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ABSTRACT

THE INFLUENCE of non-classical elastic-plastic constitutive features on dynamically moving discontinuities
in stress, strain and material velocity is investigated. Non-classical behavior here includes non-normality
of the plastic strain increment to the yield surface, plastic compressibility, pressure sensitivity of yield and
dependence of the elastic moduli on plastic strain. DRuGAN and SHEN's (1987) analysis of dynamically
moving discontinuities with strain as well as stress jumps in classical materials is shown to be valid for a
broad class of non-associative material models until deviation from normality exceeds a critical (non-
infinitesimal) level. For these non-classical materials, an inequality that bounds the magnitude of the stress
jump is derived, which is information not obtainable from a standard spectral analysis of a shock. For the
special case of stress discontinuities with continuous strain or for quasi-static deformations, this inequality
is shown to rule out jumps in specific projections of the stress tensor unless the non-normality is sufficiently
large. These results invalidate a recent claim in the literature that an infinitesimal amount of non-normality
permits moving surfaces of discontinuity in stress (with no strain jump) near the tip of a dynamically
advancing crack tip. Using a very general plastic constitutive law that subsumes most non-classical (and
classical) descriptions currently in use, a complete closed form solution is obtained for the plastic wave
speeds and eigenvectors. A novel feature of the analysis is the clarity and completeness of the solutions. If
the elastic part of the response is isotropic, one plastic wave speed equals the elastic shear wave speed,
while the other two possible wave speeds depend in general on the stress and plastic strain within the
shock transition layer. Concise necessary and sufficient conditions for real eigenvalues and for vanishing
eigenvalues are derived. The real eigenvalues are classified by numerical sign and ordering relative to the
elastic eigenvalues. The geometric multiplicity of plastic eigenvectors associated with elastic eigenvalues is
shown to depend on the stress state within the shock transition layer. These solutions, several of which
hold for arbitrary elastic anisotropy, are also applicable to acceleration waves and localization problems
and to materials with dependence of the elastic moduli on plastic strain. Such elastic-plastic coupling is
shown to imply a non-self-adjoint fourth order tangent stiffness tensor even if the plastic constitutive law
is associative.

1. INTRODUCTION

IN THIS PAPER we analyze dynamically moving discontinuities in stress and/or strain
(which we term “‘shocks”) for elastic—-plastic material models that possess one or more
of the following non-conventional features.

e Non-normality of the plastic strain increment to the yield surface.
o Pressure sensitivity of yield.
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e Plastic compressibility (i.e. permanent volume change).
e Yield surface vertices.
e FElastic—plastic coupling: the elastic moduli change with plastic strain.

Quite recent research has shown that non-classical constitutive features such as
these permit a realistic description of important physical phenomena such as plastic
flow localization (HiLL, 1952 ; HiLt and HUTCHINSON, 1975 ; RICE, 1976 ; TVERGAARD
et al., 1981), general bifurcation (RaNIECKI and BRUHNS, 1981), non-conventional
plastic slip in single crystals (Asaro, 1979, 1983), porous metal instabilities (BECKER,
1987; OHNO and HUTCHINSON, 1984 TVERGAARD, 1990), the strength differential
effect in metals (NEEDLEMAN and Ricg, 1978 ; RICE, 1976), pressure sensitivity of yield
and plastic compressibility caused by the presence of microvoids (BEREZIN, 1987
GURsON, 1977), and non-normality caused by internal friction (CHANDLER, 1985) or
by microvoid nucleation (MRrOZ and RANIECKI, 1976 ; NEEDLEMAN and RICE, 1978
TVERGAARD, 1982).

