading
is a projection of the trial stress rate. Working out the first-order integration
of the stress rate reveals that the updated stress σnew has the same projection
as the trial elastic stress σtrial regardless of whether the time step was partially
elastic. Hence, there exists a scalar Γ such that

σnew = σtrial − ΓA. (6.62)

The scalar Γ (which, incidentally, equals the magnitude of the plastic strain
increment) is determined by requiring the updated stress to be on the yield
surface. In other words, Γ is the solution to

f(σtrial − ΓA) = 0. (6.63)
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In this scalar-valued equation, the only unknown, Γ, may be found by secant
or Newton iteration. For simple models (such as nonhardening von Mises
plasticity), the solution can be found in closed form. Once known, Γ may be
substituted into (6.62) to update the stress.

Numerical Integration for Hardening Plasticity

When the yield surface evolves in response to changes in the ISVs, the general
solution in (6.33) must be used. Namely,

σ̇ = σ̇
trial −

P
(
N : σ̇

trial
)

P : N + H
, (6.64)

Comparing with the nonhardening solution in (6.59), not only is there now a
scalar H in the denominator, but the tensor P also differs from A whenever
elastic properties are affected by plastic flow. Unlike (6.59), the solution in
(6.64) is not a projection of the trial stress rate. However, it is still true that

σ̇ = σ̇
trial − λ̇P, where λ̇ =

(
N : σ̇

trial)

P : N + H
. (6.65)

Therefore, in a numerical time step (including partly elastic steps), there exists
a scalar Γ such that

σnew = σtrial − ΓP (6.66)

This equation looks like (6.62) except that P now plays the role formerly
played by A in the nonhardening case. In the nonhardening case, Γ was found
by demanding that σnew must be on the stationary (nonhardening) yield
surface. Nearly the same condition applies here, but the yield surface to which
the trial stress is projected must be the updated surface. Updating the yield
surface requires updating the ISVs, which requires integrating λ̇ in (6.66)
over the plastic part of the time step. Thus, with hardening plasticity, the
tremendous algorithmic advantages of predictor–corrector return algorithms
are less apparent because the duration of the plastic part of the time step,
∆tp, must be determined either explicitly (so that (6.65) may be applied to
find the increment Γ ≡ λ̇∆tp needed to update the ISVs) or implicitly through
iterations for Γ that include evolution of the location of the yield surface.

When using iterative methods to determine Γ, a good (first-order accurate)
approximation to the solution is

Γ = Γ0

(
P : N

P : N + H

)
, (6.67)

where, generalizing (6.63) to now include coupling and hardening effects, Γ0

is the solution to
f
(
σtrial − Γ0P, η0

1 , η0
2 , . . .

)
= 0. (6.68)
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Here, η0
k are the known values of the ISVs at the beginning of the time step.

Recalling that N : σ̇ represents the normal velocity of the yield surface (so that,
referring to (6.26), Hλ̇∆tp = HΓ is the incremental normal displacement), the
geometrical interpretation of (6.67) is illustrated in Fig. 6.7. Of course, once
Γ is determined, the stress is updated by using (6.66), and the internal state
variables are updated by ηnew

k = η0
k + hkΓ. The increment in the equivalent

total plastic strain is updated according to

∆ep = λ̇∆tp = Γ. (6.69)

This result shows that the projection distance factor Γ has a compelling phy-
sical interpretation: it is the magnitude of the total plastic strain increment.

In the literature, inordinate attention has been paid to high-order numeri-
cal accuracy, while the far more essential need to verify consistency is virtually
ignored. An algorithm is “consistent” if it is at least first-order accurate. In
the limit as the time step goes to zero, the projection direction must equal
the value of P at the onset of plasticity. The fact that the projection dis-
tance Γ becomes smaller as the time step decreases might lead one to in-
correctly surmise that the projection direction should be inconsequential as
the time step goes to zero. However, any projection direction other than P
results in a first-order error in the stress rate, which violates consistency (the
predictor–corrector algorithm will converge–but to the wrong result, which
leads to incorrect model parameter calibrations when using the flawed code).

A widespread misconception that the return direction is parallel to the
plastic strain rate is perhaps perpetuated by publications whose equations
properly indicate that the return direction is parallel to the stiffness act-
ing on the flow direction but whose illustrations (such as “Fig. 1” in [65])
incorrectly show only the flow direction without the transformation. They
show M where they should show P, and they use the phrase “closest-point”
projection for what is, in fact, an oblique projection. This problem is rec-
tified to some extent by the emphasis of Simo and Hughes [88] (in their
“Figs. 3–8”) that the projection for associative plasticity is closest point with
respect to the metric defined by the elastic stiffness (energy norm). However,

Fig. 6.7. Using the plastic strain increment (Γ0) that would apply if not hardening
to determine the actual increment (Γ) with hardening
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this still means it is oblique with respect to an ordinary norm in stress space, as
shown in Fig. 6.8, which depicts a typical meridional yield profile for a porous
material whose matrix strength is pressure dependent (the Lode radius r is
proportional to shear strength and the Lode axial coordinate z̄ is proportional
to pressure). Proportions in that plot use a Poisson’s ratio of 1/3, making it
clear that the proper return direction is not even approximately a closest-point
trajectory in stress space.

Higher-order integration strategies address the possibility that P might
vary during large plastic time steps. For a fully implicit backward Euler
integration (in which the projection direction tensor P is evaluated at the
end-state), Simo [89] showed that the plastic integration problem can be trans-
formed into a constrained optimization problem (in which the conditions that
differentiate between elastic and plastic flow are mathematically formalized
as the “Kuhn–Tucker conditions,” {λ̇f = 0, λ̇ ≥ 0, f ≤ 0}). Various studies
[42, 65, 84] have verified that the implicit Euler Backward algorithm is stable
for J2-plasticity as well as for more sophisticated plasticity models (though
a recent study [19] claims that significant truncation errors can result when
backward Euler schemes are used with kinematic hardening). These and other
studies [12,20,81,91] have used “numerical experiments” to demonstrate that
results are accurate, but they presume that a converged solution is actually
a correct solution (i.e., they fail to demonstrate consistency), so these claims
of accuracy are really only assertions of high convergence rates, possibly to
incorrect results. Incidentally, for linear-elastic three-invariant isotropic yield
models, efficiency improvements can be gained through spectral representa-
tions of the stresses and strains so that the problem is solved in 3-D principal
stress space rather than 6-D stress tensor space [4].

In their classical and frequently cited paper about consistent tangent op-
erators for higher-order accuracy, Simo and Taylor [90] emphasize that the
tangent stiffness must be obtained by consistent linearization of the stress
resulting from the return-mapping algorithm. In the context of an elastic-
predictor/plastic-corrector iterative algorithm, this means that, once an itera-
tion cycle has given a new approximation for the final stress state, all of the

Fig. 6.8. Associative plasticity does not correspond to a closest-point return with
respect to an ordinary Euclidean norm in stress space
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quantities that appear in the tangent stiffness should be re-evaluated at the
new prediction before proceeding with the next iteration. For nonhardening
plasticity, the only thing that might change during plastic loading is the ten-
sor A, but for hardening plasticity re-evaluations of the tangent stiffness must
also include updates of the ISVs, and quantities derived from them (H and Z).
In this process, higher-order accuracy is secondary to consistency (i.e., cor-
rectly performing any single iteration by using the correct projection direction,
P not M). If iterations are performed using an incorrect return direction, then
these algorithms will converge (efficiently) to the wrong result.

