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ABSTRACT 

THE I"FLLE"CE of non-classical clastic plastic constitutive features on dynamically moving discontinuities 
in stress. strain and material velocity is investigated. Non-classical behavior here includes non-normality 
of the plastic strain incremcnt to the yield surface. plastic compressibility. pressure sensitivity of yield and 
dependence of the clastic moduli on plastic strain. DRLGA" and SlIE"'s (1987) analysis of dynamically 
moving discontinuities with strain as well as strcss jumps ill classical malcrials is shown to be valid for a 
broad class of non-associative material models until deviation from normality exceeds a critical (non
intlnitesimal) leveL For these non-classical materials. an inequality that bounds the magnitude of the stress 
jump is derived, which is information not obtainable from a standard spectral analysis of a shock. For the 
special case of stress discontinuities with continuous strain or for quasi-static deformations, this inequality 
is shown to rule out jumps in specific projections of the stress tensor unless the non-normality is suHicicntly 
large. These results invalidate a recent claim in the literature that an infinitesimal amount of non-normality 
permits moving surfaces of discontinuity in stress (with no strain jump) ncar the tip of a dynamically 
advancing crack tip. Using a vcry general plastic constitutive law that subsumes most non-classical (and 
classical) descriptions currently in usc, a complete closed form solution is obtained for the plastic wave 
speeds and eigenvectors. A novel feature of the analysis is the clarity and completeness of the solutions. If 
the elastic part of the response is isotropic. one plastic wave speed equals the clastic shear wave speed. 
while the other two possible wavc speeds depcnd in general on the stress and plastic strain within the 
shock transition layer. Concise necessary and suHicient conditions for real eigenvalues and for vanishing 
eigenvalues arc derived. The real eigenvalues are classified by numerical sign and ordering relative to the 
elastic eigenvalues. The geometric multiplicity of plastic eigenvectors associated with clastic eigenvalues is 
shown to depend on the stress state within the shock transition layer. These solutions, several of which 
hold for arbitrary elastic anisotropy, arc also applicable to acceleration waves and localization problems 
and to materials with dependence of the clastic moduli on plastic strain. Such elastic--plastic coupling is 
shown to imply a non-self-adjoint fourth order tangent stitTness tensor even if the plastic constitutive law 
is associative. 

I, INTRODUCTION 

IN THIS PAPER we analyze dynamically moving discontinuities in stress and/or strain 
(which we term "shocks") for elastic--plastic material models that possess one or more 
of the following non-conventional features . 

• Non-normality of the plastic strain increment to the yield surface . 
• Pressure sensitivity of yield. 

t To whom correspondence should be addressed. 
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• Plastic compressibility (i.e. permanent volume change). 
• Yield surface vertices. 
• Elastic-plastic coupling: the elastic moduli change with plastic strain. 

Quite recent research has shown that non-classical constitutive features such as 
these permit a realistic description of important physical phenomena such as plastic 
flow localization (HILL, 1952; HILL and HUTCHINSON, 1975; RICE, 1976; TVERGAARD 
('{ al., 1981), general bifurcation (RANIECKI and BRUHNS, 1981), non-conventional 
plastic slip in single crystals (ASARO, 1979, 1983), porous metal instabilities (BECKER, 
1987; OHNO and HUTCHINSON, 1984; TVERGAARD, 1990), the strength differential 
effect in metals (NEEDLEMAN and RICE, 1978; RICE, 1976), pressure sensitivity of yield 
and plastic compressibility caused by the presence of microvoids (BEREZIN, 1987; 
GURSON, 1977), and non-normality caused by internal friction (CHANDLER, 1985) or 
by microvoid nucleation (MROZ and RANIECKI, 1976; NEEDLEMAN and RICE, 1978; 
TVERGAARD, 1982). 

Pressure insensitivity of yield is an excellent approximation for many materials 
such as undamaged metal alloys (BRIDGMAN, 1952; SPITZIG and RICHMOND, 1984). 
However, even these materials can become appreciably pressure sensitive whenever 
pores or microcracks develop. I n this case, the use of a pressure sensitive yield criterion 
is imperative. The expansion, interaction and eventual coalescence of voids is a basic 
precursor to ductile fracture. Voids may be present as a result of the processing (e.g. 
sintered metals) or may develop due to, say, cracking or debonding of rigid inclusions 
in high triaxial regions such as the zone ahead of a crack tip. Microporous or 
microcracked media exhibit pressure sensitivity of yield, plastic compressibility and 
dependence of the elastic moduli on previous plastic straining. Furthermore, 
nucleation of voids or internal friction at microcracks can produce non-normality. 

Discontinuities in stress and strain fields are intimately related to localization of 
deformation into thin shear bands. HILL (1952) was the first to recognize that this 
phenomenon can be treated as a constitutive instability. His excellent summary of 
discontinuity relations (HILL, 1961) set the stage for his general framework for the 
study of localization in connection with acceleration waves and stationary dis
continuities (HILL. 1962). RICE (1976) also studied the sensitivity of localization 
predictions to deviations from classical plasticity--especially non-normality and ver
tices. HILL (1967) provided evidence that vertex effects can be significant in certain 
situations even for polycrystals. For example, although localized necking of thin 
homogeneous sheets under biaxial stretching is impossible when associative theories 
with smooth yield loci are used, STOREN and RICE (1975) predicted such localization 
by approximating the effect of a vertex as a non-normality of the plastic strain 
increment to a smooth yield surface. 

The emphasis of this paper is to determine how deviations from classical plasticity 
might affect moving surfaces of discontinuity in stress, strain or velocity. Such infor
mation is essential for the rigorous analysis of any phenomenon that is suspected to 
involve such discontinuities. We will prove by contradiction that a large class of 
elastic-plastic constitutive models (including, but not limited to, most classical 
models) do not permit certain types of moving discontinuities in stress. Discontinuities 
appear in elastic--plastic problems such as dynamic crack propagation in ductile single 
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crystals (NIKOLIC and RICE, 1988), moving load problems and metal forming! 
processing. For these problems, we must know what conditions must be enforced 
across thc discontinuity surfaces as well as the level of sophistication required of 
the constitutive model in order consistently to model the discontinuities at all. For 
numerical approaches, known or suspected jumps can be built into the solution. or 
other provisions can bc made to ensure accurate jump treatment. [f an analytical 
solution to a boundary value problem is sought, knowledge of whether discontinuities 
are possible will ensure that appropriate initial assumptions are made. Otherwise. it 
could occur that either no solutions are found, or. more insidiously, the solutions 
found are incomplete, or--perhaps worst of all "solutions" possessing dis
continuities that violate a governing principle are advanced. 

Much work has already been done in the area of moving discontinuity analysis for 
elastic-plastic materials. Permitting yield surface vertices and flats, arbitrary elastic 
and initial plastic anisotropy, and a broad class of anisotropic hardening in an otherwise 
classical material class, DRUGAN and RICE (1984) showed that a moving discontinuity 
in any component of stress is impossible for quasi-static small deformations. DRUGAN 
(1986) streamlined this analysis and showed that the result also holds for elastic 
plastic response where the elastic part is non-linear hyperelastic. DRUGAN and SHEN 
(1987) and SHEN and DRUGAN (1990) then proved that the same material does 
allow jumps across dynamically propagating surfaces, but only under specific, quite 
restrictive, conditions. Finally, DRUGAN and SHEN (1990) arrived at similar con
clusions for finite plastic deformations, but showed that material anisotropy com
plicates the results in the large deformation case. Consistent results were obtained by 
LEIGHTO}l et al. (1987), who showed that yield surface convexity with plastic strain 
increment normality precl udes the existence of discontinuous plastic fields near the 
tip of a dynamically growing crack in the special case of steady-state plane-strain 
small deformations of an incompressible, isotropic, plastic material. 