Pressure insensitivity of yield is an excellent approximation for many materials
such as undamaged metal alloys (BRIDGMAN, 1952 ; SPiTZIG and RICHMOND, 1984).
However, even these materials can become appreciably pressure sensitive whenever
pores or microcracks develop. In this case, the use of a pressure sensitive yield criterion
1s imperative. The expansion, interaction and eventual coalescence of voids is a basic
precursor to ductile fracture. Voids may be present as a result of the processing (e.g.
sintered metals) or may develop due to, say, cracking or debonding of rigid inclusions
in high triaxial regions such as the zone ahead of a crack tip. Microporous or
microcracked media exhibit pressure sensitivity of yield, plastic compressibility and
dependence of the elastic moduli on previous plastic straining. Furthermore,
nucleation of voids or internal friction at microcracks can produce non-normality.

Discontinuities in stress and strain fields are intimately related to localization of
deformation into thin shear bands. HiLL (1952) was the first to recognize that this
phenomenon can be treated as a constitutive instability. His excellent summary of
discontinuity relations (HiLL, 1961) set the stage for his general framework for the
study of localization in connection with acceleration waves and stationary dis-
continuities (HiLr. 1962). Rice (1976) also studied the sensitivity of localization
predictions to deviations from classical plasticity—especially non-normality and ver-
tices. HiLL (1967) provided evidence that vertex effects can be significant in certain
situations even for polycrystals. For example, although localized necking of thin
homogenecous sheets under biaxial stretching is impossible when associative theories
with smooth yield loci are used, STOREN and RICE (1975) predicted such localization
by approximating the effect of a vertex as a non-normality of the plastic strain
increment to a smooth yield surface.

The emphasis of this paper is to determine how deviations from classical plasticity
might affect moving surfaces of discontinuity in stress, strain or velocity. Such infor-
mation is essential for the rigorous analysis of any phenomenon that is suspected to
involve such discontinuities. We will prove by contradiction that a large class of
clastic—plastic constitutive models (including, but not limited to, most classical
models) do not permit certain types of moving discontinuities in stress. Discontinuities
appear in elastic-plastic problems such as dynamic crack propagation in ductile single




o

Existence of shock waves 299

crystals (Nixkoric and Rick, 1988), moving load problems and metal forming/
processing. For these problems, we must know what conditions must be enforced
across the discontinuity surfaces as well as the level of sophistication required of
the constitutive model in order consistently to model the discontinuities at all. For
numerical approaches, known or suspected jumps can be built into the solution, or
other provisions can be made to ensure accurate jump treatment. If an analytical
solution to a boundary value problem is sought, knowledge of whether discontinuities
are possible will ensure that appropriate initial assumptions are made. Otherwise, it
could occur that either no solutions are found, or, more insidiously, the solutions
found are incomplete, or—perhaps worst of all-—*“solutions™ possessing dis-
continuities that violate a governing principle are advanced.

Much work has already been done in the area of moving discontinuity analysis for
elastic-plastic materials. Permitting yield surface vertices and flats, arbitrary elastic
and initial plastic anisotropy, and a broad class of anisotropic hardening in an otherwise
classical material class, DRuGaN and Ricke (1984) showed that a moving discontinuity
in any component of stress is impossible for quasi-static small deformations. DRUGAN
(1986) streamlined this analysis and showed that the result also holds for elastic-
plastic response where the elastic part is non-linear hyperelastic. DRuGaN and SHEN
(1987) and SHeN and DRruUGAN (1990) then proved that the same material does
allow jumps across dvnamically propagating surfaces, but only under specific, quite
restrictive, conditions. Finally, DRuGAN and SHEN (1990) arrived at similar con-
clusions for finite plastic deformations, but showed that material anisotropy com-
plicates the results in the large deformation case. Consistent results were obtained by
LeiGaToN et al. (1987), who showed that yield surface convexity with plastic strain
increment normality precludes the existence of discontinuous plastic fields near the
tip of a dynamically growing crack in the special case of steady-state plane-strain