6.4 Nonhardening von Mises (J2) Plasticity

Von Mises theory (also called Huber–Mises or J2 plasticity) is supported in
virtually all shock-physics codes. Though of limited use for real materials,
this model is useful for verifying consistency and accuracy [42, 105] and for
performing shake-down calculations. The yield criterion is J2 = τ2

y , where τy

is a material constant (yield in shear). This criterion,

S : S = 2τ2
y , (6.70)

describes a cylinder of radius
√

2τy in stress space (see Fig. 6.1). In numerical
calculations, the updated stress deviator Snew is parallel to the trial stress
deviator Strial. Hence, the trial stress deviator is simply scaled down by a
multiple that puts the stress on the yield surface (a process known as “radial
return”):

Snew = ΨStrial where Ψ =

√
2τ2

y

Strial : Strial
. (6.71)

For von Mises theory, the isotropic parts of the updated and trial stresses are
identical (pnew = ptrial). Because (6.71) uses the trial stress (at the end of the
step), this strategy is sometimes referred to as a backward Euler integration,
and it is unconditionally stable. The integration error tensor (Snew−Snew

exact) is

G (∆t)2 {[γ̈0 − N0 (N0 : γ̈0)] − (N0 : γ̇0) [γ̇0 − N0 (N0 : γ̇0)]} + O (∆t)3 ,

(6.72)

where G is the shear modulus, γ̇0 is the strain rate deviator tensor, γ̈0 is
the strain “acceleration”, and N0 is a unit tensor in the direction of the
stress deviator, all evaluated at the beginning of the step. Suppose the strain
rate is constant so that γ̈0 = 0. Then the error in (6.72) evaluates to zero
if the strain rate is exactly tangent to the yield surface (N0 : γ̇0 = 0) or if it
points directly against the yield surface [γ̇0 − N0 (N0 : γ̇0) = 0]. In these spe-
cial cases, radial return is at least second-order accurate. In general, however,
the method is only first-order accurate because the error in (6.72) is of order

Brannon, R. M. (2007). Elements of Phenomenological Plasticity: geometrical insight, computational algorithms, and 
applications in shock physics. Shock Wave Science and Technology Reference Library: Solids I, Springer-New York. 2: pp. 189-274.



6 Elements of Phenomenological Plasticity 249

(∆t)2. When the strain rate is constant, integration error is most severe when
the strain rate forms a 45◦ angle with the yield surface. True second-order
accuracy requires not only the strain rate γ̇0, but also the strain “accelera-
tion” γ̈0 which is not typically available in shock-physics codes even though it
is undoubtedly large in shock zones. Thus, from a practical standpoint, first-
order accuracy is the best one should expect from any material model if γ̈0 is
unavailable.

Of particular interest to the shock-physics community are the special cases
of uniaxial stress and uniaxial strain loading. For these problems, the direction
of the stress deviator is constant during plastic loading and a radial return
von Mises algorithm is exact regardless of the time step size. The stress–strain
response for nonhardening von Mises plasticity under uniaxial stress and uni-
axial strain (assuming isotropic linear elasticity) is as illustrated in Fig. 6.9
where K is the bulk modulus, E is Young’s modulus, and C is the constrained
modulus

(
C = K + 4

3G
)
. The uniaxial strain yield threshold, CY/2G is often

called the “Hugoniot elastic limit (HEL)”. For uniaxial strain, the distance
between load and unload lines is 4Y/3, where Y =

√
3τy is the strength in

uniaxial stress. One must be cautioned, however, that this separation dis-
tance will be different for materials whose octahedral profile is noncircular
(as is usually the case for brittle materials). Likewise, the separation of load–
unload response curves is also affected by pressure sensitivity, which can be
pronounced for brittle materials where von Mises theory is grossly inappro-
priate [11]. This point is reiterated in Fig. 6.10.

Fig. 6.9. Comparison of uniaxial axial stress loading (dashed) with uniaxial strain
loading (solid) for linear-elastic nonhardening von Mises plasticity. To emphasize
that the labels in the first plot apply only for von Mises plasticity, comparisons are
shown for different yield models that allow variation of strength with pressure
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Fig. 6.10. Stress-space trajectories for uniaxial strain loading using nonhardening
(a) von Mises, (b) linear Drucker–Prager, and (c) nonlinear Drucker–Prager models.
Resulting differences in the axial response were shown in Fig. 6.9, and (d) in this
figure shows distinction in stress difference plots

6.5 Phantom Inelastic Partitioning

Adding advanced features to a plasticity model brings on a host of lurking pit-
falls related to physical interpretations of the new terms. This section discusses
“phantom inelastic partitioning,” which is a philosophical term conveying the
consequences of conflicting physical interpretations of the various parts of
observed strain rates (i.e., interpretations that are inconsistent with other re-
searchers’ work against which a model is assessed). Earlier, we decomposed
the total strain rate as ε̇ = ε̇

e + ε̇
p. As advanced constitutive features are in-

corporated, the strain rate might decompose into something more complicated
like

ε̇ = ε̇
e + ε̇

p + ε̇
t + ε̇

c + ε̇
x, (6.73)

where ε̇
p might represent only the strain rate from classical “dislocation-type”

plastic flow, while ε̇
t, ε̇

c, and ε̇x could be strain rates from a host of
other sources, such as phase transformation, elastic–plastic coupling, etc. If
a decomposition like (6.73) is forced into the form of a traditional two-term
decomposition ε̇ = ε̇

e + ε̇
p, it must be made very clear whether ε̇

t, ε̇
c, and ε̇

x

are absorbed into ε̇
e or ε̇

p. If absorbed into ε̇
e, then the equation governing

the elastic response will have extra terms like Z in (6.24). If absorbed into ε̇
p,

then residual strain is no longer the time integral of ε̇
p. Either choice leads to

an apparent plastic flow direction that differs from the actual flow direction.
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For simple work-hardening materials, plastic convexity and normality
(M = N) follow from Drucker’s stability postulates [14–16, 54], which are
based on phenomenological assumptions about the general character of ma-
terial response one would expect to observe at the macroscale, regardless of
microphysical origins. For hardening or softening materials, normality again
results from a more general postulate of maximum plastic dissipation put
forth in pioneering research efforts [28, 30, 35, 61, 95], as well as countless
follow-up studies. A normality law follows from an even more generalized
thermodynamics principle of maximum rate of entropy production [80] that
supports elastic–plastic coupling by allowing the energy potential and dissipa-
tion to depend on internal state variables. Neglecting elastic–plastic coupling,
Sandler, Rubin, and Pučik [71,78,79] demonstrated that a nonnormality rule
in a rate-independent local plasticity model allows an infinitesimal perturba-
tion to propagate with unbounded amplitude (i.e., spontaneous motion from
a quiescent state), which is a physically unacceptable result that leads to
nonuniqueness of dynamic plasticity solutions.

Despite a preponderance of theoretical and anecdotal arguments against
it, nonnormality (M 
= N) is used routinely in plasticity models for the simple
reason that it better matches experimental data (especially for geological [100]
and porous [57, 92] materials). No such model has (to our knowledge) been
proved consistent with thermodynamics for all load paths. Besides validating
in domains where data exist, nonassociative models must also be checked for
thermodynamically objectionable results under “Sandler–Rubin–Pučik” type
loading conditions (where σ̇

trial : N > 0 but σ̇
trial : M < 0). Experimental

studies in this domain are earnestly needed (and could be easily accomplished
in confined triaxial tests by loading a material to yield and then methodically
studying the effect of changing the loading direction by changing the axial and
lateral loads in differing proportions). Sandler, Rubin, and Pučik reasonably
suggest that objections to nonnormality might be resolved by including rate
dependence. However, the issue might be rooted simply in misassessments of
nonnormality.

