
How to analyze the convergence rate of
a nonlinear solver

This Mathematica notebook solves a nonlinear function f[x]=0 using three methods:
(a) Built-in solver
(b) Explicitly programmed classical Newton-Raphson solver
(c) Explicitly programmed Modified Newton-Raphson solver

In[1]:= SetDirectory @NotebookDirectory @DD

Out[1]= C:\Users\Cobbie\Dropbox\ME7960_Comp_Constitutive_Modeling\Homework

Case study
Consider

In[2]:= f @x_ D : = Hx − 1.5 L Hx − 2.3 L
Plot @f @xD, 8x, 0, 3 <, PlotRange → 880, 3 <, All <,

AxesLabel → 8x, y <, PlotLabel → Row@8"y =", Expand @f @xDD<DD

Out[3]=

0.5 1.0 1.5 2.0 2.5 3.0
x0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

y
y=x2

- 3.8x + 3.45

By design, the exact solutions are x=1.5 and x=2.3

In[4]:= xexact = x ê. Solve @f @xD � 0, x D

Out[4]= 81.5, 2.3<

ü Convergence analysis for the built-in nonlinear sol ver

The following applys the built-in solver using a starting guess of x=0.
The Reap and Sow stuff is how Mathematica lets us see the intermediate results, rather than just the final result.

In[5]:= 8res, 8xlist << = Reap@FindRoot @f @xD � 0, 8x, 0 <,

AccuracyGoal → Infinity, PrecisionGoal → 2000, EvaluationMonitor � Sow@xDDD;

The res output is the solution and the xlist array contains the successively improved guesses

In[6]:= res

Out[6]= 8x → 1.5<

In[7]:= xlist

Out[7]= 80., 0.907895, 1.32331, 1.47293, 1.49914, 1.5, 1.5, 1.5<

The following table goes from i=1 to Length[xlist]-1 to drop the last error (since it typically bucks the convergence
trend by essentially repeating the result right before it)

In[8]:= H∗ Select which of the two exact roots has been found ∗L
iexact = 1;

H∗ Create a table of errors in the x values at each iteration,

but don't include the last one since Mathematica's final val ue typically

bucks the convergence trends, probably from some unknown "c lean up" step ∗L
ex = Table @Abs@xlist @@i DD − xexact @@iexact DDD, 8i, Length @xlist D − 1<D;

H∗ Create a list of u i =−Log@ei D values ∗L
u = Table @−Log@ex@@i DDD, 8i, Length @exD − 1<D;

H∗ Create a list of v i =−Log@ei +1D values ∗L
v = Table @−Log@ex@@i + 1DDD, 8i, Length @exD − 1<D;

H∗ Combine the lists into Hui ,v i L data pairs ∗L
uvdat = Transpose @8u, v <D;

H∗ Perform a linear fit to the data ∗L
model = LinearModelFit @uvdat, ufit, ufit D;

H∗ Create a plot showing data and the fit ∗L
Show@

Plot @Normal @model D, 8ufit, Min @uD, Max @uD<, PlotStyle → Thick D,

ListPlot @uvdat, PlotStyle → 8PointSize @0.02 D, Red <D,

AxesLabel → 8"u i =−Log@ei D", "v i =−Log@ei +1D" <,

PlotLabel → Row@8"v i =", Normal @model D ê. ufit → "u i " <DD êê Framed

Out[14]=

2 4 6 8 10 12 14
ui=-Log@eiD

5

10

15

20

25

vi=-Log@ei+1D

vi=1.91592ui + 0.630477

Based on the plot label, the slope of the fitted line is 1.9, indicating that the built-in solver is approximately second-
order accurate.

ü Convergence analysis for the hand-coded “dumb” CNR solver

The following is a brute force implmentation that has no protections against division by zero from a bad first guess,
nor any scaling to ensure that built-in tolerance is reasonable. Constitutive models are a good example of the danger
of forgetting to scale. For a constitutive model, the stress is a function of strain. Stress typically has values on the

order of 109, which would make the tolerance of 10-8 in the following code overly agressive, possibly leading to an
infinite loop of trying to find a solution that can’t be found with such tight tolerances. On the other hand, if this solver

2 5newtonIterationErrorConvergenceAnalysis.nb

were to be applied to a problem where f[x] gives a strain value, then it might converge prematurely since strain values
are often very tiny numbers. Lesson: know the limitations of the numerical solvers, and perform scaling or other
protective actions accordingly.