All previous work of Drugan, Leighton and co-workers involved the key idea of 
enforcing an integrated form of the Maximum Plastic Work Inequality (MPWI) 
throughout passage of the shock. However. because the MPWI embodies both CO/1-

of the yield surface and normality of the strain increment to the yield 
surface, it cannot be used for non-associative materials. In this paper, 
jj'e re/ease the requirement of and require only that the yield be 
concex. By enforcing an integrated form of the throughout the 
passage of the shock, we show in Section 3 that in specific of the 
stress tensor (such as the deviatoric can be realized 
amount of As a 
associative constitutive law used for an 
crack strain; we find that a discontinuous stress field 

unless the is 
this main we present in Section a morc conventional 

shock wave but for a very class of non-associative 
materials that possess pressure 

of the elastic moduli on strain. We and extend 
work on such materials 1963; LORET and HARIRECHE. 1991 ; 

OTTOSEN and 1991), 
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a sirnple closed form solutio n for the plastic wa ve speeds in terms of the elastic eigen
system (which may be ass umed to be known a priori) and two easily calculated scala r 
properties of the tangent sti ffness tensor. If the elastic part of the response is linear 
and isotropic, we confirm the known result that one plastic wave speed is always equal 
to the elastic shear wave speed, while the other two plastic wave speeds depend on 
the stress state within the shock transition layer. By requiring that each stress state in 
the transition layer permit the actual wave speed, we derive a requirement for per
missible paths of stress within the transition layer. Noting that the governing eigen
problem for moving shock waves is identical in fo rm to the eigen-problem for accel
eration waves, we provide very simple necessa ry and sufficient conditions for one of 
the wave speeds to be zero (s((tfionary discontinuity), or for two of the eigenvalues to 
be complex conjuga te (fluller instahility) ; these conditions correspond to a change 
from hyperbolicity to ellipticity (or vice versa, depending on the problem) of the 
governing equations, which in turn affects computation procedures. We classify the 
real eigenvalues according to their numerical sign, and their ordering with respect to 
the elastic eigenvalues. The so lution (which includes eigenvectors that have been 
missed in previous work) is presented in a form that provides insightful comparisons 
with the eigenvectors for elastic waves. The comprehensiveness of the analysis and 
the compact, lucid structure of the solutions di stinguish this work from related 
analyses in the literature. 

The paper concludes with a demonstration tha t dependence of the elastic mod uli 
on plastic strain may be treated as an effective no n-normality o f the plastic st rain 
increment to the yield surface. Such coupling generally makes the tangent stiffness 
tensor non-self-adjoint even when tlze plastic strain incrernenl is normal to the yield 
swface, which is a caveat fo r HILL'S (1968) finding that, in the absencc of coupling, 
normality imples self-adjointness. Referring to MR{)Z a nd RANJECKI's (1976) thermo
mechanical flow law, TVERGAARD (1982) noted that coupling in elastic-plastic bodies 
often leads to non-self-adjointness of the tangent stiffness tensor. This non-self
adjointness may sometimes be regarded as an efleCliL'e non-normality of the plastic 
stra in increment to the yield surface. Effective non-normality caused by elastic- plast ic 
coupling has also been noted by M AJER and HUECKEl. (1979). We derive explicit forms 
for the effective non-norma l part of the strain increment using the porous elast ic 
moduli given by ZHAO et at. ( 1989) . 

2. JUMP CONDITIONS 

The hypothesized discon ti nuity surface is taken to be generall y curved and pro
pagating with a norma l speed V relative to a fi xed observer. The shock propagation 
speed c relati ve to an observer moving with a material particle a t the jump surface is 
then 

c = V-V' n, (2. 1 ) 

where V is the particle velocity a nd n is the unit normal of the shock surfacc pointing 
in the propagation direction. Here and throughout this paper, a single dot product 
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represents the that. In 

Cartesian components, indices are 
The ahead of the shock is called the (+) side. and the behind 

is called the ( - ) side. The jump in any field variable (J is denoted double brackets 
defined as follmvs : 

{/ == (/ -(f • (2.2) 

where (Ie is the value of a at the ( + ) side of the shock. and {/ is the value 
of a at the ( - ) side. 

2.1. Jump 

A requirement that cracking or interpenetration of material not occur is sufficient 
to ensure continuity of displacement components normal, but not tangent. to a shock. 
DRUGAN and RICE (I 9tl4) noted that the physical reg uirement of finite plastic work 
production for finite motion of a shock requires the entire material displacement 
vector u to be continuous across the shock: 

u =0. 

Conservation of mass leads to (e.g. CHADWICK. 1976) 

pc = O. 

(2.3) 

(2.4) 

where p is the density. Assuming the gradient. du/dX. of displacement with respect to 
reference position. X. exists in a neighborhood of the shock and tends to finite ( + ) 
side and ( - ) side limits as the shock is approached. it can be shown (e.g. HILL. 1961) 
that the jump in the displacement gradient is of the form 

(2.5) 

where ). is a vector called the "characteristic segment". N is the unit normal to the 
image of the discontinuity surface in the reference configuration. and ),1\1 is a dyad. 
For small displacement gradients. N ~ n. 

By taking the time derivative of displacement following the enforcing (2.3). 
it can be shown (HADAMARD. J 903) that the jump in velocity is related to the jump 
in displacement gradient 

(2.6) 

having applied (2.5). Here. Co is the speed of the discontinuity surface in the reference 
configuration, and Cil ~ c for small displacement gradients. 

For dynamic deformations. conservation of linear momentum leads to the well
known (e.g. CHADWICK. 1976) jump eq uation 

(2.7) 

where (j is the Cauchy stress. Importantly. because pc: is an approximation to PCC(h 

and because = O. (2.4) permits us to treat pc" as constant across the shock even 
though c is not constant. 

For small displacement gradients. the jump in the total strain Il is approximately 
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the symmetric part of the jump in the displacement gradient. Therefore, recalling (2.5) 
a nd (2 .7), the jump in infinitesimal strain is given by 

[d c:::; sym (nA) = I, sym (n[TJ ) =.\ 0 : ~ 0-]' 
" pc-" pc- 1 

(2.8) 

where T == n' (1 , and 0 is a non-invertible fourth-order linear operator defined such 
that for any second-order tensor A, 

0 : A = sym (nn' sym A). (2.9) 

In Cartesian components, Qijr" = !(n j(),rn,+nj6j, n, +llj D;,Il,+l1i6j,n,) , where 6ij is the 
Kronecker delta. Here and throughout this paper, " sym" denotes the symmetric part , 
a nd a double dot product (:) represents the tensor inner product between adjacent 
dya ds [so that, in Cartesian components. adjacent indices are summed painrise- e.g. 

(0 : ALi = QijrsArsl· 
We note for future reference that 

[e] : [ (1] = p~d (1] : 0 : [ (1] = pc ~ A . ;., (2.10) 

2.2. fncremental./(JI'Il1S of the jump equations 

COURANT and FRIEDRICHS (1948) proved in the gas dyna mics context that a shock 
may be viewed as the limit as thickness vanishes of a narrow transition layer in which 
field quantities vary continuo usly as ifin a simple wave. As pointed out by LEIGHTON 
et al. (1987), their proof a lso shows that the sequence of states in the transition layer 
must also be the same as if the transition had occurred in a simple wave. That is, if 
the jump in some (scalar or tensor) quantity is zero across the transition layer, then 
that quantity is approximately constant in space and time for all points along a direct 
path through the transition laye r. COURANT and FRIEDRICHS' (1948) conclusions result 
from their demonstration that entropy changes across shocks can be disregarded for 
all but the strongest shocks. DR UGAN and SHEN (1990) argued that similar conclusions 
a re sensible for elastic - plastic so lids because (W ALLACE, 1980) entropy changes across 
shocks in such materia ls can be sensibly neglected for a significant range of shock 
strengths. 

Recall that pe 2 is an approximation to pCCo, and so may be treated as constant in 
the transition layer. Hence, thejump equations (2.7) and (2.8) may be written in the 
following incremental form s that constrain stress and deformation paths experienced 
by a particle during shock passage: 

n . d(1 = - pc dv, (2 . 11 ) 

I I 
de = ) sym (n dT) =i 0 : d(1. 

pc- pc-
(2.12) 

Importantly. these increments apply not only spatia lly, but also as increments fol
lowing a material particle through the shock; hence. the increments ds and d(1 are 
further constrained by the constitutive law. 
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3. DISCONTINUITY RESTRICTIONS FOR A GENERAL CLASS OF NON-CLASSICAL 

MATERIALS 

303 

3.1. NOI1-{1ssociatirc COl1stitutirc formulation 

Assuming small displacement gradients. the total strain increment may be additively 
decomposed into elastic and plastic parts: 

(3.1) 

The yield surface is defined as the boundary in six-dimensional symmetric tensor space 
of the set of stresses achievable from the current stress (fA via a reversible deformation 
path. The yield surface depends. in generaL 011 the currently applied stress (fA and on 
the plastic strain A yield function <D is defined according to: 

{ :~ 
>0 

for all (f within the yield surface 

for all (f on the yield surface 

for all other (f 

where the 'XIS represent parameters that depend on the plastic strain history. The 
elastic stress set is assumed convex; i.e. 

(a aO):m ~ 0 for all a and aU satisfying <D(a) = 0 and <D(uD) ~ 0, (3.3) 

where m is the outward unit normal to the yield surface at a or. if (f is at a vertex. m 
is any member ofthe cone oflimiting normals. As HILL (1968) has observed. convexity 
of the yield surface seems to be implied many sets of experimental data and. to 
our no data have otherwise. 