We define “phantom inelastic partitioning” to be any invalid logic or im-
precise language applied toward assessing the direction of the plastic/inelastic
strain rate or any of its partitions. These errors are flawed reasoning, not
necessarily flawed conclusions. Perhaps nonassociativity is truly needed for
a particular material, but an issue exists if improper logic is used to justify
such a conclusion or if the conclusion is at odds with thermodynamics. If an
error is related to vague or missing strain rate partitions, then the partitioning
analysis cannot be corroborated or disproved by independent researchers. The
list below describes sources of phantom inelastic partitioning (especially mis-
assessment of the extent of non-normality) that we have encountered in our
daily work with materials modelers, experimentalists, and users of production
finite element codes.

• Erroneous belief that the return direction is parallel to the plastic strain
rate. As discussed on p. 246, the correct direction needed to return a
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stress to the yield surface is not discretionary. Incorrectly interpreting the
required return direction P as if it were parallel to M leads to misassess-
ment of M.

• Nonisomorphic depictions of a yield surface. Figure 6.3 illustrated that
the geometrical shape of the yield surface in stress space is preserved only
when using Lode coordinates (r, z) in meridional profiles. A line segment
that is normal to the yield surface in stress space will be no longer normal
to the yield surface in a non-isomorphic plot (such as shear strength vs.
pressure), thus producing phantom (false) non-normality where normality
actually applies.

• Stress-dependent internal variables. On p. 239, we emphasized that internal
state variables should be defined such that they change only during plastic
loading. If the yield function is written as F (σ,Φ) in which Φ depends
on stress (e.g., the actual porosity in a material rather than the unloaded
porosity), then the yield normal will be parallel to

∂F

∂σ
+

∂F∂Φ
∂Φ∂σ

.

Mistakenly comparing the plastic flow direction against ∂F/∂σ can result
in misassessments of nonnormality.

• Erroneous belief that nonmajor-symmetry of the plastic tangent stiffness
implies nonassociativity. In the absence of elastic–plastic coupling, the
actual stress rate differs from the trial stress rate by a multiple of
A (where, recall, Aij = EijklMkl), in which case associativity implies
major-symmetry of the plastic tangent stiffness. With elastic–plastic coup-
ling, however, the difference between these stress rates is a multiple of
P = A + Z, where Z is the elastic–plastic coupling tensor from (6.39).
Mistakenly interpreting P as if it equals A can result in phantom nonnor-
mality [51,97].

• Ratcheting. Most continuum plasticity theories presume that the elastic
strain goes to zero when loads are released from a small representative
volume element. In reality, however, elastic strains (near, e.g., micropores
or dislocation pile-ups) can exist at the microscale even after loads are
released, much as a ratchet has phantom permanent deformation that
properly should be regarded as elastic deformation (recoverable by press-
ing the “release” button). A theory that accommodates ratcheting would
need to decompose the strain rate as ε̇ = ε̇

e + ε̇
p + ε̇

r, where ε̇
r is the

ratcheting strain rate. At the macroscale, the apparent plastic strain rate
would equal ε̇

p + ε̇
r, but only ε̇

p would be dissipative (entropy generat-
ing). For granular materials, ratcheting is likely to be evident even at the
mesoscale where shearing across rough surfaces requires uplift (dilatation)
to overcome geometrical obstacles. Following a program of triaxial com-
pression with an associative flow rule, the apparent plastic strain is likely
to be larger than the actual plastic strain with ratcheting removed.

• Erroneous assessment of the relative magnitude of elastic and plastic
strains rates. In early metals plasticity research, the deviatoric part of
the elastic strain rate was often presumed small compared to the plastic

Brannon, R. M. (2007). Elements of Phenomenological Plasticity: geometrical insight, computational algorithms, and 
applications in shock physics. Shock Wave Science and Technology Reference Library: Solids I, Springer-New York. 2: pp. 189-274.



6 Elements of Phenomenological Plasticity 253

strain rate. Though this assumption is justified for load paths that push
directly against the yield surface, it is not appropriate for significantly
tangential trial elastic stress rates. This mis-partitioning of the relative
magnitudes of elastic and plastic strain rates can lead to a misassessment
of the extent of non-normality in a problem.

• Miscalculation of the yield surface normal. Phantom non-normality will
result if the flow direction M is compared against an improperly evaluated
yield surface normal N. This can happen when using an inadmissible yield
function that violates the requirement that f > 0 for all points outside
the yield surface. For example, a remarkably persistent myth [47, 82] in
plasticity literature claims that the Tresca yield function can be expressed
as a polynomial expansion, f = 4J3

2 − 27J2
3 − 36τ2

yJ2
2 + 96τ4

yJ2 − 64τ6
y ,

where τy is the yield stress in shear. However, regions outside the correct
Tresca yield surface exist for which this deficient yield function is negative,
which is unacceptable.

• Mistaking pressure-sensitivity for hardening (or vice versa). Figure 6.9
showed that pressure sensitivity affects nonhardening stress–strain plots.
Figure 6.10 shows meridional stress trajectories for these problems, as well
as difference (axial minus lateral) stress–strain plots. If a von Mises mater-
ial hardens linearly, the stress difference increases linearly while M remains
purely deviatoric, but the same loading response can be due to pressure
sensitivity in a nonhardening model for which M is not deviatoric. Thus,
different interpretations of a stress–strain plot can lead to conflicting as-
sessments of the flow direction.

• Inappropriateness of local theories? Bažant [3] has argued that nonlocal
theory can account for observed material response that would otherwise
appear to be nonnormality in simpler local plasticity models. An appropri-
ate avenue for continued research would be to demonstrate that a nonlocal
theory like Bažant’s is incapable of the spontaneous motion from a quies-
cent state that is possible with nonassociative local theories (see p. 251).

To conclude, the question of whether or not nonassociative plastic response is
real–or simply an artifact of misinterpreted data (or data interpreted in the
context of an overly simplistic model)–remains debatable. Arguments favoring
nonassociativity must be bolstered include assurances that the above-listed
mis-assessments of the flow direction (or violations of fundamental tenets
of thermodynamics) have been ruled out. Although purely micromechanical
models [2, 34, 37, 59] often fall short of quantitative predictions, this category
of research seems most promising for explaining the trends in data that are
modeled in phenomenological models as nonassociativity without constraints
on the domain of applicability.

Incidentally, as discussed on p. 268 , if nonassociativity actually exists, then
an otherwise linearly elastic material will admit plastic waves that overdrive
elastic waves (i.e., no elastic precursor), which is a phenomenon traditionally
(and probably better) explained by nonlinearity of the elastic response rather
than nonassociativity.
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6.6 Rate Dependence

This section addresses rate dependence, where it is argued that plastic shock
waves probably do not exist, but are instead diffusive (they cannot form as a
nearly jump discontinuity). It can be shown [6] that attempting to use rate-
independent plasticity to model a plastic–plastic wave (i.e., a sharp transition
from one state at yield to another) results in a violation of the principle of
maximum plastic work. When including rate dependence, plastic waves diffuse
spatially and temporally because steady-state plastic flow requires finite time
to develop.

