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Line integrals in 3D
A line integral in space is often written in the form

.

To evaluate line integrals, you must describe the path parametrically in the form

.
Often, for example,  is selected to equal the arc length along the line, 
but other interpretations might be more natural.

EXAMPLE: Points on a helix may be described parametrically by

.

Here, the parameter is the cylindrical  coordinate,  (a constant) is the radius, and
stant  controls the rate of climb.

Once the path is parameterized, the integral is evaluated by 

f x
˜

( ) x
˜

d
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Often, the “parameter” is “time” so that .

Higher-order line integrals

In materials modeling, work is often written as

This is a line integral in tensor space. 

The strain path must be defined parametrically. 
Usually, the parameter is time t, so the line integral is evaluated by

f x
˜

( ) x
˜

d
C
∫ f x

˜
( )x

˜
· td
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W σ
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:dε
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·
˜

td∫=
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Exact differentials in three dimensions
Under what conditions does there exist a potential  such that

where the  are each functions of , , and . 

If the potential exists, then (by the chain rule)

Mixed partials are order independent:

Which implies that, if a potential exists, then .

Conversely, if the functions  satisfy this equation, then a potential exists.

In other words, for a potential to exist,  the matrix  must be symmetric

An integral  is “path independent” only if 

and its value is .

u x1 x2 x3, ,( )

du f1dx1 f2dx2 f3dx3+ +=
fk x1 x2 x3

fi
∂u
∂xi
-------=

∂2u
∂xi∂xj
--------------- ∂2u

∂xj∂xi
---------------=

∂fi
∂xj
-------

∂fj
∂xi
-------=

fk

Hij
∂fi
∂xj
-------=

f1dx1 f2dx2 f3dx3+ +( )∫ f
˜

dx
˜

•∫=

f
˜

dx
˜

•∫ ud∫ ufinal uinitial–= =
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Integrability
Consider a vector  that is a proper function of another vector . 

Then

or , where

Order of second-partial derivatives may be swapped:

. Therefore

Inverse question: 
Given a tensor  that varies with , under what conditions will a field  exist for

ANSWER: The field  will exist if and only if . 

If so,  represents a set of nine coupled PDEs that may be solved to find 

y
˜

x
˜

dyi
∂yi
∂xj
-------dxj=

dyi Cijdxj= Cij
∂yi
∂xj
-------=

∂2yi
∂xj∂xk
----------------

∂2yi
∂xk∂xj
----------------=

∂Cij
∂xk
----------

∂Cik
∂xj

-----------=

Cij x
˜

y
˜

y
˜

∂Cij
∂xk
----------

∂Cik
∂xj
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Cij
∂yi
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-------=
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Application: Compatibility
For large deformations, the deformation gradient tensor is defined 

A spatially varying field  is physically realizable if and only if 

Example: every layer in the following picture appears to stretch horizontally:

A horizontal stretch for a homogeneous deformation has a deformation gradient of 

You might be (wrongly) tempted to say that the “candy” problem must have the sam

(this is WRONG)

This must be wrong, however, because (Compatibility is violated

Fij ∂xi ∂⁄=

Fij
∂Fij
∂Xk
----------

∂Fik
∂Xj
----------=

initial candy deformed candy

F
˜̃

[ ] λ 0
0 1

= 1

1 λ

1

before after

F
˜̃

[ ]
αX2 β+ 0

0 1
=

∂F11
∂X2
------------

∂F12
∂X1
------------≠
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An allowable answer is

The “bad” solution presumed that squares deformed

This “good” solution lets squares deform to para

F
˜̃

[ ] αX2+β αX1

0 1
=

deformed candy
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Preliminaries
Multiple ways to analyze stresses on a windmill blade:

Suppose a deformation field is identical to one that you have analyzed in the past, 
except it is rigidly rotated and/or translated. 