Yield surface vertices, pressure and 
strain increments to the yield surface have been observed 

or and they have been used 
such as flow localization. To account 

STOREN and RICE (I the 
strain increment non-normal to the yield surface. 

strain increment can be decomposed into 
to the yield surface: 

normal and 

(3.4) 

of the strain increment in the direction of the unit 
relevant member of the cone of to the surt~lCC 

and dept is the to the 
written so as a 

notational convenience. 
For 

For materials. 
m: f:y[j I :du = 

theorem for functions 

of 
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and arbitrary direction of non-normality of the plastic strain increment. Although in 
general M I might be homogeneous of degree zero in stress increment and arbitrarily 
dependent on stress. plastic strain history. or any other relevant parameters. we will 
assume M I is constant within the shock transition layer; i.e. [M IT ::::: @. This assump
tion is motivated by a similar assumption in the specific How law to be analyzed in 
Section 3.3. 

We assume d'/ ~ 0 (i.e. the plastic strain increment is directed to the outside of the 
yield surface); in some circumstances (such as in the example of Section 3.3). an 
assumption of non-negative plastic work rate can be used to prore d;' ~ O. Because 
dO' and der are symmetric. M I may be assumed (without loss in generality) to be 
range- and domain-symmetric; i.e. 

(fMllLils = (M I)ii" = (fMll)!i'" 

We will also assume that fMll is self-adjoint; i.e. 

(MI)i/n = (fMlJl"I/' 

(3.6) 

(3.7) 

Assuming the elastic part of the response is linear. the flow rule for the Iota! strain 
increment is: 

de = M*: dO'+d;:m. (3.8) 

where fMl* == M I + fMl. and fMl is the elastic compliance tensor. Incidentally, this flow 
law provides a counter-example showing that normality (or the lack of it) cannot be 
ascertained simply by inspecting the form of the total strain increment flow law 
because. we note, the flow law (3.8) is mathematically identical to conventional 
(associative) plasticity flow laws--a key difference is that the "pseudo-compliance" 
fMl* need not be positive definite. We will now exploit this fact to demonstrate that a 
moving surface of discontinuity in stress is severely restricted whenever M * is positive 
definite. ruling out. in some instances, the very existence of such a surface and. in 
other instances, bounding the magnitude of the stress jump. 

Recalling the assumption that dr' ~ O. the statement of convexity (3.3) may be 
combined with the flow rule (3.8) to give 

(0' - 0'0) : (de - fMl * : dO') ~ O. (3.9) 

3.2. Discontinuity analysis 

Using the jump equation (2.12). the convexity inequality (3.9) may be written within 
the shock transition layer as 

- (0' - 0'0) : (M* - I,) ilJ): dO' ~ O. 
pc 

(3.10) 

Generalizing the key idea of DRUGAN and RICE (1984). we integrate this convexity 
inequality at a material part ide as the shock passes 

(3.11 ) 
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By choosing a" to be constant in the shock and recalling that M* is assumed to be 
constant throughout the passage of the shock. the integral (3.11) may be evaluated 
explicitly to yield 

(3.12) 

This result holds for small displacement gradient deformations so long as the chosen 
aO remains on or within the yield surface throughout passage of the shock and the 
jump of M* is negligible. The tlow law (3.8) permits any direction of plastic strain 
increment; however. as will be discussed later. when the plastic strain increment has 
an isotropic component. the clastic moduli (and. therefore. possibly '\y~*) cannot in 
general be reasonably assumed to be constant. 

There are now laws currently used in the literature for which M* may be safely 
assumed to be constant. For example, NEMAT-NASSER and OGATA (1990) use such a 
flow la\v in their analysis of steady-state dynamic crack growth (in Section 3.3. their 
flow law will be used to illustrate the results of this section). As pointed out by 
NEEDLEMAN and RICE (1978). the difference in yield points in compression and tension 
observed by SPITZIG cf al. (1975) may be modeled as a non-normality to a pressure 
sensitive yield surface, and, according to Spitzig's observations, the plastic strain 
increment remains nearly deviatoric with negligible dependence of the elastic moduli 
on plastic straining. Thus. the assumption that M* is constant seems reasonable in 
this case. 

Spccl/ic choices j()r an. Any choice for (I" is restricted by the requirement that (I0 be 
within or on the yield surface for all states throughout the shock transition zone. If 
aO = 0 is admissible in this sense, (3.12) gives 

r (I: (M* - 10 I[]i); (I] ~ o. l pc 
(3.13) 

Incidentally, for classical associative plasticity, the choice (In = 0 would correspond 
to enforcement of non-negative plastic work rate and so would be an admissible 
choice even if 0 were not in or on the yield surface. 

If the choice an = a is admissible, (3.12) gives, upon rearrangement, 

(3.14) 

or, using the identity (2.10), 

:M*: (3.15) 

If the choice aO = (J i is admissible, 12) gives 

:M*; (3.16) 

As noted by DRUGAN and RICE (1984), the choice (In = (I~ is admissible for any 
material having the property that its current yield locus at any stage in a deformation 
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incorporates all prior yield loci. This material class thus includes elastic- plastic 
behavior characterized by no ha rdening (i.e. ideal plastici ty) , isotropic hardening and 
ma ny types of anisotropic hardening, including many cases of yield surface vertex 
formation. Similarly, the choice a O = a is admissible for non-hardening materials o r 
for materials that have commenced isotropic softening by the time the shock front 
arrives. 

For some materials (including but not limited to no n-ha rdening materials) the 
choices a " = a i-- and a U = a ' are hOlh admissible, in which case (3 .15) and (3. 16) 
imply 

(3.17) 

TIl(' .Ipecial case of COl1lillllOUS strain or quasi-static de/ormation. For continuous 
stra in problems, l == 0, a nd for quasi-static problems. pl ~ O. In either case, (3.16) 
becomes 

(3.18) 

which (recall) holds provided the choice a" = a + is admiss ible. This inequality is exact 
for continuous strain deformations and an approximation for quasi-s tatic defo r
mations. 

The inequality (3.18) immediately shows that a st ress jump is impossible whenever 
MJ* is positive definite. Thus, recalling (3 .5) , a necessary condition for the existence 0/ 
a stressjump is that the amount ()j'non-nomzaIiIY he suificiel1t~)' large that components 
of MJ I become sufficiently negative so that (when added to the positive-definite elastic 
compliance tensor MJ) the pseudo compliance MJ* is non-positive definite. Conse
q uen tly. the prCl'ious results OJ'DRUGAN and RICE (1984) and DRUGAN and SHEN 
(1987) are m/idfor afinite range o/general Ilon-norma!it)i. 

It may be that MJ * is positive definite only with respect to some suh.lj){lce of the 
symmetric tenso rs. in which case the above conclusio ns may be generalized as follows: 
suppose that MJ * has the propert y MJ * = 1P'c! : MJ * : IP' ,; for some fourth-order pro
jection operator IP' .I onto some specific linear tensor ma nifold 4 . Then the inequa lity 
(3. 18) implies the following stronger existence condition for movi ng discontinui ties 
in stress with continuo us stra in a nd/or quasi-static deform ations : 

[lP'c/: a] = 0 if MJ* is positive definite with respect to .0/. (3.19a) 

which holds provided (he cho ice aO = at is admissible. By "positil'e definite with 
respect to .rf:' we mean A: MJ* : A > 0 for all non-zero tensors A in the manifold .rd. 

Similarly. if the choice (10 = (1 is admissible. then 

[ IP' ,/ : a] = 0 if MJ * is negati ve definite with respec t to .4 . (3 . 19b) 

I f the choices a " = (1 ~ and (1" = (1 a re hoth admissible, then 

[ IP' ,; :a] = 0 if fW1J * is definite with respect to .d. (3.19c) 

Eq uations (3.19) are the main results of this section. We will now analyze a specific 
flo w law for incompressible plane-strain deformations to illustrate how (3.19) can be 
used to rule out stress jumps a ltogether. 
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3.3. An illustratire example 

Recently. NEMAT-NASSER and OBATA (1990) proposed a solution for the stress field 
near the tip of a steadily growing crack in a non-associative. fully incompressible 
elastic~plastic material for dynamic, plane-strain. small displacement gradient defor
mations. They claim that the presence of even an infinitesimal amount of non
normality leads to stress~-hut not strain--jump discontinuities, which has been 
proved impossible by DRUGAN and SHEN (1987) and LEIGHTON et al. (1987) whenever 
normality is assumed from the outset. Nemat-Nasser and Obata suggest that "the 
near-field solution when the normality rule is imposed at the outset. is an isolated 
solution which cannot be obtained as a limiting case of the solutions with the yield 
surface tangential component of the plastic strain rate tending to zero." We now use 
the results of the previous section to demonstrate that discontinuities of the type 
described by Nemat-Nasser and Obata are possible only for a sufficiently large 
deviation from normality. An infinitesimal amount of non-normality will not produce 
the continuous strain with discontinuous stress field that they offer in their solution 
to the growing crack problem. 