All previous work of Drugan, Leighton and co-workers involved the key idea of
enforcing an integrated form of the Maximum Plastic Work Inequality (MPWT)
throughout passage of the shock. However, because the MPW1 embodies both con-
vexity of the yield surface and normality of the plastic strain increment to the yield
surface, it cannot be used for non-associative (non-normal) materials. fn this paper,
we release the requirement of normality and require only that the yield surface be
convex. By enforcing an integrated form of the convexity inequality throughout the
passage of the shock, we show in Section 3 that jumps in specific projections of the
stress tensor (such as the deviatoric stress) can be realized only for a sufficiently large
amount of non-normality. As a specific example, we apply the results to a non-
associative constitutive law used recently for an analysis of dynamic, steady-state
crack growth in plane strain ; we find that a discontinuous stress field (with continuous
strain) is impossible unless the non-normality is sufficiently strong.

Following this main result, we present in Section 4 a more conventional spectral
shock wave analysis, but for a very general class of non-associative rate-independent
materials that possess plastic compressibility, pressure dependence of yield, and/or
dependence of the elastic moduli on previous plastic strain. We simplify and extend
existing work on such materials (e.g. MaNDEL, 1963 ; LORET and HARIRECHE, 1991 ;
OTroseN and RUNESSON, 1991), by using the Sherman-Morrison formula to obtain
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a simple closed form solution for the plastic wave speeds in terms of the elastic eigen-
system (which may be assumed to be known a priori) and two easily calculated scalar
properties of the tangent stiffness tensor. If the elastic part of the response is linear
and isotropic, we confirm the known result that one plastic wave speed is always equal
to the elastic shear wave speed, while the other two plastic wave speeds depend on
the stress state within the shock transition layer. By requiring that each stress state in
the transition layer permit the actual wave speed, we derive a requirement for per-
missible paths of stress within the transition layer. Noting that the governing eigen-
problem for moving shock waves is identical in form to the eigen-problem for accel-
eration waves, we provide very simple necessary and sufficient conditions for one of
the wave speeds to be zero (stationary discontinuity), or for two of the eigenvalues to
be complex conjugate ( flutter instability) ; these conditions correspond to a change
from hyperbolicity to ellipticity (or vice versa, depending on the problem) of the
governing equations, which in turn affects computation procedures. We classify the
real eigenvalues according to their numerical sign, and their ordering with respect to
the elastic eigenvalues. The solution (which includes eigenvectors that have been
missed in previous work) is presented in a form that provides insightful comparisons
with the eigenvectors for elastic waves. The comprehensiveness of the analysis and
the compact, lucid structure of the solutions distinguish this work from related
analyses in the literature.

The paper concludes with a demonstration that dependence of the elastic moduli
on plastic strain may be treated as an effective non-normality of the plastic strain
increment to the yield surface. Such coupling generally makes the tangent stiffness
tensor non-self-adjoint even when the plastic strain increment is normal to the yield
surface, which is a caveat for HiLL’s (1968) finding that, in the absence of coupling,
normality imples self-adjointness. Referring to MROZ and RANIECKY’s (1976) thermo-
mechanical flow law, TVERGAARD (1982) noted that coupling in elastic—plastic bodies
often leads to non-self-adjointness of the tangent stiffness tensor. This non-self-
adjointness may sometimes be regarded as an effective non-normality of the plastic
strain increment to the yield surface. Effective non-normality caused by elastic—plastic
coupling has also been noted by MAIER and HUECKEL (1979). We derive explicit forms
for the effective non-normal part of the strain increment using the porous elastic
moduli given by ZHAO et al. (1989).

2. Jump CONDITIONS

The hypothesized discontinuity surface is taken to be generally curved and pro-
pagating with a normal speed V relative to a fixed observer. The shock propagation
speed ¢ relative to an observer moving with a material particle at the jump surface is
then

¢c=V-v-'n, 2.1

where v is the particle velocity and n is the unit normal of the shock surface pointing
in the propagation direction. Here and throughout this paper, a single dot product
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represents the inner product between adjacent vectors (so thar, in rectangular
Cartesian components, adjacent indices are summed).