As sketched in Fig. 6.11, the hallmark of a rate-dependent material is an
apparent increase in strength with increasing strain rate. Early efforts to model
rate dependence simply allowed the material strength to be a function of strain
rate; more generally, the yield function was allowed to depend on strain rate
(see, e.g. [66] or [17]). While this strategy can give satisfactory predictions for
monotonic proportional loading, it can lead to paradoxical results that are
inconsistent with observations of unloading and transient strain rates (e.g.,
wave interactions). If, for example, a large strain is applied suddenly and then
(as in shock loading) held constant, one would expect a large initial stress that
decays over time (microseconds) down to the quasistatic yield stress. However,
if a model takes yield stress to be a function of strain rate, this drop in stress
will be instantaneous, which is not desired.

At the heart of many rate-dependent models is the notion that a material’s
elastic response is nearly instantaneous, while inelastic response is compar-
atively “sluggish” (viscous). Viscoplastic models typically presume that the
inelastic strain rate is independent of the total strain rate. Instead, the in-
elastic strain rate depends only on state variables, possibly including internal
state variables whose values are assigned with knowledge of the history of
the deformation. In this section, we will present a generalized Duvaut–Lions

Fig. 6.11. Overstress rate dependence
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“overstress” model [18] (based on the pioneering work of Perzyna [68]) in
which the inelastic strain rate is presumed to depend only on the distance
between the stress σ (which can lie transiently off the yield surface) and the
quasistatic stress σeqbm (which is constrained to lie always on or within the
yield surface, and which is updated through time using the rate-independent
plasticity equations that were presented earlier in this chapter). The strain
rate is decomposed as the sum of an elastic part ε̇

e plus a viscoplastic part ε̇
vp:

ε̇ = ε̇
e + ε̇

vp. (6.74)

The viscoplastic strain rate ε̇
vp depends only on the instantaneous material

state, not on the total strain rate or any other rates of change in the state.
Specifically, the viscoplastic strain rate is governed by

ε̇
vp =

1
τ
E
−1 : σover, where σover = σ − σeqbm. (6.75)

The fourth-order tensor E
−1 is the elastic compliance (inverse of the stiff-

ness), τ is a material parameter called the relaxation time, and σeqbm is the
rate-independent stress solution that is governed by the rate-independent plas-
ticity equations. Loosely speaking, σover is the amount by which the dynamic
yield stress exceeds the quasistatic yield stress.

Because (6.75) states that the stress σ is the sum of the quasistatic “equi-
librium” stress σeqbm plus the overstress σover (both of which are illustrated
in Fig. 6.11), computing the time history of stress requires evolution equations
for the equilibrium stress and the overstress. The equilibrium stress evolves
through time via the rate-independent plasticity equations described earlier,
so its value may be tracked through time via standard rate-independent plas-
ticity. We now present the incremental equations governing evolution of the
overstress σover.

Neglecting elastic–plastic coupling, the stress rate is, as usual, given by the
elastic stiffness acting on the elastic part of the strain rate: σ̇ij = Eijklε̇

e
kl.

Applying the stiffness to both sides of (6.74) and using (6.75) allows the stress
rate to be written

σ̇ = σ̇
trial − 1

τ
σ over, (6.76)

where, as usual, σ̇trial
ij ≡ Eijklε̇kl. Equation (6.76) states that the actual stress

rate (long-dashed line in Fig. 6.11) is the sum of the two limiting stress rates
that are depicted as short-dashed lines in Fig. 6.11. The restoring stress rate
is continually attracted toward the equilibrium stress, and will reach it even-
tually unless an applied strain rate generates a counteracting trial stress rate.

Subtracting σ̇
eqbm from both sides of (6.76) gives the evolution law gov-

erning the overstress:

σ̇
over = ȧ − σover

τ
where ȧ ≡ σ̇

trial − σ̇
eqbm. (6.77)

This set of linear first-order differential equations may be integrated exactly
provided that ȧ is known as a function of time throughout the time interval
of interest.
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Analytical Solutions

The tensor ȧ is the amount by which the elastic trial stress rate exceeds the
equilibrium stress rate. In many problems of practical interest, both the trial
and the equilibrium stress rates are constant over a significant time interval.
In this case when τ and ȧ are constant over a finite time interval from t0 to t,
the exact solution to the ordinary first-order differential equation in (6.77) is

σover(t) = τ ȧ
[
1 − e−(t−t0)/τ

]
+ σover(t0)[e−(t−t0)/τ ] . (6.78)

As a special case, suppose that t0 = tyield, where tyield is the time at which
the yield surface is first reached following elastic loading. Then the overstress
is zero at t0 = tyield, and the above solution specializes to

σover (t) =

{
0 for t > tyield

τ ȧ
[
1 − e−(t−tyield)/τ

]
for t < tyield

. (6.79)

Importantly, (6.78) must apply during both plastic loading and elastic un-
loading. During elastic unloading, the trial and equilibrium stress rates are
equal, so that ȧ = 0. However, the trial and equilibrium stress states are gen-
erally not equal. In other words, σover does not drop instantaneously to zero
upon unloading; instead, it decays toward zero. In this case where ȧ = 0 but
σover 
= 0, (6.78) specializes to

σover (t) =
[
σover (t0) e−(t−t0)/τ

]
(6.80)

When unloading, the overstress decreases exponentially in magnitude, allow-
ing the dynamic stress to “catch up” with the quasistatic stress. Equation
(6.78) is very general because it applies to any choice for the quasistatic (invis-
cid) yield model that governs the quasistatic stress σeqbm, including hardening
and softening models. Equations (6.79) and (6.80) are merely specializations
for two classes of applied strain rates (monotonic loading and unloading). Even
for monotonic loading, however, strain rate influences material response, as
illustrated in Fig. 6.12.

We will now discuss further specializations of these general results to better
illustrate their meaning and to progress toward statements of simple analytical
problems that may be used to verify numerical implementations of overstress
theory. Recalling that σ̇

eqbm satisfies the inviscid plasticity equations, note
that

ȧ = E : ε̇
p, (6.81)

where ε̇
p is the plastic strain rate from the inviscid problem. In other words,

ȧ is simply the last term in (6.33):

ȧ =
P
(
N : σ̇

trial
)

P : N + H
. (6.82)
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Fig. 6.12. Overstress rate dependence. When loaded through identical pure shear
strain values at different rates, the bilinear response approaches an apparent steady-
state strength, but the sinusoidal response remains transient

For classical von Mises plasticity, this specializes to

ȧ = 2GŜ
(
Ŝ : ε̇

d), (6.83)

where G is the shear modulus, Ŝ is a unit tensor in the direction of the stress
deviator, and ε̇

d is the deviatoric part of the total strain rate. For monotonic
proportional loading at a constant strain rate, the stress deviator will be
parallel to the strain rate deviator, so that (6.83) simplifies to ȧ = 2Gε̇

d, and
(6.79) specializes (for von Mises models only) to

σover (t) =

{
0 for t > tyield

2Gτ ε̇
d[1 − e−(t−tyield)/τ

]
for t < tyield

. (6.84)

For example, if the strain rate is a pure shear, then after the onset of yield,

σover
12 = σ12 − σeqbm

12 = 2Gτε̇12

[
1 − e−(t−tyield)/τ

]
. (6.85)

For uniaxial strain (common in shock-physics), only the axial component
of strain ε11 varies, while all other strains are zero. In this case, the axial
component of the strain deviator is 2ε11/3 while the lateral component is
−ε11/3. Therefore

σover
11 = σ11 − σeqbm

11 =
4G

3
τ ε̇11

[
1 − e−(t−tyield)/τ

]
, (6.86)

σover
22 = σ22 − σeqbm

22 =
−G

3
τ ε̇11

[
1 − e−(t−tyield)/τ

]
. (6.87)

The apparent axial strength increases, but the lateral stress decreases. These
solutions demonstrate that the amount by which the dynamic strength exceeds
the quasistatic strength (under monotonic proportional loading of a von Mises
material) approaches a constant steady state value that varies linearly with the
strain rate if the characteristic response time τ is constant. A computational
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example for uniaxial strain loading is presented on p. 259. Experimental data
for geological materials suggest that the value of τ varies according to the
underlying microphysical processes (specifically, the response time for pore
collapse is different from that for microcrack growth [23]). A dramatic change
in strain rate sensitivity (i.e., a change in the value of τ) has also been noted
for copper ([69], where the rate effects are very accurately modeled using
fundamental materials science principles rather than the phenomenological
approach described here). In general, τ is usually treated as a material state
function, not a constant.