QUESTION: Can you use the already-solved problem to help you solve the n
ANSWER: Yes, but you need to decide:  “space rotation”  or “superimpo

spatial frame

E
˜ 1

E
˜ 2

v
˜

v
˜g

˜

g
˜unrotated frame

material frame
e
˜ r

v
˜

e
˜θ

g
˜

E
˜ 1

E
˜ 2
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previously
solved (fiducial)

de
fo

rm
ed

SPACE ROTATION PROBLEM (easy)

in
iti

al

all scalars: 

all free vectors: 

all second-order tensors: 

all third-order tensors: 

snew sold= snew s=

v
˜

new Q
˜̃
v
˜

old•= vi
new Q=

T
˜̃

new Q
˜̃
T
˜̃

old Q
˜̃

T••= Tij
new Q=

ζijk
new Q=

Q
˜̃
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previously
solved (fiducial)

de
fo

rm
ed

SUPERIMPOSED ROTATION PROBLEM (har

spatial (objective) scalars: reference scalars:

spatial (objective) vectors: reference vectors:

spatial (objective) tensors: reference tensors:

multi-point quantities: transform like neither spatial nor reference quantities.

snew sold=

v
˜

new Q
˜̃
v
˜

old•=

T
˜̃

new Q
˜̃
T
˜̃

old Q
˜̃

T••=

Q
˜̃
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TERMINOLOGY
fiducial = previously solved problem.
star = new problem with same initial state, and deformed state identical to

with superimposed rotation.

spatial (objective): a quantity that transforms like the space rotation problem.
reference: a quantity that is unaffected by superimposed rotation
multi-point: a quantity that is neither objective nor reference

The superimposed rotation problem
A “material fiber”  is a vector connecting two points in a body. 

Any initial material fiber  is a reference quantity ( ). 

The deformed material fiber is a spatial quantity ( ).

The deformation gradient is a two-point tensor. 
Let  = deformation gradient for the fiducial problem. 

Let  = deformation gradient for the “star” problem

(two-point)

µ
˜

µ
˜ 0 µ

˜ 0
* µ

˜ 0=

µ
˜

* Q
˜̃

µ
˜

•=

F
˜̃
F
˜̃
∗

F
˜̃
∗ Q

˜̃
F
˜̃

•=
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Likewise, the polar rotation tensor becomes, after superimposed rotation,

(two-point)

Cauchy stress is force per current area, not force per initial area. 
Its definition requires no knowledge of the initial configuration. 

(spatial, objective)

The right polar stretch tensor  is defined as material stretch that occurs before rot
It is therefore unaffected by superimposed rotation:

(reference)

The left polar stretch tensor  is the stretch after material rotation. 
Superposed rigid rotation will re-orient the eigenvectors without changing the eigen

(spatial, objective)

The principle of material frame indifference (PMFI) is the very intuitive 
posed rigid motion of a material will require the applied forces and stresses to co-r
manner consistent with their definition. Regardless of whether you apply a mater
problem or for the star problem, the results must be consistent with these “objectivi

R
˜̃
∗ Q

˜̃
R
˜̃

•=

σ
˜̃
∗ Q

˜̃
σ
˜̃
Q
˜̃

T••=

U
˜̃

U
˜̃

∗ U
˜̃

=

V
˜̃

V
˜̃
∗ Q

˜̃
V
˜̃
Q
˜̃

T••=
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Mathematics of frame indifference (introductio

Spring Example: Translational frame indifference

Force in spring: .

Let  = current location of the tip of the spring.
Let  = original (unstressed) location of the tip of the spring.

First (BAD) attempt at a vector spring equation:

 ← (violates translational PMFI)

f kδ=

spring constant
change in length

x
˜ o

x
˜

x
˜ o∗

undeformed

Fiducial deformation

und

Starre

x
x̃
˜ o

f
˜

k x
˜
x
˜ o–( )=
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Consider
Fiducial deformation: stretch the spring by some known amount.
Starred deformation: stretch the spring by the same amount and also transla

Both scenarios involve the same starting tip location, so

.

The star deformation has the same final tip location plus extra translation :

.

The problems differ only by translation, so they both involve the same spring elong
They should therefore involve the same spring force.

.

Does the model  give this desired result?

For starred deformation, this (bad) spring model predicts

Substitute (1) and (2) into (3) to obtain

.

(NOT translationally invariant!)

x
˜ o∗ x

˜ o=
c
˜

x
˜
∗ x

˜
c
˜

+=

f
˜
∗desired f

˜
=

f
˜

k x
˜
x
˜ o–( )=

f
˜
∗predicted k x

˜
∗ x

˜ o∗–( )=

f
˜
∗predicted k x

˜
c
˜
x
˜ o–+( ) f

˜
∗desired kc

˜
+= =

f
˜
∗predicted f

˜
∗desired≠
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˜

tip x
˜

tail–=
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Spring Example: Rotational frame indifference.