The region just ahead of the shock is called the (+) side, and the region just behind
1s called the (—) side. The jump in any field variable « is denoted by double brackets
defined as follows :

c g, (2.2)

where ¢* is the imiting value of «¢ at the (+) side of the shock, and ¢~ is the value
of ¢ at the (—) side.

2.1. Jump equations

A requirement that cracking or interpenetration of material not occur is sufficient
to ensure continuity of displacement components normal, but not tangent, to a shock.
DruGan and Rice (1984) noted that the physical requirement of finite plastic work
production for finite motion of a shock requires the entire material displacement
vector 4 to be continuous across the shock :

[u] (2.3)
Conservation of mass leads to (¢.g. CHADWICK, 1976)
lpcl =0, (2.4)

where p is the density. Assuming the gradient, du/dX, of displacement with respect to
reference position, X, exists in a neighborhood of the shock and tends to finite (+)
side and (—) side limits as the shock is approached, it can be shown (e.g. HiLL, 1961)
that the jump in the displacement gradient is of the form

[ow/oX] = AN, (2.5)

where 4 is a vector called the “characteristic segment™, N is the unit normal to the
image of the discontinuity surface in the reference configuration, and AN is a dyad.
For small displacement gradients, N =~ n.

By taking the time derivative of displacement following the shock, enforcing (2.3),
it can be shown (HADAMARD, 1903) that the jump in velocity is related to the jump
in displacement gradient by

vl = —co[ou/dX]"N = —cjh ~ —ci, (2.6)
having applied (2.5). Here, ¢, is the speed of the discontinuity surface in the reference
configuration, and ¢, = ¢ for small displacement gradients.

For dynamic deformations, conservation of linear momentum leads to the well-
known (e.g. CHADWICK, 1976) jump equation

n- o] = —pc[v] = +pceyh = peta, (2.7

Eil

where ¢ is the Cauchy stress. Importantly, because pc” is an approximation to pcey,
and because [¢,] = 0, (2.4) permits us to treat pc’ as constant across the shock even
though ¢ is not constant.

For small displacement gradients, the jump in the total strain ¢ is approximately
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the symmetric part of the jump in the displacement gradient. Therefore, recalling (2.5)
and (2.7), the jump in infinitesimal strain is given by

1 1
fel = A) = sy T} = - Q:e], 2.8
(ol sym(nd) = oym (a[TT) = - @ o] 8
where T = n- o, and Q is a non-invertible fourth-order linear operator defined such
that for any second-order tensor A,

Q:A =sym(nn-sym A). (2.9)

In Cartesian components, Q,;,, = i(1;0;n,+n,3,.n,+n;8,n,+n,;d,n,), where J,, is the
Kronecker delta. Here and throughout this paper, “'sym” denotes the symmetric part,
and a double dot product (:) represents the tensor inner product between adjacent
dyads [so that, in Cartesian components, adjacent indices are summed pairwise—e.g.
(Q:A); = QynA,]

We note for future reference that

6] :[o] = pfj [6]:Q:[o] = pc?h- A (2.10)

2.2. Incremental forms of the jump equations

CoURANT and FrRIEDRICHS (1948) proved in the gas dynamics context that a shock
may be viewed as the limit as thickness vanishes of a narrow transition layer in which
field quantities vary continuously as if in a simple wave. As pointed out by LEIGHTON
et al. (1987), their proof also shows that the sequence of states in the transition layer
must also be the same as if the transition had occurred in a simple wave. That is, if
the jump in some (scalar or tensor) quantity is zero across the transition layer, then
that quantity is approximately constant in space and time for all points along a direct
path through the transition layer. COURANT and FRIEDRICHS’ (1948) conclusions result
from their demonstration that entropy changes across shocks can be disregarded for
all but the strongest shocks. DRUGAN and SHEN (1990) argued that similar conclusions
are sensible for elastic-plastic solids because (WALLACE, 1980) entropy changes across
shocks in such materials can be sensibly neglected for a significant range of shock
strengths.