Numerical Solutions

In numerical plasticity models, the total strain rate is treated as if it were
constant over the time step, in which case, the trial and equilibrium stress
rates—and therefore ȧ—are regarded as approximately constant. Conse-
quently, the analytical solution in (6.78) may be applied during the time
step to obtain an optimally accurate stress update. For a numerical time step,
from t = tn to t = tn+1, (6.78) may be written

σover
n+1 = τ ȧ

[
1 − e−(tn+1−tn)/τ

]
+ σover

n

[
e−(tn+1−tn)/τ

]
(6.88)

or

σover
n+1 = ȧ∆t

[
1 − e−∆t/τ

∆t/τ

]
+ σover

n

[
e−∆t/τ

]
(6.89)

When the total strain rate ε̇ is constant, σ̇
trial will be constant. However,

for time steps that are only partly plastic, σ̇
eqbm will not be constant even if

the strain rate ε̇ is constant. To minimize the error associated with using an
analytical solution that presumes ȧ is constant, recall that ȧ ≡ σ̇

trial − σ̇
eqbm

so that ȧ∆t is best approximated in numerical settings by the increment

ȧ∆t =
(
σtrial

n+1 − σtrial
n

)
−
(
σ

eqbm
n+1 − σeqbm

n

)
, (6.90)

where
σtrial

n = σn and σtrial
n+1 = σn + E : ε̇∆t. (6.91)

The equilibrium stress must be available at both the beginning and the end
of the step, which requires it to be saved as an internal state variable. Its value
at the beginning of the step, σeqbm

n , can be retrieved from the state variable
array, and its value at the end of the step, σ

eqbm
n+1 , is computed by integrating

the rate-independent (inviscid) plasticity equations discussed earlier in this
chapter. Substituting (6.90) into (6.89), the overstress is therefore updated
during a numerical time step according to

σover
n+1 =

[(
σtrial

n+1 − σn

)
−
(
σ

eqbm
n+1 − σeqbm

n

)]
RH + σover

n [RH − rh] , (6.92)
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where

RH =
1 − e−∆t/τ

∆t/τ
and rh = RH − e−∆t/τ . (6.93)

Alternative viscoplastic integration schemes that are unified with the quasi-
static integration are reviewed by De Borst and Heeres [13].

Incidentally, overstress models typically also monitor equilibrium and
dynamic values of ISVs. Each ISV ηk is typically evolved according to

η̇k =
−1
τ

[
ηk − ηeqbm

k

]
. (6.94)

Using methods similar to what was done for stress, the ISV numerical update
is similar to (6.92) but with rh = 0 (ISVs always respond “sluggishly”; rh is
nonzero only for variables, like stress, that can change nearly instantaneously
during elastic loading).

Example: Uniaxial Strain of a Von Mises Material

In this section, we illustrate some basic features of rate dependence for a
contrived nonhardening von Mises material subjected to homogenous uniaxial
strain loading. Among the material parameters quoted in Table 6.1, those
listed under the thick line are derived from the minimal input parameters
above the line.

This material was analyzed using a computational material model that
updates stress using the Duvaut–Lions overstress theory described in the pre-
vious section. The total uniaxial strain history ε(t) in the top row of Fig. 6.13
was the input forcing function, whereas the elastic and plastic strain histo-
ries, εe(t) and εp(t), are among the outputs. Identical total strain values were
applied in both problems, but at a rate 100× faster in the high rate example.
Given sufficient time to reach steady state, the slopes of the elastic and plastic
strain histories approach the same values for both slow and fast loading even
though the values differ. Likewise, the stress–strain response asymptotes to

Table 6.1. Parameters used in rate-dependence demo

Density ρ 7849 kg m−3

Yield in uniaxial stress Y 285.788
Bulk modulus K 142 GPa
Shear modulus G 79 GPa
Characteristic response time τ 10−5 s

Constrained elastic modulus, C = K + 4G/3 247 GPa

Elastic wave speed, cL =
√

C/ρ 5.6 km s−1

Yield in shear, τyield = Y/
√

2 165 MPa

Hugoniot elastic limit, σyield = σHEL = Y 1−ν
1−2ν 448 MPa

Uniaxial strain at HEL yield, εyield = σHEL/C 0.0018
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the same slope for both high and low rates, which gives a higher apparent yield
stress for the high-rate problem. This example used a nonhardening material
specifically to demonstrate that the curved transient part of the stress–strain
response is not necessarily the result of hardening, as is often asserted [68].
Multiple experiments at different loading rates (preferably with unloading) are
necessary to determine if the so-called “hardening” part of the plastic wave
is attributable to hardening, rate effects, or pressure dependence [93]. When
hardening and rate dependence are both included in a plasticity model, as in
Fig. 6.12, the hardening primarily influences the equilibrium response curve
upon which the overstress is superimposed.

Note that the overstress in Fig. 6.13 approaches steady state under mono-
tonic loading in a time interval of about 5τ. Thus, if measured time-resolved
stress histories are available, “time-to-steady-state” can be a good indicator
of a material’s characteristic relaxation time τ. Specifically, if T denotes the
time required for the overstress to reach half of its steady-state value, then
τ ≈ T/ (1n2). Alternatively, if stress–strain data are available at both high
and low rates, then the material response time may be computed from the
slope of a plot of apparent steady state HEL strength vs. strain rate:

τ =
σover

steady−state
4
3Gε̇

. (6.95)

This rule of thumb has been here derived based on an assumption that the
underlying yield threshold is pressure-independent von Mises and the loading
is uniaxial strain. For other types of loading or when the yield stress is pressure
dependent, this rule no longer applies.

Equation (6.95) implies that dynamic strength varies linearly with strain
rate, which is at odds with numerous observations ([93], where strength varies
with strain rate according to a power law). Also, strain-rate dependence is
known to vary with temperature [49], which (for the adiabatic conditions
applicable in shock physics problems) implies a dependence on entropy and
therefore on the accumulated plastic work. Consequently, implementations of
Duvaut–Lions rate dependence models might allow the characteristic response
time τ to vary with plastic strain [22] and/or the magnitude of the overstress.