In[15]:= dumbCNRsolver @f_, xguess_ D : = Module A9xlist, tolerance = 1.0 × 10−8, x =,

xlist = 8xguess <;

x = xguess;

While AAbs@f @xDD > tolerance,

x = x −
f @xD

f ' @xD
;

xlist = Append@xlist, x D;

E;

Return @xlist D
E

Apply the solver to get a list of the x values for each iteration:

In[16]:= xlist = dumbCNRsolver @f, 0.0 D

Out[16]= 80., 0.907895, 1.32331, 1.47293, 1.49914, 1.5, 1.5<

In[17]:= H∗ Select which of the two exact roots has been found ∗L
iexact = 1;

H∗ Create a table of errors in the x values at each iteration ∗L
ex = Table @Abs@xlist @@i DD − xexact @@iexact DDD, 8i, Length @xlist D<D;

H∗ Create a list of u i =−Log@ei D ∗L
u = Table @−Log@ex@@i DDD, 8i, Length @exD − 1<D;

H∗ Create a list of v i =−Log@ei +1D ∗L
v = Table @−Log@ex@@i + 1DDD, 8i, Length @exD − 1<D;

H∗ Combine the lists into Hui ,v i L data pairs ∗L
uvdat = Transpose @8u, v <D;

H∗ Perform a linear fit to the data ∗L
model = LinearModelFit @uvdat, ufit, ufit D;

H∗ Create a plot showing data and the fit ∗L
Show@

Plot @Normal @model D, 8ufit, Min @uD, Max @uD<, PlotStyle → Thick D,

ListPlot @uvdat, PlotStyle → 8PointSize @0.02 D, Red <D,

AxesLabel → 8"u i =−Log@ei D", "v i =−Log@ei +1D" <,

PlotLabel → Row@8"v i =", Normal @model D ê. ufit → "u i " <DD êê Framed

Out[23]=

2 4 6 8 10 12 14
ui=-Log@eiD

5

10

15

20

25

vi=-Log@ei+1D

vi=1.91592ui + 0.630477

5newtonIterationErrorConvergenceAnalysis.nb 3

In[24]:= Export @"ClassicalNewtonRaphsonConvergencePlot.png", %D

Out[24]= ClassicalNewtonRaphsonConvergencePlot.png

Since the slope is approximatly 2, his Classical N-R solver has an approximately second-order rate of convergence.

The dumbCNRsolver has exactly the same results as the built-in solver, which is no surprise since the Mathematica
documentation indicates that the built-in solver is a classical NR solver. By having written one ourselves, we have
conducted a prudent verification test that Mathematica’s algorithms are indeed working as advertised in their documen-
tation!

ü Convergence analysis for the hand-coded modified NR solver

The modified NR solver is the same except that the slope is not re-evaluated at each iteration. Just the slope at the first
guess is used.

In[25]:= dumbMNRsolver @f_, xguess_ D : = Module A9xlist, tolerance = 1.0 × 10−8, x, fprime =,

xlist = 8xguess <;

x = xguess;

fprime = f ' @xguess D;

While AAbs@f @xDD > tolerance,

x = x −
f @xD

fprime
;

xlist = Append@xlist, x D;

E;

Return @xlist D
E

In[26]:= xlist = dumbMNRsolver @f, 0.0 D

Out[26]= 80., 0.907895, 1.12481, 1.24084, 1.31308, 1.36162, 1.39579, 1.42059, 1.43897,

1.4528, 1.46332, 1.4714, 1.47763, 1.48247, 1.48624, 1.48919, 1.4915, 1.49331,

1.49473, 1.49584, 1.49672, 1.49742, 1.49796, 1.49839, 1.49873, 1.499, 1.49921,

1.49938, 1.49951, 1.49961, 1.49969, 1.49976, 1.49981, 1.49985, 1.49988, 1.49991,

1.49993, 1.49994, 1.49995, 1.49996, 1.49997, 1.49998, 1.49998, 1.49999, 1.49999,

1.49999, 1.49999, 1.49999, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5,

1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5<

4 5newtonIterationErrorConvergenceAnalysis.nb

In[27]:= H∗ Select which of the two exact roots has been found ∗L
iexact = 1;

H∗ Create a table of errors in the x values at each iteration ∗L
ex = Table @Abs@xlist @@i DD − xexact @@iexact DDD, 8i, Length @xlist D<D;

H∗ Create a list of u i =−Log@ei D ∗L
u = Table @−Log@ex@@i DDD, 8i, Length @exD − 1<D;