To satisfy translation invariance, consider a revised spring equation

 ← better, but still bad.

Because  represents the difference between two points on the spring, it will be i
posed translation. 

Under translation, 
As before, . Therefore,  under translation, as desired.

This model permits force to co-translate with the spring. That’s good. Howev

Another requirement of PMFI: 
Force must co-rotate with the spring. 
This model FAILS in this respect.

f
˜

k L
˜
L
˜ o–( )=

L
˜

L
˜
∗=L

˜L
˜ o∗ =L

˜ o f
˜
∗=f

˜
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e spring.

.

ationally invariant!)
 which happens only if .

L
˜
∗o–

ired

f
˜
∗ k L

˜
∗ L

˜
∗o–( )=

MODEL
PREDICTION

f
˜
∗desired Q

˜̃
f
˜

•=

Q
˜̃

I
˜̃

=
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fiducial: stretch the spring without rotation

starred: same deformation as fiducial, but also rigidly rotate th

From the sketch, it’s clear that   (NOT rot
In fact, . PMFI requires this to be ,

L
˜ o

L
˜

fiducial deformation

undeformed L
˜
∗o

L
˜
∗

starred deform
ation

undeformed

L
˜
∗

f
˜

f
˜
∗desf

˜
∗predictedf

˜
k L

˜
L
˜ o–( )=

PROPOSED
MODEL

L
˜ o∗ L

˜ o= L
˜
∗ Q

˜̃
L
˜

•=

f
˜
∗predicted f

˜
∗desired≠

f
˜
∗
predicted f

˜
∗
desired– k Q

˜̃
L
˜ o• L

˜ o–( )= 0
˜
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on. 

HOO! Success at last!.
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At last. . . a spring model that satisfies PMFI.
To satisfy both translational and rotational frame indifference, consider

where , and ←

The only difference between the fiducial and starred deformations is a rigid moti

Therefore, deformed lengths are the same in both cases. Hence, . 

As before, the initial state is the same for both cases, so . 

Consequently, 

Under a superimposed rigid motion, . Therefore, 

.

Thus,

YA

f
˜

kδn
˜

= δ L
˜

L
˜ o–≡ n

˜
L
L̃
˜

---------=

L
˜
∗ L

˜
=

L
˜ o∗ L

˜ o=

δ∗ δ=

L
˜
∗ Q

˜̃
L
˜

•=

n
˜
∗ Q

˜̃
n
˜

•=

f
˜
∗predicted kδ∗n

˜
∗ kδQ

˜̃
n
˜

• Q
˜̃

kδn
˜

( )• Q
˜̃
f
˜

• f
˜
∗desired= = = = =
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PMFI in material constitutive models

Any material model must be invariant under a basis change (space rotat

This requirement is necessary, but unrelated to PMFI.

PMFI requires consistency of predictions when comparing deformations that differ 
You can work out in advance how variables should transform under superimposed r

Input (independent variables) sent to your constitutive model must convey suffic
model predictions (output dependent variables) to transform correctly under superim

• If you apply your model to a fiducial problem, then you obtain a certain fiducial p
• If you apply the model to a “star” problem that is identical to the fiducial problem

responds to a superimposed rotation, then the output needs correspond to the supe

Suppose the model takes the stretch  as its only input,  and returns the Cauchy st

When a “star” stretch  is sent as input, 

PMFI demands that the model must return  as output.

V
˜̃

V
˜̃
∗ Q

˜̃
V
˜̃
Q
˜̃

T••=

σ
˜̃
∗ Q

˜̃
σ
˜̃
Q
˜̃

T••=
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F[ ] 0 1–
2 0

=

R[ ] 0 1–
1 0

=

V[ ] 1 0
0 2

=
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Here’s why a model that takes only left stretch V is deficient. 

F[ ] 1 0
0 1

= F[ ] 2 0
0 1

= F[ ] 1 0
0 2

=

R[ ] 1 0
0 1

= R[ ] 1 0
0 1

= R[ ] 1 0
0 1

=

V[ ] 1 0
0 1

= V[ ] 2 0
0 1

= V[ ] 1 0
0 2

=

Fiber
composite
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s input to satisfy PMFI.

σ
˜̃

Q
˜̃
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PMFI in general materials modeling

When testing for frame indifference, you must first note what variables are invol
You must use physical reasoning along with rigorous mathematical consistency a

quantities are supposed to change upon a superimposed rigid motion. 