Rate dependence naturally plays a crucial role in shock loading, where
strain changes are applied very rapidly over a short interval. “Sluggishness”
of viscoplastic response in Fig. 6.13 prevents slope discontinuities in high-rate
loading except where the strain history itself has a slope discontinuity. During
shock (or very rapid) loading, the first term in (6.78) predominates because ȧ is
significantly different from zero. Consequently, shock loading quickly produces
a large overstress, leaving the material in an excited “overplastic” state. Once
a shock has passed, however, the strain rate becomes considerably smaller,
making ȧ quite small, therefore allowing the last term in (6.78) to predominate
postshock material response wherein the overstress decays to zero, allowing
the shocked state to approach the equilibrium plastic state.
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Fig. 6.13. The effect of strain rate in uniaxial strain. The axes normalizations are
defined in Table 6.1. All stresses and strains are the axial component. The dashed
lines show the quasistatic (inviscid) solution

Figure 6.13 illustrates how a stress–strain plot is affected by strain rate.
The speed at which a uniaxial strain signal propagates is given by

√
s/p, where

s is the slope of the stress vs. strain plot. In Fig. 6.13, the tangent modulus
“s” is constant during the initial elastic loading but drops continuously after
the onset of yield during high rate loading. Thus, the stress pulse “splits” into
a fast-moving elastic precursor followed by a continuously slower plastic sig-
nal. This is only one possible reason why the plastic wave shown in Fig. 6.14
develops without a jump discontinuity. However, comparing Figs. 6.13, 6.10,
and 6.5 a curved postyield stress–strain response (leading to a structured
diffusive-like plastic wave) can also result from rate-independent hardening or
pressure-dependence of strength. A single plate-impact experiment cannot de-
termine conclusively which phenomenon is occurring—multiple experiments,
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Fig. 6.14. A prototypical VISAR record

preferably with re-shock and release, are required. Similarly, the third signal
in Fig. 6.14 is typically interpreted as a phase transition (which is likely for
that particular material, AERMET steel), but signals like it can also occur
without a phase transition if the yield surface transitions rapidly from a cone
to a cylinder, as often assumed for brittle materials [36].

Because the speed of the plastic signal drops continuously, a plastic shock
(i.e., an arbitrarily rapid change in the plastic strain) is impossible. Instead,
under viscoplasticity theory, the rate at which plastic strain can accumulate
is limited by the material’s characteristic response time. Moreover, when the
slope s of the stress–strain curve is negative, as during material softening
or relaxation from an over-plastic state, the process becomes diffusive, once
again disallowing shocks. Gilman and others [24,25,33] have long argued that,
because plastic deformation is dissipative, plastic shocks cannot exist. Instead,
Gilman argues, plastic deformation must be diffusive. This view is substan-
tiated here using an overstress model. A rate-independent von Mises model,
on the other hand, admits a slope discontinuity at the onset of yield, making
an elastic–plastic shock mathematically possible in this idealized case. Thus,
whether or not a plastic shock can be modeled depends on whether or not the
constitutive model admits instantaneous plastic response under an instanta-
neously applied strain increment. Whether or not a plastic shock is admissible
(which is an entirely different question) requires thermodynamical arguments
like those of Gilman (also see [83]). If such arguments disallow jumps in plastic
strain, then rate-independent models must be ruled out. A related question
is whether a plastic–plastic shock (i.e., one for which the material is at yield
both ahead of and behind the shock) is possible under overstress theory. This
question leads us to consider reloading scenarios.
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Fig. 6.15. Rate dependence produces sudden changes in the stress–strain tangent
modulus upon reshock

Consider a strain that is applied suddenly and held constant, followed
later by a second (similarly applied) increase in strain. An overstress model
predicts the material response shown in Fig. 6.15. During the period when
the strain is first held constant, an overstress model allows the stress (and
therefore the elastic strain) to decay continuously over time (microseconds)
to its equilibrium value (the drop is a step discontinuity in a stress–strain plot
because strain is held constant).

Upon application of the second suddenly applied strain, the tangent mod-
ulus s again equals the elastic tangent modulus despite the fact that the
material remains at yield. Thus, overstress models predict that the re-loading
wave will propagate as a smooth (diffuse) plastic signal just like the first
wave, having a smoothly developing stress increase without a significant elas-
tic precursor. Thus, overstress theory does not admit a plastic–plastic shock
discontinuity (a more sophisticated model would be required if an elastic pre-
cursor is evident in reshock data). For a rate-independent idealization, it has
been proved [6] that a plastic–plastic shock violates the maximum plastic
work inequality even when advanced constitutive features such as pressure-
dependence and nonnormality are included. Thus, plastic–plastic shocks are
thermodynamically inadmissible for rate-independent plasticity. Conclusions
like these are typically derived under the assumption that elastic stiffnesses are
constant, which is not realistic and hence warrants generalizing the analyses
to include nonlinear elasticity.

6.7 Plastic Wave Speeds

The previous section argued that plastic shocks (jump discontinuities in plas-
tic strain) probably do not exist. Shock loading produces a split wave form
consisting of an elastic precursor followed by a continuous plastic “wave,” as
illustrated in Fig. 6.14. This section hypothesizes that the apparent plastic
wave seen in velocity interferometry data corresponds to the point at which
plastic flow has reached a steady state so that the slope of the dynamic stress–
strain plot is identical to the slope of the rate-independent plot. As such, the
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propagation speed (i.e., the time derivative of position holding the peak stress
constant) can be determined from the eigenvalues of the acoustic tensor asso-
ciated with the rate-independent plastic tangent modulus.

For acceleration waves that are rapid rather than mathematically discon-
tinuous, the well-known Rankine–Hugoniot jump conditions (that follow from
conservation of mass and momentum) along with a compatibility constraint
(that follows from demanding continuous displacements) imply the incremen-
tal condition [9, 31],

dε =
1

ρc2

[
n(dt) + (dt)n

2

]
, where dt = dσ ·n. (6.96)

Here, n is the unit normal of the acceleration wave surface (multiplied dyadi-
cally by the traction increment dt), ρ is mass density, c is the wave propagation
speed, and t is traction (t = σ ·n). Incidentally, ρc2 is actually an approxima-
tion of (ρc)c0, where c0 is the reference configuration wave speed and c is the
spatial wave speed [6]. Except across material interfaces, conservation of mass
requires both c0 and the impedance ρc to be individually continuous across
the sharp transition zone. Hence ρc2 may also be treated as constant.

Suppose that the stress and strain increments are further related by a
constitutive relationship of the form

dσ = T : dε, (6.97)

where the “tangent stiffness” T is determined from the state of the material
(possibly including history-dependent internal state variables), but is unaf-
fected by the rate of change in the state. In other words, we are seeking the
wave speeds associated with the rate-independent part of a rate-dependent
viscoplastic model. Requiring (6.96) and (6.97) to both be true leads to the
well-known acoustic eigenvalue problem,

A ·w = λw, where w = dt and λ = ρc2. (6.98)

Here, the acoustic tensor A (unrelated to the tensor A that was used previ-
ously in (6.60)) is defined

A ≡ n ·T ·n. (Aij = npTpijqnq). (6.99)

Equation (6.98) expresses the well-known result that ρc2 and dt must be,
respectively, an eigenvalue and associated eigenvector of the plastic acoustic
tensor. They cannot be selected independently.

Consider now a tangent stiffness of the form

T = E − 1
η
PQ. (6.100)

For a plasticity model, the tensors P and Q and the scalar η are given in
(6.36):

P ≡ E : M + Z, Q = E : N, and η = M : E : N + H. (6.101)
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These expressions, which apply to plasticity theory, are not needed per se
to derive the solution of the eigenproblem. That is, the eigenvalue solution
presented in this section is purely mathematical, allowing P, Q, and η to
have any physical meaning. We will, however, use adjectives appropriate to
plasticity theory when discussing variables.