Recall that pe? is an approximation to pcc,, and so may be treated as constant in
the transition layer. Hence, the jump equations (2.7) and (2.8) may be written in the
following incremental forms that constrain stress and deformation paths experienced
by a particle during shock passage:

n-de = —pcdv, (2.11)

1 1
de= ,sym(ndT) = - Q:de. (2.12)
pe” pe-

Importantly, these increments apply not only spatially, but also as increments fol-
lowing a material particle through the shock ; hence, the increments de and de are
further constrained by the constitutive law.
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3. DI1SCONTINUITY RESTRICTIONS FOR A GENERAL CLASS OF NON-CLASSICAL
MATERIALS

3.1. Non-associative constitutive formulation

Assuming small displacement gradients, the total strain increment may be additively
decomposed into elastic and plastic parts:

de = de®+de’. (3.1)

The yield surface is defined as the boundary in six-dimensional symmetric tensor space
of the set of stresses achievable from the current stress o, via a reversible deformation
path. The yield surface depends, in general, on the currently applied stress 6, and on
the previous plastic strain history. A yield function @ is defined according to:

<0 forall ¢ within the yield surface
Olo, 64, %,...,0)4 =0 forall ¢ on the yield surface (3.2)
>0 forall othero

where the a8 represent parameters that depend on the plastic strain history. The
elastic stress set is assumed convex ; i.c.

(6—6"):m =0 forallosand ¢”satisfying ®@(e) =0 and P(e”) <0, (3.3)

where m is the outward unit normal to the yield surface at o or, if ¢ is at a vertex, m
is any member of the cone of limiting normals. As HiLr (1968) has observed, convexity
of the vield surface seems to be implied by many sets of experimental data and, to
our knowledge, no data have conclusively suggested otherwise.

Yield surface vertices, pressure sensitivity of yield and non-normality of inelastic
strain increments to the yield surface have been observed experimentally (with varying
degrees of certainty), and they have been used analytically to predict, for example,
bifurcation phenomena such as flow localization. To account approximately for vertex
effects in localization, SToreN and Ricg (1975) regard the yield surface as smooth,
with the plastic strain increment non-normal to the yield surface.

The plastic strain increment can always be decomposed into parts normal and
tangent to the vield surface:

de” = dym+de". 3.4

Here, dy is the component of the plastic strain increment in the direction of the unit
normal (or relevant member of the cone of hmiting normals) to the vield surface (i.e.
dy = de”:m), and de” is the part of the plastic strain increment tangent to the yield
surface. Strictly speaking, dy is not a material increment, but is written 50 as a
notational convenience.

For rate-independent materials, Euler’s theorem for homogeneous functions
guarantees the existence of a unique fourth-order tensor M, such that

de™ = M, : do. (3.5)

For non-hardening materials, the existence of M}, is an assumption {by definition of
deP, M, will satisfy m: M : do = 0). This flow law permits pressure sensitivity of yield
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and arbitrary direction of non-normality of the plastic strain increment. Although in
general M, might be homogeneous of degree zero in stress increment and arbitrarily
dependent on stress, plastic strain history, or any other relevant parameters, we will
assume M | is constant within the shock transition layer: i.e. [M,] =~ 0. This assump-
tion is motivated by a similar assumption in the specific flow law to be analyzed in
Section 3.3.

We assume d; = 0 (i.e. the plastic strain increment is directed to the ourside of the
yield surface); in some circumstances (such as in the example of Section 3.3), an
assumption of non-negative plastic work rate can be used to prove dy = 0. Because
do and de® are symmetric, M, may be assumed (without loss in generality) to be
range- and domain-symmetric; i.e.