PMFI analysis for linear elasticity. Consider a constitutive model in wh
regarded to depend linearly on some spatial strain .

, or 

Since Cauchy stress is spatial, this constitutive model satisfies PMFI only if 

Indicial form, recalling Eq. (1),

This must hold for all strains, and therefore, PMFI requires that

which may be rearranged to give

This says that  must be isotropic. 
If your material is anisotropic, then you must receive more than just spatial strain a

ε
˜̃

σij Eijklεkl= σ
˜̃

E
˜̃̃̃
:ε
˜̃

=

Q
˜̃

σ
˜̃
Q
˜̃

T•• E
˜̃̃̃
: Q

˜̃
ε
˜̃
Q
˜̃

T••( )=

Qpi Eijklεkl( )Qqj Epqmn QmkεklQnl( )=

Qpi Eijkl( )Qqj Epqmn QmkQnl( )=

Eijkl Epqmn QpiQqjQmkQnl( )=
E
˜̃̃̃
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 where material fibers sig-

to get better results under
metry directions is prima-
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Satisfying PMFI does not per se make your model valid for large d

A model that satisfies PMFI is merely self-consistent for arbitrarily large rota
about whether your model is any good for large material distortions (i.e., problems
nificantly rotate and stretch relative to other fibers). 

Alternative configurations and alternative stress/strain measures are often used 
large distortions. Finding appropriate representations for distortion of material sym
rily the subject of physics, not PMFI. 
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Stress Rates

PMFI in rate forms of constitutive equations
Consider a constitutive law

, or 

in which the stiffness tensor is constant and the stress and strain are both spatial. 
To satisfy PMFI, let’s presume that the stiffness tensor is also isotropic. 

Taking the time rate of both sides gives

, or

This rate constitutive equation satisfies PMFI because it was obtained by differen
equation. Here’s why . . .

σij Eijklεkl= σ
˜̃

E
˜̃̃̃
:ε
˜̃

=

σ· ij Eijklε
·
kl= σ

˜̃
· E

˜̃̃̃
:ε
˜̃
·=
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γij

Q
˜̃

T Q
˜̃

γ
˜̃
Q
˜̃

· T••+ ]
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For for isotropic linear elasticity, the stress deviator  is related to the strain de

,

where  is the shear modulus (a constant). Under superimposed rotation, this beco

.

In rate form,

Recalling that , the RED terms involving  all cancel, leaving only

which is self consistent with

PMFI is satisfied for the rate equation. 

In general, whenever a non-rate constitutive relation satisfies PMFI, 
then its rate form will also satisfy PMFI.

Sij

S
˜̃

2Gγ
˜̃

=

G

Q
˜̃
S
˜̃
Q
˜̃

T•• 2GQ
˜̃

γ
˜̃
Q
˜̃

T••=

Q
˜̃
S
˜̃
·
Q
˜̃

T•• Q
˜̃
·
S
˜̃
Q
˜̃

T•• Q
˜̃
S
˜̃
Q
˜̃
· T••+ + 2G Q

˜̃
γ
˜̃

·
Q
˜̃

T•• Q
˜̃
· γ

˜̃
••+[=

S
˜̃

2Gγ
˜̃

= Q
˜̃
·

Q
˜̃
S
˜̃
·
Q
˜̃

T•• 2G Q
˜̃

γ
˜̃

·
Q
˜̃

T••[ ]=

S
˜̃
·

2Gγ
˜̃

·
=
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REPLACING A  GENUINE STRAIN RATE WITH SOME “APPROX
TO STRAIN RATE HAS  DISTRESSING PMFI RAMIFICATION

The so-called “rate” of deformation tensor  is just the symmetric part of the ve

, where .

If the principal directions of stretch never change, it equals the rate of the logarithm
Otherwise, it is not a true rate. 