Dotting (6.100) from the left and right by n, the plastic acoustic tensor is

A ≡ Ae − 1
η
pq,

[
Aij = Ae

ij −
1
η
piqj

]
, (6.102)

where the elastic acoustic tensor is

Ae ≡ n ·E ·n (6.103)

and
p = P ·n and q = Q ·n. (6.104)

We aim to express the eigenvalues and eigenvectors of the plastic acoustic
tensor A in terms of the eigenvalues and eigenvectors the elastic acoustic ten-
sor Ae. Assuming that the elastic stiffness E is major symmetric and positive
definite, the elastic acoustic tensor will be symmetric and positive definite
(hence it will have positive real eigenvalues and mutually orthogonal eigen-
vectors). However, if p 
= q, then the plastic acoustic tensor is nonsymmetric,
and complex eigenvalues are possible (flutter instability). Even if p = q, the
fact that the dyad pq is subtracted from the positive definite elastic acoustic
tensor in (6.102) implies that the plastic acoustic tensor might have nega-
tive eigenvalues. Recalling that eigenvalues of the acoustic tensor equal ρc2,
a negative eigenvalue would imply a complex wave speed. Regarding such
an event as a bifurcation from a stable solution, the occurrence of a zero
eigenvalue (which implies a stationary discontinuity) has often been used as
a criterion for the onset of localization of material deformation into narrow
shear bands [54,75,98,99].

When the elastic stiffness E is anisotropic, the elastic acoustic tensor can
have three distinct real eigenvalues {λe

1, λ
e
2, λ

e
3}. Letting {ŵe

1, ŵ
e
2, ŵ

e
3} denote

the associated normalized eigenvectors, it can be shown [6] that the charac-
teristic equation for the plastic eigenvalues is

(λ − λe
1)(λ − λe

2)(λ − λe
3)

+ θ1(λ − λe
2)(λ − λe

3) + (λ − λe
1)θ2(λ − λe

3) + (λ − λe
1)(λ − λe

2)θ3 = 0,

(6.105)

where
θk =

1
η

(ŵe
k ·p) (q · ŵe

k) (no implied sum). (6.106)

Each θk is determined directly from the tangent stiffness tensor and the jump
surface normal n. Hence, for a given wave front normal n, each θk may be
regarded as known (and very easy to compute).
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It might be tempting to divide both sides of (6.105) by (λ − λe
1) (λ − λe

2)
(λ − λe

3) to write it as

θ1

(λ − λe
1)

+
θ2

(λ − λe
2)

+
θ3

(λ − λe
3)

= −1. (6.107)

However, doing so presumes that no plastic eigenvalue equals an elastic eigen-
value. It can be shown [6] that the eigenvector associated with a distinct
plastic eigenvalue λ that is not equal to an elastic eigenvalue is given by

w = (Ae − λI)−1 ·p (Applies only for λ 
= λe
k). (6.108)

Recall that both the elastic acoustic tensor and the vector p depend on the
normal of the moving discontinuity surface. Showing this dependence explic-
itly, (6.108) is

w = (n ·E ·n − λI)−1 ·P ·n (Applies only for λ 
= λe
k). (6.109)

Equation (6.105), which applies for arbitrary elastic anisotropy, has been
studied in various forms [94], but to illustrate some basic points we now con-
sider isotropic linear elasticity. If the elastic tangent stiffness is isotropic with
a bulk modulus K and shear modulus G, the elastic acoustic tensor is

Ae =
(
K + 4

3G
)
nn + G (I − nn) . (6.110)

Letting subscripts “n” and “t” stand for “normal” and “transverse” respec-
tively, this elastic acoustic tensor has two distinct eigenvalues:

Single-root : λe
n = C associated with ŵ = n. (6.111)

Double-root : λe
t = G (6.112)

where C = K + 4
3G is the constrained (uniaxial strain) elastic modulus. Any

vector perpendicular to n (i.e., a shearing mode) is an eigenvector associated
with the double root. Recalling that the eigenvectors of the acoustic tensor
quantify the direction of the traction jump, the single-multiplicity solution
corresponds to a uniaxial compression wave traveling at speed c =

√
C/ρ. The

double root corresponds to a simple shear wave traveling at speed c =
√

G/ρ.
This result shows that it is impossible to elastically propagate a combined
pressure–shear wave—the waves will always split into distinct pressure and
shear (“p and s”) waves moving at distinct speeds. To the contrary, we will
show that plasticity allows formation of combined pressure + shear in a single
wave front.

For elastic isotropy, (6.105) simplifies to

[(λ − λe
n) (λ − λe

t) + θn (λ − λe
t) + (λ − λe

n) θt] (λ − λe
t) = 0, (6.113)
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where

θn =
1
η

(n ·p) (q ·n) and θt = θn − 1
η
p ·q. (6.114)

As pointed out by Hill [32] and countless others, one solution to (6.113) is
simply λ = λe

t . The nontrivial solutions depend on details of the plasticity
model. Whereas elastic materials admit two wave modes (normal and shear),
a plastic wave supports a broader variety of modes. These are determined by
the eigenvectors of the plastic acoustic tensor A. The eigenvector associated
with a nonelastic eigenvalue λ can be computed using the general solution in
(6.109). For this special case of an elastically isotropic material, that solution
may be written in the form

w =
pn

λ − λe
n

+
pt

λ − λe
t

(Applies only for λ 
= λe
k), (6.115)

where pn is the part of the p vector in the wave propagation direction
[i.e., pn = (p ·n)n] and pt is the part of p tangential to the wave front.
This solution shows that, in general, a plastic wave mode can include both
normal and shear tractions (rather than one or the other, as for elastic waves
in an isotropic material). For plastic eigenvalues that equal elastic eigenvalues,
the wave modes are given by different solutions depending on the normal and
tangential components of p and q, and also depending on the multiplicity of
the eigenvalue (see, e.g., the equation labeled “6.46” in [6]).

With knowledge of the material state and the orientation of the shock
surface, values can be computed for θt and θn. Then (6.113) gives the λ
eigenvalues, from which the plastic wave propagation speed is computed by
c =

√
λ/ρ. Now consider the reverse problem. Suppose you seek conditions

on θt and θn that give a specified wave eigenvalue. If the eigenvalue λ is spec-
ified (or inferred from interferometry data [26]), then neither θt nor θn may
be determined individually, but (6.113) is a constraint that must be satisfied
by them. Specifically, θt and θn fall somewhere on a straight line defined by
(6.113). If for example, one seeks conditions that favor localization (λ = 0),
then (6.113) shows that a (θt, θn) pair must satisfy

θn

λe
n

+
θt

λe
t

= 1 (localization condition). (6.116)

This general condition readily reduces to various localization criteria derived
historically [77] for specialized material assumptions.

Because plastic wave modes depend on whether or not the plastic eigen-
value equals an elastic eigenvalue, it is worthwhile investigating the ordering
of plastic eigenvalues relative to elastic eigenvalues. Is it possible for a plastic
wave to move faster than an elastic wave? The answer is “no” for associative
plasticity, but “yes” (in principle) for nonassociative plasticity. Figure 6.16
shows a family of straight lines in the space of all possible (θt, θn) pairs. Each
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Fig. 6.16. Plastic wave eigenvalue ordering. Red, green, and blue lines (as well as
labels L, M , and H) stand for the low, middle, and high portions of the number line
that is split into three parts by the elastic eigenvalues. Associative (more correctly,
self-adjoint) plasticity always generates points in the first quadrant, which (because
it is cross-hatched by red and green lines) implies that eigenvalue ordering for self-
adjoint plasticity is always of class LM (i.e., λ1 ≤ λe

t ≤ λ2 ≤ λe
n)

straight line corresponds to a particular wave eigenvalue. The red lines show
the family of (θt, θn) pairs that support a plastic eigenvalue lower than λe

t (i.e.,
slower than elastic shear waves). The blue lines show (θt, θn) pairs that sup-
port a plastic eigenvalue larger than λe