In the following analysis. we use precisely the same flow law and assumptions as 
were used by NEMAT-NASSER and OBATA (1990) [OL for the hardening case, by HORI 
and NEMAT-NASSER (1989)]. The material is assumed to satisfy the Huber Mises yield 
criterion 

s:s= (3.20) 

where S is the deviatoric stress tensor, and k is the stress in pure shear. This 
yield surface (being a circular cylinder in six-dimensional tensor is 
convex. The normal to the yield surface is coaxial with S. For a non-hardening 
material, k is constant and the yield surface remains fixed in stress space. For an 
isotropically work hardening material (assuming a non-negative plastic work k 
increases with plastic deformation. In either case, a twill -- as required for application 
of (3.19a, c)---remain on or within the yield surface as a panicle passes through a 
shock. 

Nemat-Nasser and Obata use rate instead of incremental forms of the constitutive 
laws. so we will follow their conventions in this section. They consider a plastic strain 
rate of the form 

(3.21 ) 

where ;'1 and ;, are scalars, with ;,dk assumed constant, and superimposed dot 
denotes the material time derivative. For a material, continued 
satisfaction of (3.20) requires that S: S = O. For an work hardening 
materiaL k increases with plastic deformation, but HORl and NEMAT-NASSER I 
imply that, to leading order as the crack tip is S: S ::::: 0 their 
3.12) and that the plastic strain rate is ); furthermore, 
plotting their results for a value of their modified Mach number 
on I. assume that ;. 

for the purpose of contradiction. we conclude that for both 
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and hardening materials, the second term in (3.21) is orthogonal to S and, therefore, 
represents the tangential component of the plastic strain rate (at least to leading order 
for the hardening material). Furthermore, because S: 51 = 0, an assumption of non
negative plastic work rate guarantees that i ;?o 0. 

Assuming elastic as well as plastic incompressibility, Nemat-Nasser and Obata find 
that the flow rule for the total strain rate is 

where 

and £ is Young's modulus. 

3 . 
Ii = 2£* S+;.s, 

I 21.\ 
£* £+ 3k' 

(3.22) 

(3.23) 

This simple material model is a special case of the general model studied in the 
preceding section. Comparing (3.22) with (3.8), we identify 

S 
m= 

JS:S 
S 

J2k 

(
).\ 3 ) 

Ml* = k +2£ [D" 

(3.24) 

(3.25) 

(3.26) 

where [D, is the fourth-order orthogonal projection operator from nine-dimensional 
tensor space to the linear manifold, ,rd, of symmetric deviatoric tensors; i.e. for any 
second-order tensor A, 

[D,: A = sym A -l(tr A)I. (3.27) 

In component form, 

(3.28) 

Observe that 

(3.29) 

and, because [D, is a projection operator, the premises for application of (3.19) are 
satisfied. 

Using (3.26), we see that for any non-zero, symmetric, deviatoric, second-order 
tensor A, 

Applying (3.19a), we conclude 

2 

3k 
2£' 

(3.30) 
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. = 0 if /1 > 

and, applying (3.19c) for the non-hardening case. 

3k 

2£' 
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la) 

(3.3Ib) 

To this point, we have no information about a jump in pressure. However, (2.8) 
shows that continuous strain requires continuous traction. which in turn implies that 
a jump in pressure is necessarily accompanied by a jump in deviatoric stress. Hence, 

(3.32) 

Observe that not only must ;'1 be negative for a stress jump to occur. it must be 
sufficiently negative and, for the non-hardening materiaL it must be idel1lically equal 
to - 3k/2E. An infinitesimal amount of non-normality will not permit stress jumps 
with continuous strain in the growing crack stress field. 

Small, but not infinitesimal, amounts of non-normality may affect the solution to 
field equations. Consider, for example, the now law (3.21) when ;'1 is at its critical 
negative value, 31</2£: 

3 S 
2£ 

(3.33) 

The tangential term is of the order of the stress rate divided by elastic modulus and 
may, therefore, be neglected except in regions of high stress rates (such as shock 
transition zones). 

4. IMPROVED SPECTRAL SHOCK WAVE ANALYSIS ApPLIED TO NON-CLASSICAL 

MATERIALS 

In this section we perform a more conventional shock wave eigenvalue analysis on 
an extremely general class oCnon-conventional rate-independent material models that 
pcrmit non-normality of the plastic strain increment to the yield surCace. plastic 
compressibility, elastic anisotropy and coupling phenomena such as dependence of 
the elastic moduli on previous plastic deformation. 

The shock wave speeds and direction of the jump in traction are determined by an 
eigen-problem mathematically identical to the acceleration wave eigen-problem. By 
employing a very useful tensor identity, we present a complete solution that exhibits 
an appealing, lucid structure. In the case of elastic isotropy, we derive closed-form 
solutions for the plastic eigenvalues and eigenvectors in terms of only tirO key scalars 
which are coefficients in the characteristic polynomial and are easily calculated from 
the tangent stiffness tensor. It is known that, for elastic isotropy, at least one of the 
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three plastic eigenvalues always equals the elastic shear eigenvalue, while the other 
two depend on the state in the transition layer. We show that at least one of these 
"state-dependenf' plastic eigenvalues can equal an elastic eigenvalue if and only if 
one of the two key scalars vanishes. Simple necessary and sufficient conditions for the 
existence of zero or complex-conjugate eigenvalues are derived, and these conditions 
depend only on the two key scalars. By plotting the two key scalars against each 
other, we illustrate the locus of points that correspond to double roots, negative roots 
and lines of constant eigenvalue. This figure also illustrates specific ranges of the 
two key scalars that will result in any given ordering of the state-dependent plastic 
eigenvalues with respect to the elastic eigenvalues. Finally, we derive the complete set 
of eigenvectors associated with any given eigenvalue, showing that the eigenvector 
associated with a non-elastic eigenvalue has a very simple structure in terms of the 
elastic eigen-system. 

Novel features (to our knowledge) of the analysis include the generality of the 
constitutive class analyzed, the lucidity and completeness of the solution, and the 
expression of the isotropic material results in terms of only two scalars with an 
associated graphical classification of the eigenvalues. 

4.1. War(' propagatiofl ('igcfl-prohlcf/1 ./f)r a general class oj" arbitrarily anisotropic 
elasticplastic./tow Imrs 

The constitutive law considered in this section is more general than the one employed 
in Section 3. The stress increment dO' is regarded as a function of the strain increment 
dz, stress 0' and various other parameters {y \, (X2, ••. ,IX,,} such as temperature and 
hardening moduli. The material is assumed to be rate independent; that is, for any 
scalar s. 

dO'(O', s dz, (X \, ••• ,IXn) = S dO'(O', dz, (X \' ••• ,IXn). (4.1 ) 

By Euler's theorem for homogeneous functions, there exists a fourth-order tensor ~ 
such that 

where 

dO' = ~: dz, 

D(d(J) ij 

D(dC:)k/' 

(4.2) 

(4.3) 

According to Euler's theorem, the fourth-order tensor ~ could in general be homo
geneous of degree zero in dz. We will assume that ~ is il1d('p('ndent of dz, but otherwise 
arbitrarily dependent on strain, plastic strain history, or any other relevant parameters. 
To our knowledge, most rate-independent flow laws currently in use satisfy this 
assumption. Because dO' and dz are symmetric, ~ is necessarily range-symmetric and, 
without loss in generality, domain-symmetric; i.e. 

~ijllll1 == (jilnn == ~iinlll. (4.4) 

$ : hi Pi J $ 
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Hovvever. ~ is not necessarily self-adjoint (that is, in general #- Physical 
mechanisms such as internal friction or the nucleation of microvoids can result in a 
non-associative (non-normal) plastic flow law. Implicitly neglecting coupling effects, 
HILL (1968) proved that ~ will be self-adjoint if the plastic strain rate is normal to the 
yield surface in tensor space, where Hill defines the yield surface as the boundary of 
the set of stresses achievable from the current stress state via an elastic strain. However, 
as demonstrated in Section 5. such normality does not imply self-adjointness of ~ if 
one allows coupling effects such as dependence of the elastic moduli on plastic strain
ing. Hence, an associatice plastic/low law is not necessarilv selFadjoint. and rice l'erS(1. 

Using the jump equation (2.12), the flow law (4.2) becomes 

dO' = , . n) . dT. 
pc 

Dotting both sides of this equation by n leads to the well-known eigen-problem 

(A xI)'w = 0, 

where 
, 

x=pe. 

A = n'~'n 

(4,5) 

(4.6) 

(4.7) 

(4.8) 

and the eigenvector w is parallel to the traction increment dT. Once the eigenvector 
for the traction increment is found, the associated directions for the stress and strain 
increments are obtained from (4.5) and (2.12), respectively. 