(M I)i[r,\' = (M l)jin = (M l)li§r' (36)
We will also assume that M| is self-adjoint; 1.e.
(M])ur\‘ = (Ml)rw/' (37)

Assuming the elastic part of the response is linear, the flow rule for the rotal strain
increment is :

de = M*: de+d;m, (3.8)

where M* = M, + M, and M is the elastic compliance tensor. Incidentally, this flow
law provides a counter-example showing that normality (or the lack of it) cannot be
ascertained simply by inspecting the form of the total strain increment flow law
because, we note, the flow law (3.8) is mathematically identical to conventional
(associative) plasticity flow laws-—a key difference is that the “pseudo-compliance”
M* need not be positive definite. We will now exploit this fact to demonstrate that a
moving surface of discontinuity in stress is severely restricted whenever M* is positive
definite, ruling out, in some instances, the very existence of such a surface and, in
other instances, bounding the magnitude of the stress jump.

Recalling the assumption that dy = 0. the statement of convexity (3.3) may be
combined with the flow rule (3.8) to give

(6 —6"):(de—M*:de) = 0. (3.9)

3.2. Discontinuity analysis

Using the jump equation (2.12), the convexity inequality (3.9) may be written within
the shock transition layer as

1
—(6—0"): <M*__ = @):do’ = 0. (3.10)

Generalizing the key idea of DruGaN and RICE (1984), we integrate this convexity
inequality at a material particle as the shock passes

MJ (a~a‘7):<M*~1.z@>:da>0, (3.11)

q

Jels
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By choosing 6° to be constant in the shock and recalling that M* is assumed to be
constant throughout the passage of the shock, the integral (3.11) may be evaluated
explicitly to yield

i(a~o“) : (M*m 1 @> : (ama")‘n = 0. (3.12)
pe A

This result holds for small displacement gradient deformations so long as the chosen
6’ remains on or within the yield surface throughout passage of the shock and the
jump of M* is negligible. The flow law (3.8) permits any direction of plastic strain
increment ; however, as will be discussed later, when the plastic strain increment has
an isotropic component, the elastic moduli (and, therefore, possibly M*) cannot in
general be reasonably assumed to be constant.

There are flow laws currently used in the literature for which M* may be safely
assumed to be constant. For example, NEMAT-NASSER and OBaTa (1990) use such a
flow law in their analysis of steady-state dynamic crack growth (in Section 3.3, their
flow law will be used to illustrate the results of this section). As pointed out by
NeEDLEMAN and Rice (1978), the difference in yield points in compression and tension
observed by Sp1tzIG er al. (1975) may be modeled as a non-normality to a pressure
sensitive yield surface, and, according to Spitzig's observations, the plastic strain
increment remains nearly deviatoric with negligible dependence of the elastic moduli
on plastic straining. Thus, the assumption that M* is constant seems reasonable in
this case.

Specific choices for 6°. Any choice for ¢ is restricted by the requirement that ¢° be
within or on the yield surface for all states throughout the shock transition zone. If
6" = 0 is admissible in this sense, (3.12) gives

1
HG:(M*M# w@):0]20. (3.13)
P

Incidentally, for classical associative plasticity, the choice ¢° = 0 would correspond
to enforcement of non-negative plastic work rate and so would be an admissible
choice even if 0 were not in or on the yield surface.

If the choice 6° = ¢~ is admissible, (3.12) gives, upon rearrangement,

(3.14)
or, using the identity (2.10),
lo]:M*: 6] = pcia- (3.15)
If the choice 6° = ¢ is admissible, (3.12) gives
M*: o] < ped-i. (3.16)

As noted by Drucan and Rice (1984), the choice 6° = ¢ is admissible for any
material having the property that its current yield locus at any stage in a deformation
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incorporates all prior yield loci. This material class thus includes elastic-plastic
behavior characterized by no hardening (i.e. ideal plasticity), isotropic hardening and
many types of anisotropic hardening, including many cases of yield surface vertex
formation. Similarly, the choice 6° = ¢ is admissible for non-hardening materials or
for materials that have commenced isotropic softening by the time the shock front
arrives.