n, which would indicate a plastic wave
that propagates faster than the fastest elastic speed. The green lines indicate
intermediate plastic wave speeds. It can be shown [6] that associative plastic-
ity models will always give rise to (θt, θn) pairs in the first quadrant. Hence,
because this quadrant is intersected by only green and red lines, the two non-
trivial plastic eigenvalues (λ1, λ2) will satisfy λ1 ≤ λe

t ≤ λ2 ≤ λe
n, which is a

long-established result [53] for associative plasticity. It can be shown, however,
that the first and fourth quadrants in Fig. 6.16 correspond to deviatoric as-
sociativity (where, as often assumed in geomechanics, the deviatoric parts of
the yield normal and flow direction are aligned, but their traces are different).
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Hence, because the fourth quadrant is intersected by blue lines, these mod-
els can predict plastic waves that move faster than elastic waves, which is
a phenomenon ordinarily (and probably more correctly) ascribed to elastic
stiffening, which has been neglected here. It has been argued that an over-
driven plastic shock can also develop by including thermal conductivity in the
solution of the field equations [101] (something that most shock-physics codes
do not support). This result, however, indicates that an alternative modeling
strategy might employ adiabatic (no heat conduction) thermoelastic–plastic
coupling of the type in (6.56) to produce phantom nonassociativity that will
generate points in the fourth quadrant of Fig. 6.16.

6.8 Conclusions

This chapter has reviewed phenomenological plasticity theory with consider-
able emphasis on geometrical interpretations of the governing equations and
computational solution methods. Discussion has focused on issues of impor-
tance for implementing consistent numerical constitutive plasticity models
within a typical shock-physics finite element code. For example, the unique
return direction that must be used to ensure at least first-order accuracy in
elastic-predictor/plastic-corrector algorithms was shown to be aligned with
neither the yield normal nor the plastic flow direction, in general. Thermo-
dynamic and algorithmic admissibility of nonassociated yield models was de-
bated, where several known instances of misassessed plastic flow directions
were offered as possible explanations for phantom plastic non-normality.

Application of plasticity theory to shock physics problems here aimed to
emphasize that results for von Mises theory (such as plastic incompressibility,
separation of load/unload curves and even the notion that a yielded material
“flows” like a fluid) do not typically hold for more realistic plasticity models,
and should therefore be avoided when inferring strength from direct measure-
ments (such as velocity interferometry data).

A typical model for viscoplastic rate-dependence was reviewed, where plas-
tic waves were argued to be diffusive except possibly for pressure-dependent
models with phantom non-normality where the plastic tangent stiffness tensor
becomes nonmajor-symmetric and therefore admits plastic waves that travel
faster than (overdrive) elastic precursor waves even without elastic stiffening.
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Frequently used symbols (others defined in context)

A Return direction tensor without elastic–plastic coupling Aij = EijklMkl

E Fourth-order elastic stiffness Eijkl = ∂σij/∂εkl

f Yield function, f(σ, η1, η2, . . .) < 0 if elastic

G Tangent elastic shear modulus

I1 First mechanics invariant I1 = tr(σ)

J2 Second mechanics invariant J2 = 1
2
tr(S2) = −tr(SC)

J3 Third mechanics invariant J3 = 1
3
tr(S3) = det(S)

K Tangent elastic bulk modulus

M Plastic flow direction (unit tensor)

N Unit normal to the yield surface N =
∂f/∂σ

‖∂f/∂σ‖
P Return direction tensor with elastic–plastic coupling Pij = EijklMkl + Zij

Q Stiffness transformation of yield normal Qij = EijklNkl

p̄ Pressure (negative of mean stress p) p̄ = − 1
3
σkk = −p

S Deviatoric part of σ Sij = σij − pδij

T Deviatoric part of S2 Tij = SikSkj − 2
3
J2δij

δij Kronecker delta = 1 if i = j, = 0 otherwise.

ε̇p Plastic strain rate tensor (components ε̇p
ij)

εp Equivalent total plastic strain εp =
∫
‖ε̇p‖dt =

∫ √
ε̇p : εpdt =

∫
λ̇dt

εp
v Plastic volumetric strain εp

v =
∫

trε̇pdt =
∫

λ̇ trMdt

η Denominator in the tangent stiffness η = PijNij + H

γp Plastic distortional strain γp =
∫ √

ε̇pd : ε̇pddt =
∫

λ̇
√

Md : Mddt

λ̇ Magnitude of the plastic strain rate (consistency parameter) λ̇ =
√

ε̇p
ij ε̇

p
ij

σ Stress tensor (conjugate to strain tensor ε)

τ Characteristic response time in overstress rate dependence
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ERRATA AND CLARIFICATIONS FOR...
Brannon, R. M. (2007). Elements of Phenomenological Plasticity: geometrical insight, computational algo-
rithms, and applications in shock physics. Shock Wave Science and Technology Reference Library: 
Solids I, Springer-New York. 2: pp. 189-274.

• CORRECTION TO MAIN TEXT: The indicial formula in Eq. (6.35) is correct, but the “=” 
after E should be removed from the symbolic formula.

• CORRECTION TO MAIN TEXT: Two paragraphs above Fig. 6.3, the formulas for generat-
ing an octahedral profile were supposed to be typeset using two angles: an upper case  and a 

lower case  (the Lode angle). The algorithm for generating an octahedral profile should read 
as follows:

Letting  denote the polar angle covering the entire range from  to  in the 

octahedral plane, compute . This lower case  always falls 

between  to  because the principal ArcSin function always returns a result 
between  and . To generate the octahedral profile, parametrically plot

     and .

Example: To make a plot of a Mohr-Coulomb profile, first note that the failure criterion may 
be written in terms of “cohesion”  and “friction angle”  parameters as

Equations (6.18) and (6.20) may be substituted into this equation and solved for . 
Although complicated in its details, the final result may be written in the separable form

Here,

and

, where . 

The angle  is any selected value of the Lode angle at which it is desired for  to evaluate 

to unity. The angle  is the Lode angle at which the Lode radius is minimum (found by set-

ting  and solving for ). The function  quantifies the size of the octahedral 

profile, and  quantifies the shape of the profile. 

Θ
θ

Θ 0° 360°
θ 1

3
---ArcSin 3Θ( )sin[ ]= θ

30°– 30°
90– ° +90°

x r θ( ) Θcos= y r θ( ) Θsin=

S0 φ

σH σL–

2
------------------- S0 φcos

σH σL+

2
------------------- φsin–=

r z θ,( )

r z θ,( ) R z( )
Γ θ( )
-----------=

R z( )
2 θ0cos

θref θ0–( )cos
--------------------------------- S0 φcos

z

3
------- φsin–⎝ ⎠

⎛ ⎞=

Γ θ( )
θ θ0–( )cos

θref θ0–( )cos
---------------------------------= θ0 ArcTan

φsin

3
-----------⎝ ⎠
⎛ ⎞≡

θref Γ

θ0

∂r ∂θ⁄ 0= θ R z( )
Γ θ( )



The octahedral profile is generated by parametrically plotting

     and , where 

If, for example,  and , then the octahedral profile may be generated in 

Mathematica as shown below.

• CORRECTION TO MAIN TEXT: The right-hand-side of Eq. (6.46) should be 

multiplied by .

• CORRECTION TO MAIN TEXT: Throughout, there are several Greek letters typeset in 
bold that should be regular typeface (and vice versa).

x
Θcos

Γ θ( )
-------------= y

Θsin
Γ θ( )
------------= θ 1

3
---ArcSin 3Θ( )sin[ ]=

φ 20°= θref 30°–=

λ·
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