The second-order tensor A in (4.8) is the same as the so-called plastic acoustic 
tensor from plane and acceleration wave analysis except that A depends on the stress 
and plastic strain states within the shock transition layer. Similar eigen-problems for 
the wave speeds are reviewed for more specialized constitutive laws by TING (1976). 

The wave speeds are guaranteed to be real if ~ is self-adjoint (i.e. if = ~mnij)' 

However, there are important flow laws in the literature for which ~ is not self-adjoint. 
Specifically. we are interested in flow laws for which the tangent compliance tensor 
~ I is of the form 

(4.9) 

where M is the fourth-order, self-adjoint, positive-definite, instantaneous elastic com
pliance tensor, h is a scalar, P and Q are symmetric second-order tensors, and PQ is 
a tensor-tensor dyad [i.e. in Cartesian components, (PQ)ijmn = PijQmn]' The elastic 
compliance tensor M is arbitrarily anisotropic, and the elastic moduli may permissibly 
change with plastic strain. The second term in (4.9) characterizes the non-recoverable 
part of the material response, but no precise physical meaning of h, P or Q is invoked 
in the upcoming analysis (except in examples). 

NEEDLEMAN and RICE (1978) point out that the plastic compliance tensor (4.9) has 
applications to metal plasticity, modeling, for example, the difference in compressive 
and tensile yield strengths observed by SPITZIG and RICHMOND (1984) for high strength 
steels, as well as void nucleation in metals. These models are usually used in con-
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junction with pressure sensitive yield criteria such as that of GURSO~ (1977). The flow 
law (4.9) even includes some modern theories (e.g. PASTOR et al .. 1990) that do not 
employ the concept of a yield surface. 

Because fMl is self-adjoint. G; is self-adjoint if and only if P is coaxial with Q (i.e. 
if P = Y.Q, where Y. is a scalar). For some constitutive models, P and Q are coaxial 
with the normals to the plastic potential and yield surface respectively; for these 
models, associativity of the plastic flow law is eq uivalent to self-adjointness of G;. 
However, for many other important materials (such as the coupled material discussed 
in Section 5), P and Q have different physical interpretations; hence, for these models, 
associativity of the plastic flow law is /lot necessarily equivalent to self-adjointness of G;. 

Inverting (4.9), the tangent stifl'ness tensor G; is 

(IE: P)(Q: IE) 
G; = IE- h+Q:IE:P' (4.10) 

where IE is the fourth-order elastic stiffness tensor (i.e. IE == fMl I). The general form 
(4.10) is well defined even if the inverse G; I docs not exist (i.e. if II = 0). 

Applying the definition (4.8), the plastic acoustic tensor A may be written 

I 
A = A C

_ pq, 
f/ 

where pq is a vector-vector dyad, and 

A C == n-lE-n 

1/ == II + Q : IE : P 

p==n-IE:P 

q == Q: IE - n. 

(4.11 ) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

The elastic acoustic tensor AC is independent of the stress state within the shock 
transition layer, but will depend on the plastic strain whenever the elastic moduli 
change with plastic strain. In general 1/, p and q depend on both the plastic strain 
history and the stress state within the transition layer. The scalar denominator 1/ is 
usually positive; for the specific flow law discussed in Section 4.6, h would have to be 
negative and of the order of elastic moduli in order to make 1/ vanish. 

In the case of elastic isotropy, a non-symmetric acoustic tensor like (4.11) has been 
studied in the pioneering work of MANDEL (1963) and. more recently, by LORFT 1.'1 

al. (199 L 1990) and OTTOSEN and RUNESSON (1991). The form (4.11) for the plastic 
acoustic tensor A is mathematically identical to a tensor studied by TING (1976). 
However. Ting's tensor corresponds to classical plastici!}' (P = Q) with /lOll-classical 
elasticity (MUrs #- Mrsi). the latter being at variance with classical thermodynamics. 
We assume self-adjoint elasticity. 

4.2. Compact closed form solution fClr the wac I.' speeds 

A closed form solution for the eigenvalues may be readily obtained by noting that 
for any second-order tensor B and vectors u and v, 
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det (B + uv) = det B + u . Be . v, (4.16) 

where Be is the cofactor. or "adjugate", tensor ofB (i.e. the signed subminors tensor). 
This identity. which is also known as the Sherman-Morrison formula. follows immedi
ately from the invariant definitions of determinant. trace. and cofactor (e.g. 
CHADWICK, 1976). Applying (4.16) to (4.6) using (4.11) shows that the eigenvalues 
are the solutions to 

I . 
det(A"-xI)- p'(A" xl)"·q=O. 

'1 
(4.17) 

Given the self-adjointness and positive definiteness of the elastie stiffness tensor IE. the 
clastic acoustic tensor A" will be symmetric and positive definite and will. therefore. 
have positive eigenvalues and be diagonal in its principal basis. which may be deter
mined a priori. By writing (4.17) in terms of the principal basis of N. one immediately 
obtains the characteristic polynomial for the eigenvalues: 

(x x~)(x-x~)(x Xel)+OI(X-X~)(x X~)+()2C, x~)(x 

+ ()3(.' 

where 

I 
0 1 = (15\ ·p)(q·15~). etc .• 

'7 

)(x-x3) = O. (4.18) 

(4.19) 

and x~ and (j~ are the clastic eigenvalues and normalized eigenvectors, respectively. 
Note that in the limit as 11-+ x, we recover the three elastic eigenvalues. The charac
teristic polynomial (4.18) holds for arbitrary plastic and elastic anisotropy and seems 
to have greater generality and a more compact and lucid form than previous results 
(cL LORET et aI., 1990; OTTOSEN and RUNESSON. 1991). Equation (4.18) is similar to 
expressions by MANDEL (1962) and TING (1976) except that these authors consider 
classical associative flow rules. and Mandel assumed proportional stressing across the 
shock. 

Specialization when the clastic part oj'tlze response is isotropic. We now consider 
the case that the elastic part of the response is both linear and isotropic (and remains 
so even after plastic deformation. though plastic strain is permitted to affect the 
moduli) ; then 

( 4.20) 

where G and i, are the Lame moduli. The corresponding clastic eigen-system is 

x~ = 2G+/" = G. (j~ = n. (4.21 ) 

with the remaining eigenvectors, (j~ and (j~. being any two perpendicular vectors in 
the discontinuity surface. To emphasize the structure of the solution to the eigen
problem. we define 

== 2G+i,. (4.22a) 
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x~ == G. (4.22b) 

(4.23a) 

I 
0, == (Peqc +P3q,) = . p, ·qt. 

'7 '7 
(4.23b) 

The subscript "n" stands for the normal projection component (e.g. Pn == p' n) and 
the subscript "'tOO stands for the tangential projection vector (e.g. Pt == p-Pnn). We 
will now show that the complete spectral solution depends on the values of On and Ot 
as summarized in Table I. 

Using the above definitions in (4.20) and (4.11). the original eigen-problem (4.6) 
becomes 

[(X-X~)I -(x~ - x~)nn+ ,~ pqJ. w = O. ( 4.24) 

and the characteristic polynomial becomes 

(x - x~)[(x-x~)(x-xD+On(x-xn+f),(x - x~)] = 0, (4.25) 

which has a structure similar to the general polynomial (4.18). 
Note that whenever there is elastic isotropy, one plastic wave speed is a!ll'ays the 

elastic shear wave speed. The quadratic formula gives the remaining two "'state
dependent" eigenvalues: 

x = }[(x~ +x~) - (en +0,)] ± l)(O" +()J2-2(On - O,)(x~ - .~~) + (x~ _X~)2. 

( 4.26) 

OTTOSEN and RUNESSON (1991) recently presented an exact solution for acceleration 
wave speeds in elastic -plastic materials with isotropic elastic response. Their solution 

TABLE I. Complete spectral solution 

IT" Eigen-pairs 

o o x~ (4.43) x~ (4.43) 
- --f·- t----------.-\------ ... - -

, 
-\n (4.47) 

o 1 x~ (4.42) x~ (4.42) X~ (4.42) 
o =I I, 0 x~ (4.43) x~ (4.43) Xn -On (4.41) 

-I 
=I -1,0 

o 
o 

- --"-. -- -- -- . __ . 

X~ (4.45) 
X~ (4.45) 

X~ (4.46) x~ 
x~ (4.47) x~ - Ot 

(4.46) 
(4.4 I) 

-- ... -.- ... f---..... --.... -t--- .. --

=10 x~ (4.45) NE (4.41) NE (4.41) 
-----. --'-- ._--,-

The over-bar denotes division by G+i" In parentheses is the equation 
number for the eigenvector, and "NE" means the eigenvalue [given by 
(4.26)] is not equal to an elastic eigenvalue. The last two columns correspond 
to the "state-dependent" eigenvalues. 
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(derived using a less direct method) is consistent with ours, but has a less compact 
and transparent structure and might, therefore, be less convenient for general appli
cations. The solution (4.26) may also be applied to the multi-phase material with 
incompressible constituents of LORET and HARIRECHE (1991) if x~ and On are replaced 
by and On; ,respectively, where r is defined in their equation (6.8). 