The rate of logarithmic strain, , is very difficult to compute, whereas  is very

For this reason, many people take a perfectly valid (PMFI-conforming) constitut

[satisfies PMFI if the material is isotropic]

and mess it up by replacing it with

. [violates PMFI]

D
˜̃

D
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1
2
--- L
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L
˜̃

T+( )= Lij xj∂
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The original material model  satisfied PMFI because

The new (bad) material model  violates PMFI. 
The tensor  is spatial, so the PMFI requirement is

Replacement of a genuine strain rate with  is going to require replacing  with 
(often more graciously called an objective stress rate) that subtracts away the o

σ
˜̃
· g ε

˜̃
·( )=

Q
˜̃
S
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·
Q
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·
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Q
˜̃

T•• Q
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S
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Q
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· T••+ + 2G Q
˜̃

γ
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·
Q
˜̃

T•• Q
˜̃

· γ
˜̃
Q
˜̃

T•• Q
˜̃

γ
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Q
˜̃

· T••+ +[ ]=

These terms cancel
with those on right-hand side
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S
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Q
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These terms no
longer “go away”

D
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·
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The violation of PMFI can be “repaired” by replacing the “bad” constitutive mod

,

where  denotes a special “co-rotational” rate that effectively eliminates the part o
rotation rates. 

The co-rotational rate  is (must be) a spatial tensor to satisfy PMFI for isotropi

Objective co-rotational rates (Convected, Jaumann, Polar)
Co-rotational stress rates are often defined in the form

The tensor  is required only to transform under superimposed rotation so that

, where 

This will ensure that the pseudo (co-rotational) stress rate is spatial (as needed by

σ
˜̃
° g D

˜̃
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σ
˜̃
°
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°

σ
˜̃
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Possible choices for the “nebulous” spin-like tensor  
Velocity gradient ( )

If  then 

Vorticity tensor ( ). Being skew symmetric, .

If  then 

The the nebulous tensor  can be taken as the polar spin tensor

If  then 

All of these choices ensure that

In other words, the co-rotational rate is a spatial tensor! Consequently, the “rep

 satisfies PMFI so long as the constitutive function  is isotropic. 

Anisotropy can be accommodated by introducing additional “material orientation” input variables that transform

Λ
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Excerpts from Delft Short Course
http://ww-198- 21-25 JUNE 2004, DELFT RESEARCH SCHOOL STRUCTURAL ENGINEERING

Oscillatory stresses under simple shear. REMEMBER! satisfying PMF
will give accurate or even reasonable results. 

To demonstrate that satisfying PMFI is merely a consistency condition that is
necessary but not sufficient to obtain sensible constitutive model predictions,
Dienes1 considered simple shear with isotropic linear-elasticity in the form

Dienes demonstrated that the Jaumann rate predicts anomalous oscillatory shear 
rate predicts intuitively more appealing monotonically increasing shear stress. 

The Jaumann rate performs so poorly because it uses vorticity  as the “mater
away” the rotational part of the stress rate. 

However, for simple shear, vorticity  is constant throughout time. The Jauman
presumes that a material element tumbles unceasingly. Drawing a single material e
onstrates that such thinking is flawed. 

1. DIENES, J.K. (1979) Acta Mechanica 32, pp. 217-232. 
Incidentally, this effect was reported in the rheology literature earlier than Dienes’ paper. Dienes influenced the solid mechanics community
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tensor A
˜̃
∗ A

˜̃
=

Excerpts from Delft Short Course
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Lie derivatives and reference configurations
Lie derivatives justify the concept of reference constitutive models by making th

tional (objective) rates clear. 

Let  denote any tensor that transforms under a rigid superimposed rotation  

(two point tensor)

Some choices . . .

• co-convected: , where  is the deformation gradient tensor.

• contra-convected: , where .

• polar: , where  is the polar rotation tensor.

Consider any spatial tensor . Define a generalized “overbar” operation as 

The basis expansion of  is

,

If a tensor  is a spatial, then , and therefore  is a reference 
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Excerpts from Delft Short Course
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To take rates of , you need the following helper identity for th

,  where 

Using this, you can show that 

, where .

which may be written

The ordinary rate of the bared tensor is the same as the 
ing on the co-rotational rate. 

Most textbooks write this “Lie derivative” in an equivalent (but more confusing)

.
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e for available experimen-
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forms” all spatial inputs to
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Excerpts from Delft Short Course
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WHY ARE LIE DERIVATIVES USEFUL?
Lie derivatives let you apply a constitutive model in a reference configuration w

rates, not pseudo rates, and you can prove that the result will be identical to a mo
uses pseudo (co-rotational) rates in a spatial formulation.

You can write a material model that presumes no rotation (which is often the cas
tal data). Once you match non-rotational data adequately, you can “upgrade” you
model to satisfy PMFI by merely adding a pre-conditioning wrapper that “un-trans
the reference state prior to calling the model. Results are then transformed in this w
frame and sent back to the host finite element code.
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