H∗ Create a list of v i =−Log@ei +1D ∗L
v = Table @−Log@ex@@i + 1DDD, 8i, Length @exD − 1<D;

H∗ Combine the lists into Hui ,v i L data pairs ∗L
uvdat = Transpose @8u, v <D;

H∗ Perform a linear fit to the data ∗L
model = LinearModelFit @uvdat, ufit, ufit D;

H∗ Create a plot showing data and the fit ∗L
Show@

Plot @Normal @model D, 8ufit, Min @uD, Max @uD<, PlotStyle → Thick D,

ListPlot @uvdat, PlotStyle → 8PointSize @0.02 D, Red <D,

AxesLabel → 8"u i =−Log@ei D", "v i =−Log@ei +1D" <,

PlotLabel → Row@8"v i =", Normal @model D ê. ufit → "u i " <DD êê Framed

Out[33]=

5 10 15
ui=-Log@eiD

5

10

15

vi=-Log@ei+1D

vi=0.993353ui + 0.318445

In[34]:= Export @"ModifiedNewtonRaphsonConvergencePlot.png", %D

Out[34]= ModifiedNewtonRaphsonConvergencePlot.png

This modified NR has a slope of about 1.0 in its convergence plot, so it is approximately first-order.

COMMENTARY: This solver required many more function evaluations and many more steps to converge, but that
alone does not imply that it is necessarily more expensive computationally. This solver could be the least expensive
choice for functions that are so complicated that their derivative is highly expensive. An example from constitutive
modeling might be a function that outputs a Hencky strain tensor as a function of, say, a controlled component of
stress. Evaluating the derivative of Hencky strain is extremely expensive, so the Modified NR solver might be cheaper
despite needing more evaluations.

ü Convergence analysis for a hand-coded secant solver

The following approximates the slope using secants, which is useful when it isn’t possible to evaluate derivatives

5newtonIterationErrorConvergenceAnalysis.nb 5

In[35]:= dumbSECANTsolver @f_, xguess1_, xguess2_ D : =

Module A9xlist, tolerance = 1.0 × 10−8, x1, x2, f1, f2, fprime =,

xlist = 8x1<;

x1 = xguess1;

x2 = xguess2;

While AAbs@f @x1DD > tolerance,

f1 = f @x1D;

f2 = f @x2D;

fprime =
f2 − f1

x2 − x1
;

x2 = x1;

x1 = x1 −
f1

fprime
;

xlist = Append@xlist, x1 D;

E;

Return @xlist D
E

In[36]:= xlist = dumbSECANTsolver @f, 0.0, 0.5 D

Out[36]= 81.04545, 1.04545, 1.25248, 1.4251, 1.48348, 1.49861, 1.49997, 1.5, 1.5<

6 5newtonIterationErrorConvergenceAnalysis.nb

In[37]:= H∗ Select which of the two exact roots has been found ∗L
iexact = 1;

H∗ Create a table of errors in the x values at each iteration ∗L
ex = Table @Abs@xlist @@i DD − xexact @@iexact DDD, 8i, Length @xlist D<D;

H∗ Create a list of u i =−Log@ei D ∗L
u = Table @−Log@ex@@i DDD, 8i, Length @exD − 1<D;

H∗ Create a list of v i =−Log@ei +1D ∗L
v = Table @−Log@ex@@i + 1DDD, 8i, Length @exD − 1<D;

H∗ Combine the lists into Hui ,v i L data pairs ∗L
uvdat = Transpose @8u, v <D;

H∗ Perform a linear fit to the data ∗L
model = LinearModelFit @uvdat, ufit, ufit D;

H∗ Create a plot showing data and the fit ∗L
Show@

Plot @Normal @model D, 8ufit, Min @uD, Max @uD<, PlotStyle → Thick D,

ListPlot @uvdat, PlotStyle → 8PointSize @0.02 D, Red <D,

AxesLabel → 8"u i =−Log@ei D", "v i =−Log@ei +1D" <,

PlotLabel → Row@8"v i =", Normal @model D ê. ufit → "u i " <DD êê Framed

Out[43]=

5 10 15
ui=-Log@eiD

5

10

15

20

25

vi=-Log@ei+1D

vi=1.61012ui - 0.0340363

In[44]:= Export @"SecantSolverConvergencePlot.png", %D

Out[44]= SecantSolverConvergencePlot.png

With a convergence plot slope of 1.6, this secant solver is somewhere between 1st and 2nd order accurate.

5newtonIterationErrorConvergenceAnalysis.nb 7