NOf1-dimcnsionuli::atiofl olthc eigen-prohlcm Jt'ith elastic isotropy. Specific properties 
of the eigenvalues (such as their numerical sign and ordering relative to the elastic 
eigenvalues) are most easily derived by using a non-dimensionalized version of the 
eigen-problem. For any scalar or arbitrary order tensor Z, define an over-bar by 

Z 
(4.27) 

From (4.22), 

G 2G+;, 
.,,~= .=1-2v and .,,~= . =2(1-1'), 

G+A G+A 
(4.28) 

where v is Poisson's ratio. The eigen-problem (4.24) takes the following non
dimensional form: 

(4.29) 

and, from (4.26), the solution for the non-dimensionalized eigenvalues is 

(4.30) 

Noting that .,,~ .Y~ = I, we see that.Y .Yf and .i- are each pure functions of (ft 
and On' which will be later exploited to deduce the ordering of the plastic eigenvalues 
with respect to the elastic eigenvalues. 

Properties ol the eigenca/ucs. The eigenvalues are real only if the discriminant in 
(4.30) is non-negative. Figure I illustrates the (tilted) parabola for which the dis
criminant vanishes. A sufficient condition for real eigenvalues is On :s; 0 and/or Ot ~ 0, 
or, equivalently, 

(4.31 ) 

Recall that if P and Q are known, then fJn and Ot are known. When the elastic part 
of the response is isotropic, (4.14) and (4.15) give 

and (4.13) gives 

p = 2Gn' P+ I.n tr P = 2Gn' p d + Kn tf P, 

q = 2Gn·Q+;.n tf Q = 2Gn .Qd+Kn tf Q, 

(4.32a) 

(4.32b) 

(4.32c) 

where K is the bulk modulus, "tr" denotes the trace, and a superscript "d" denotes 
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two negative real 
eigenvalues ~ ~ -e 

~ "-. n 

one positive 
real eigenvalue 
& one negative 
real eigenvalue 

~~~------------~~ 
-1 

two positive 
real eigenvalues 

x;' 

FIG. I. State-dependent eigenvalues for clastic isotropy. Points on Ih" parahola correspond to a vanishing 
discriminant in (4.30) and. therefore. to douhle roots. The slanted linc tangent to the parahola corresponds 

to the situations in whieh at least one eigenvalue is zero. 

the deviatoric part. Thus, using an orthonormal basis having the I-direction aligned 
with n, 

I 
On = (2GP':] + K tr P)(2GQ'L + K tr Q), 

11 

4G
2 

oJ d d d 01 = (r]2Q]2+ P ],Q],). 
/1 

(4.33a) 

(4.33b) 

When the constitutive law is self-adjoint (i.e. when P is coaxial with Q), both 01 

and On will have the same sign and, referring to Fig. I, the eigenvalues will be real (as 
expected). Observe that 01 = 0 whenever n is a principal direction of either P or Q, 
which confirms a weaker sufficient condition by OTTOSEN and RUNESSON (1991) given 
in their Table I. Whenever /7 > 0 and the second-order tensors P and Q share the 
same deviatoric part, (4.33b) shows that 01 ~ 0, thereby guaranteeing real eigenvalues 
(see Fig. I), which was also noted for single phase materials by LORET et af. (1990). 
This result is in agreement with the stronger result by OTTOSEN and RUNESSON (1991) 
that (in the present notation) 01 ~ 0 whenever 17 > 0 and P and Q share both the same 
principal directions and the same ordering of the eigenvalues. 

For the multi-phase material with incompressible constituents discussed by LORET 
and HARIRECHE (1991), recall that the eigenvalue solution may be obtained by replac
ing x~ and en by x~/r and On/I', respectively. If r is large enough, the denominator in 
the normalization equation (4.27) could be negative, thereby placing the complex 
parabola in thef(JUrth instead of the second quadrant in Fig. I, and (II ~ 0 would be 
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insufficient to rule o ut co mplex eigenvalues. The inequality guaranteeing a non
negative normali zation fact or can readily be shown to be equivalen t to the inequality 
r? ° derived by LORET and H ARIRECHE (1991) , where r is defined in their equation 
(6.17). In the remainder of the present a nalysis. we will be concerned with a single 
constituent so that the complex parabola will a lways be in the second quadrant as 
illustrated in Fig. 1. 

The critical conditio n for loca lizatio n to occur in a ho mogeneous. uniformly 
deformed body is kno wn to correspond to the vani shing of a wave speed [e.g. MA NDEL 

(1964) and RICE (1976)]. From (4.25), at least one eigenva lue will be zero if a nd 
only if 

(4.34) 

which is a straight line in th e ()n vs (T, plane. Figure I divides the real eigenva lue region 
acco rding to the sign of the state-dependent eigenvalues. The line tangent to the 
parabola describes the set of (it ()n) values fo r which at least one eigenvalue is zero, 
with two zero eigenva lues being possible only at the point of tangency . 

The ordering of the eigenval ues with respect to the elastic eigenvalues may be 
determined by rega rding the characteristic polynomial (4 .25) as a functio n of On and 
0, with x fi xed. I t is straightforward to show tha t lines of constant eigenvalue a re 
straight lines tangent to the complex parabola . As illustrated in Fig. 2. each point in 
the interior of the real eigenvalue region is in tersected by two such lines , one for each 
state-dependen t eigenvalue. Any line tangent to the complex parabola at the part 
marked "x < x;" is a line o f co nstant eigen va lue of magnitude less than the elas tic 
shear eigenvalue and , similarly, any line tangent to the part marked "x > x~," cor
respo nds to an eigen value greater than the elas tic longitudinal eigenvalue. Any line 
tangent to the part o f the parabola between the points (0 , I) and (- J. 0) has an 

complex '\ eigefl ualues 
B 

x; x~ 
A 

B 

~ /f C 

D 

D C 
E 

F 

FIG. 2. Eigenvalue o rdering for elastic isot ropy . Li nes of constant eigenvalue a rc tangent to the parabo la. 
The number lines a t the ri ght show the orderin g of the plastic eigenva lues relative to the clastic eigenvalues 
(at least one eigcnva luc a lways equa ls the clastic shear eigenva lue ). Assuming f/ > 0, a ll self-adjo int 
constitutive laws wi ll lie in regio n B. and constitutive laws for which the devia tors of P and Q arc equal 

will lie in regions Band C. 

.... tii! IIB':rt5J' ME . .& LiEbl WW £W t.1I Ai # 
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eigenvalue x satisfying xf < x < The ordering of the eigenvalues relative to the 
elastic eigenvalues is illustrated by the number lines in Fig. 2. Our ordering for 
classical self-adjoint constitutive laws (region B in Fig. 2) agrees with that derived by 
MANDEL (1962). Non-self-adjoint constitutive laws will in general have different 
ordering. Our ordering for deviatoric associativity (regions Band C in Fig. 2) agrees 
with that reported LORET et al. (1990). 

COl1diTiOlls a plaSTic e(qelll'a/ue to equal WI elastic eigenraluc. Determination of 
eigenvectors depends on whether the plastic eigenvalue is equal to an clastic eigenvalue. 
and. ifit is. on its algebraic mUltiplicity. Whenever (Yn and (Y, are both non-Lero. neither 
of the state-dependent eigemalues given by (4.26) will equal an elastic eigenvalue. 
Otherwise. at least one of the state-dependent eigenvalues will equal an elastic eigen
value as outlined below. 

(I) At least one state-dependent plastic eigenvalue will equal the clastic longitudinal 
eigenvalue if and only if On O. in which case the state-dependent eigenvalues arc 
given by 

.\' {.(~ {2(1 -\') 

.(~-(Y, (l-2\')-{},' 
( 4.35) 

The algebraic multiplicity of is t\t'O at the point ( - I. 0) in Fig. I. and lInifY elsewhere 
on the On 0 axis (see the first. fourth and flfth rows in Table I). 

(2) At least one state-dependent plastic eigenvalue will equal the clastic tangential 
eigenvalue x¥ if and only if 0, = O. in which case the state-dependent eigenvalues arc 
given by 

(4.36) 

The algebraic multiplicity of x~ is three at the point (0. I) in Fig. 1. and liI'o elsewhere 
on the 0, 0 axis (see the first, second and third rows in Table I). As mentioned 
earlier. a sufficient (but not necessary) condition for 0, = 0 is that n be a principal 
direction of either P or Q. 

4.3. Ezqenl'ectors-arbitrary clastic anisotropy 

To find the eigenvectors. we return to the original eigen-problem (4.6). which, using 
(4.11). we rewrite as 

I 
(xI-AC),w+ p(q'w) =0. 

'1 
(4.37) 

In terms of the elastic principal basis. this equation may be decomposed into the 
following system: 

(4.38a) 
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(x- (4.38b) 

(x- (4.38c) 

Thus, the eigenvector associated with a !loll-elastic eigenvalue is 

where Pi is the projection of P onto the ith clastic eigenvector, and 7. is an arbitrary 
scalar (chosen to normalize w if so desired). Although the constitutive tensor Q does 
not appear explicitly, it does affect the plastic eigenvalue x. The geometric multiplicity 
of a non-elastic eigenvalue (i.e. the number of associated eigenvectors) is always unity, 
even if the algebraic multiplicity is greater than unity. 

The solution to (4.38) complicates considerably whenever the eigenvalue is equal 
to an clastic eigenvalue. For example. if x . satisfaction of (4.38a) depends on 
whether or not p 1 is zero, and for each of these cases, the solution further depends on 
whether or equals and on the algebraic multiplicity of the eigenvalue x. Each 
of these possible sub-cases will now be analyzed for the simpler case that the elastic 
part of the response is isotropic. 

4.4. Eigclll'cctors . clastic isotropy 

When the elastic part of the clastic plastic response is isotropic and linear, the 
_n,-"r"p,rY) (4.29) may be written as the following system: 

(4.40a) 

(4.40b) 

where the "n" stands for the normal projection component (e.g. Pn n' p) 
and "C stands for the tangential projection vector PI == P 

The associated with a /lon-elastic 
the case of elastic isotropy as 

where Pn and Pl are the projections of p normal to and tangent to the jump surface. 
respectively, and 7. is an arbitrary scalar. 



and . J. 

Pi~ 

On 0,' 

11 

non-clastic. 
on the nature 

That is, the 
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(4.44) 

If the Ottosen Runesson conditions hold, only the upper left solution in IS 

possible. 
If x with an algebraic multiplicity of three rows in Table I). the 

only eigenvector is 

where x is an arbitrary scalar. This eigenvector will be perpendicular to the two 
remaining eigenvectors ifpt is coaxial with qt, as is the case with thc specific flow law 
discussed in Section 4.6. 

OTTOSE;--.J and RUl"ESSOl"'S (1991) solutions for the associated with 
x~ arc incomplete. They implicitly assume (except, apparently, when the Ottosen
Runesson conditions hold) that the tangential of p is non-zero. Ottosen 
and Runesson state that the eigenvector associated with x~ must be perpendicular to 
both nand q, which we have shown is correct if thc tangential part of p is 
non-zero (in Ottosen and Runesson, the notations for p and q arc reversed and diller 
by a scalar multiplier). 

NoVv consider the case that x = . It is shown in the Appendix that when the 
multiplicity of is 11I'() (fourth row in Table I). the solution for the 

w depcnds on the normal componcnts of p and q as follows: 

jJn = 0 

Cfn = 0 
Two 

w = xn+ lip 

where x and I) are scalars. 
OttoscnRunesson conditions hold. 

Pn i= 0 

One 
w = :xn 

one of thcse solutions is 

(4.46 ) 

even if the 

When the of is and fifth rows in Table I), the 
solution is 

jJn 0 Pn i= 0 

qn = 0 
One 

w Xl'! 

One 
:xu 

Cfn i= 0 
One 

w 
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where 'l. and {J are arbitrary scalars, and, in the lower-left solution, 

ry _ 
It'n = -fJ ~ .. (I +0,). 

qn 

4.5. Jump restriction implied by Ihe spectral analysis 

(4.48) 

Although the spectral analysis gives no information about the magnitude of the 
stress increment. it does imply a restriction on the evolution of stresses within the 
transition layer for a giZ'el1 wave speed, c*. The stress and flow parameters must vary 
throughout the transition layer in such a way that the eigenvalue x* satisfies the 
characteristic polynomial (4.25) for aery S/(Ile in the transition layer. If x* is flot 
equal to an elastic eigenvalue, then 

Co -n [( -'I 
~ nJ + i )'JI = 0 

x~ -x* x~ -x* 
and ( 4.49) 

throughout the shock; in other words, any shock propagating at a non-elastic wave 
speed will have a state path such that On vs (), is a straight line tangent to the complex 
parabola in Fig. 2. If x* = x~, then On must equal zero throughout the shock. In 
contrast. if x* = x~, the characteristic polynomial is automatically satisfied for all 
points within the shock, thereby leaving the state path unrestricted. 

4.6. Terms in the spectral analysis/or a specificfiow lall' 

The preceding spectral analysis holds for any physical interpretation for the second
order tensors P and Q (so long as they are independent of the strain rate). One of the 
better-known flow laws of the form (4.9) is that of RUDNICKI and RICE (1975), which 
is expressed in the following form by NEEDLEMAN and RICE (1978): 

P == S/2Tc +al/3, 

Q == S/2Tc + h 1/3. 

(4.50a) 

(4.50b) 

Here, a and b are scalars, S is the deviatoric stress tensor, Te is the "equivalent" shear 
stress (i.e. Te == JS: S/2), and I is the identity tensor. The yield surface corresponding 
to (4.50b) is axisymmetric about the one-dimensional linear manifold of isotropic 
second-order tensors. In other words, the yield criterion is the same as the Mises 
criterion except that the flow stress is pressure dependent, as is commonly observed 
for rocks and porous metals. For this specific flow law, the tensor Q is parallel to the 
normal to the yield surface in stress space, and P is parallel to the plastic strain 
increment. Because P has an isotropic component, this material exhibits plastic 
compressibility. 

Assuming elastic isotropy, (4.32) gives 

(4.5Ia) 
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q 
G 

n 'S+Kbn, 
le 

(4.5Ib) 

and 

11 h+G+Kuh. ( 4.52) 

Typically. ab ? 0 and h > - G. and, therefore, /1 > O. The scalars On and 0, are 

(4.53a) 

(4.53b) 

where the components refer to an orthonormal basis with the I-direction parallel to 
n. With '1 > 0, the quantity 0, is non-negative so that constitutive laws with (4.50) will 
always fall in regions B or C of Fig. 2, and. referring to Fig. I, the state-dependent 
eigenvalues will be real, and no more than one can equal zero. Also note that On is of 
first-order in 1(17 + u). but second-order in Hh - a) ; thus. plastic wave speeds for this 
material appear to be an order of magnitude more sensitive to plastic compressibility 
than to plastic non-normality. 

Substituting (4.53) into (4.34) leads immediately to RUDNICKI and RICE'S (1975) 
equation for the critical hardening modulus at localization. Because the model (4.50) 
is intended for porous ma terials, one might obtain a better prediction for the critical 
hardening modulus using the apparent plastic flow direction p* and the apparent 
hardening modulus h* of (5.13). 

5. ELASTIC-PLASTIC COUPLING 

In this section we demonstrate that dependence of the elastic moduli on plastic 
dilatation does not affect the fundamental structure of the non-associative tangent 
eompliance tensor (4.9), so the results of the previous sections may be used for these 
materials. 

If the elastic part of the strain response is linear but ineludes dependence of the 
elastic moduli on plastic straining, the elastic strain increment may be written as the 
sum of a recoverable part and a coupled part. 

deC = M :d(J'+df\y't] :(J', (5.1) 

where M is the instantaneous 
Elastic is 

will discuss it in this context. 
elastic moduli for a 

G 
( 

1-
f,~, \_ 

fourth-order elastic compliance tensor. 
caused the presence of 

ZHAO et al. (l the 
voided material as 

where 
2 

15 
(5.2a) 
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where (5.2b) 

Here, G and K are the shear and bulk moduli respectively, and '/;11 is the volume 
fraction of the matrix. A subscript "m" indicates the matrix material (e.g. COl is the 
shear modulus of the matrix material). This model may be subsumed under a more 
general form for the macroscopic elastic compliance tensor. namely, 

,~ 1-'/;,1 ,~ 
'wu = Mm + j' 'WU". 

,111 

(5.3) 

where Mill is the elastic compliance tensor for the matrix material. and Me is a fourth
order elastic--plastic coupling tensor dependent only on the matrix material properties. 
The tensor Me corresponding to (5.2) is 

(5.4) 

where []I, is the symmetric deviator operator of equation (3.27). j is the identity tensor 
divided by its Euclidean magnitude, and ii is a fourth-order tensor-tensor dyad having 
components 

(5.5) 

Assuming the spherical voids remain spherical after permanent deformation [which, 
according to RICE and TRACEY (1969). is reasonable for high ratios of pressure to 
effective stress]. and assuming the elastic moduli of the matrix material are independent 
of plastic straining, the increment of the macroscopic elastic compliance tensor in 
(5.3) is 

d/' 
d '~ = - . III M 

'IYU /'2 C' 

< III 

(5.6) 

For a plastically incompressible matrix material. the rate of change of void volume 
fraction.F at the unloaded state depends on the rate of plastic deformation according 
to the kinematic relationship 

I = (i-./JtrDr. (5.7) 

where Dr is the plastic part of the rate of deformation and may be approximated by 
the plastic strain rate for small displacement gradient deformations. Equation (5.7) 
is used by several authors (e.g, NEEDLEMAN and RICE. 1978). except that the distinction 
between the current void fraction and the void fraction at the unloaded state is ignored 
in these works. It is straightforward to show that the difference is negligible if elastic 
dilatation is negligible compared to plastic dilatation. However. even if the elastic 
de/cmnatiol1 is small compared to the plastic deformation. the elastic dilatation may 
still be large compared to the plastic dilatation- after all. for non-voided materials. 

A ; t y 
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the plastic dilatation is zero and so the elastic dilatation is indeed m 
comparison. Equation it does not depend on the 
mechanism of void However. the void rate in (5.7) is frequency interpreted 
in the literature as the contribution resulting from void gfOlrth only. with other 
mechanisms such as void nucleation contributing separately. This approach is legiti
mate if.r is regarded as an void fraction; for example, the effective void 
fraction might be defined as the actual void fraction plus the volume fraction of 
cracked or debonded particles. Even if this approach is adopted. however. the effective 
void fraction should be carefully distinguished from the true void fraction when 
writing equivalent work expressions equating macroscopic plastic work rate to the 
matrix plastic work rate because the true matrix fraction I - should be 
used in these expressions. 

In the present analysis,r is the true unloaded void fraction so that .I; 1. 
Equation (5.7) may therefore be integrated to give 

(5.8) 

where f~, is the initial matrix fraction. and is the accumulated plastic Jacobian 
(equal to the ratio of the initial unloaded macroscopic density to the current unloaded 
macroscopic density). The rate of macroscopic elastic compliance may now be written 

(5.9) 

for small becomes. in incremental form. 

dM 10) 

the form 

11 ) 

tangent 

12) 

3) 
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has also been noted by MAIER and HUECKEL (1979) for elastic-plastic coupling and 
by TVERGAARD (1982) for thermo-mechanical coupling. 

For isotropic elastic response, if the deviatoric part of P is coaxial with the stress 
deviator, then the deviatoric part of p* is also coaxial with the stress deviator. If, as 
in the specific flow law of Section 4.6, the deviatoric parts of hoth P and Q are coaxial 
with the stress deviator, then [assuming 17 in (4.13) is non-negative] elastic-plastic 
coupling will not produce complex eigenvalues for shock waves. 

6. DISCUSSION 

The first analysis presented in this paper serves to bound the magniludc of a 
proposed jump in stress. With our example, we demonstrated that in some cases the 
magnitude of the jump in stress can be shown to be zero, thereby ruling out the 
existence of such a jump altogether. 

The extended spectral analysis gives no information about the magnitude of a 
proposed jump in stress. Instead, we used the eigen-analysis to derive explicit solutions 
for the permissible speeds at which a jump can travel and the dirccliol1 for the jump 
in stress. 

These results can be used together to restrict the class of possible solutions to 
boundary value problems, such as dynamic crack growth, that may involve moving 
stress discontinuities. 
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ApPu\Dlx: DERIVA TIO" OF THE EIGEJ'.:VECTORS ASSOCIA TLD WITH ELASTIC EIGE,\VALUES 

I. SOll/lioll u11ell x = x~ 

With .f =f~. the system (4.40) becomes 

p, (If" lr" + ii, ' WI) = 0, 

I 
-u',,+ _p"(17,,lt·,, + ii,·w.) = o. 

'I 

wherc we have used (4.18) to write .f~ - .f~, = - I. 

(A.la) 

(A.lb) 

First consider the ease that the algebraic multiplicity of Y~ is two or three, which. by (4.36). 
is possible if and only if 0, = O. Thus. recalling (4.13b). exactly one of the following holds. 

Case I : p, = 0 and q, = O. Here. (A.I a) is automatically satisfied and. using (4.13a), (A.I b) 
becomes 

(II" -1)11'" = O. (A.2) 

If the algebraic multiplicity of x~ is three, (4.36) shows that IT" = L and the eigenvectors are, 
therefore. arbitrary. If the algebraic multiplicity of Y~ is two. (4.36) shows that 0., ic Land. 
therefore. the eigenvectors must satisfy n' W = O. but are otherwise arbitrary. 

Case 2: p, ic 0 and q, = O. Equation (A.I) becomes 

which show that n' W = O. 

17"lr" = O. 

I 
-lr" + _ P"(II,, lr,,) = O. 

'I 

(A.3a) 

(A.3b) 

Case 3: p, = 0 and q, ic O. Equation (A. I a) is automatically satisfied and. recalling (4.13a), 
(A.I b) becomes 

- I 
(11,,-1)11,,+ _P,,(ii,'w,) =0. 

'/ 
(A.4) 

If the algebraic multiplicity of x: is Ihrce (i.e. if (I., = I). thcn thc only restriction on the 
eigenvector is ii,' W = O. which follows from (A.4) because 11., = I guarantees fI" ic O. If. on the 
other hamL the algebraic mUltiplicity of x~ is /1\'0 (i.e. if (I" ic I). then (A.4) is a restriction 
between the normal component of wand its component in the direction of ii,. By the projection 
theorem. there must exist scalars Ir", 'J. and Ii. such that 

W = u"n+'J.ii, +/i(nxii,). 

where x is the veclor cross product. Equation (A.4) shows that 

'J. p" (ii, . iit) 
1l"='J (I-{I,,)' 

and the scalars 'J. and /i arc unrestricted. 

(AS) 

(A.6) 

I 

IP*i*w Jm! ~??~ 
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Case 4: p, # 0 and q, # 0, wi th Pc perpendicular to q" Equation (A. I ) becomes 

(i/nH'n-t-ii,'wJ 0. 

I 
-ll'n+ .Pn(i/nll'n+ii,'w,) =0, 

11 
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(A,7a) 

Using (A,7a) in (A,7b) shows that lfn 0. which, from (A,7a). implies ii,'w = 0, Thus. the 
eigenvector w must be perpendicular to both n and ii,. or, in other words. 

where 'X is an arbitrary scalar. Bccause p, is pcrpendicular to q, and (by definition) to n. the 
eigenvector may alternatively be \Hittcn 

w 'Xii,. 

which concludes the solution for the eigenvectors associated with x~ having an algebraic 
multiplicity of two or three, 

If the algebraic multiplicity of x~ is lInitl'. (4,36) shows that iT, # 0, Thus, from (4,23b). p, 
and q, must be non·zero and non-perpendicular. The system (A.7) still applies. and the 
eigcnvector is givcn by (A,ga), 

2, So/ution lrhm x x:; 

With ,\, ,\'~. the decomposed eigen-syslem (4.40) becomes 

(A,9a) 

(A,9b) 

where we have Llsed (4,28) to write ,\,~, - ,\,~ I, By (4,35). the eigenvalue x can x~, if and 
only if On (), Thus. recalling (4,23a). exactly one of the following holds, 

Case I :Pn () and ifn = (), Here. (A,9b) is automatically satisfied and (A,9a) becomes 

1 
w,+ .p,(ii,· 

1/ 
= 0. 

which shows that w, = fip,. where Ii is a scalar. Using (4,23b). 

(l + (I,) {lp, = 0, 

(A.IO) 

10) tbat fJ satisfy 

If the algebraic multiplicity oL< is tIro, (4,35) shows that (I, - I. and, therefore. w 

Il) 

XI1+lfp" 
where 'X and Ii are arbitrary scalars, If. on the other hand. the 
unity. (4,35) shows that iT, * - I. and, therefore, Ifp, () and the 

Case 2: Pn # 0 and ifn (), The system (A,9) becomes 

I 
w, + . p,(q, . w.) 0, 

1/ 

ii,'W, = O. 

which implies that w, = O. or. in other words. w 11, 

Case 3: Pn 0 and Cfn # (), satisfied and 

I 
w, + _ p, (iln If" 

'1 
·W,) O. 

which. because Pn = O. shows that w \\'nl1 rip. (A.13) 

of IS 

(A, 

(A, 

becomes 

(A,13) 



330 R. M. BRAl"l"Ol" and W. J. DRLGAl" 

(A.14) 

Thus. 

w = I-ff J (1+IIJjO+fiP. L qn 
(A.IS) 

If the algebraic multiplicity of x~ is lH'O (i.e. if lit = -I). the eigenvector becomes simply /lp. 
where Ii is arbitrary. Ifpt = 0 (in which case p = O. and. therefore. On = Ot = 0). the eigenvector 
reduces to the clastic eigenvector :xu. where :x is arbitrary. 