For some materials (including but not limited to non-hardening materials) the
choices 6° = ¢~ and ¢" = ¢~ are both admissible, in which case (3.15) and (3.16)
imply

lel:M*:[o] = pci-a. (3.17)

The special case of continuous strain or quasi-static deformation. For continuous
strain problems, 4 = 0, and for quasi-static problems, pA = 0. In either case, (3.16)
becomes

le]:M*:[6] <0, (3.18)

which (recall) holds provided the choice 6° = ¢* is admissible. This inequality is exact
for continuous strain deformations and an approximation for quasi-static defor-
mations.

The inequality (3.18) immediately shows that a stress jump is impossible whenever
M* is positive definite. Thus, recalling (3.5), a necessary condition for the existence of
a stress jump is that the amount of non-normality be sufficiently large that components
of M, become sufficiently negative so that (when added to the positive-definite elastic
compliance tensor M) the pseudo compliance M* is non-positive definite. Conse-
quently, the pretvious results of DRUGAN and RICE (1984) and DRUGAN and SHEN
(1987) are valid for a finite range of general non-normality.

[t may be that M* is positive definite only with respect to some subspace of the
symmetric tensors, in which case the above conclusions may be generalized as follows
suppose that M* has the property M* =P _,: M*: P, for some fourth-order pro-
jection operator P, onto some specific linear tensor manifold .«7. Then the inequality
(3.18) implies the following stronger existence condition for moving discontinuities
in stress with continuous strain and/or quasi-static deformations:

[P,:6] =0 if M*is positive definite with respect to .7, (3.19a)

which holds provided the choice 6" = 6" is admissible. By “positive definite with
respect to 7, we mean A:M*: A > 0 for all non-zero tensors A in the manifold .«/.
Similarly, if the choice 6" = ¢ is admissible, then

[P,:6] =0 if M*is negative definite with respect to .«7. (3.19b)
If the choices 6 = ¢~ and 6¢° = ¢ are bhoth admissible, then

P,:a] =0 if M*is definite with respect to .</. (3.19¢)
, I

Equations (3.19) are the main results of this section. We will now analyze a specific
flow law for incompressible plane-strain deformations to illustrate how (3.19) can be
used to rule out stress jumps altogether.
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3.3. An illustrative example

Recently, NEMAT-NASSER and OBATA (1990) proposed a solution for the stress field
near the tip of a steadily growing crack in a non-associative, fully incompressible
elastic—plastic material for dynamic, plane-strain, small displacement gradient defor-
mations. They claim that the presence of even an infinitesimal amount of non-
normality leads to stress—but not strain—jump discontinuities, which has been
proved impossible by DRuGaN and SHEN (1987) and LEIGHTON ¢t al. (1987) whenever
normality is assumed from the outset. Nemat-Nasser and Obata suggest that “the
near-field solution when the normality rule is imposed at the outset, is an isolated
solution which cannot be obtained as a limiting case of the solutions with the yield
surface tangential component of the plastic strain rate tending to zero.” We now use
the results of the previous section to demonstrate that discontinuities of the type
described by Nemat-Nasser and Obata are possible only for a sufficiently large
deviation from normality. An infinitesimal amount of non-normality will not produce
the continuous strain with discontinuous stress field that they offer in their solution
to the growing crack problem.

In the following analysis, we use precisely the same flow law and assumptions as
were used by NemaT-Nasser and OBaTA (1990) [or, for the hardening case, by Hort
and NEMAT-NASSER (1989)]. The material is assumed to satisfy the Huber-Mises yield
criterion

S:8 = 2k, (3.20)

where S is the deviatoric stress tensor, and k is the yield stress in pure shear. This
yield surface (being a circular cylinder in six-dimensional symmetric tensor space) is
convex. The normal to the yield surface is coaxial with S. For a non-hardening
material, k is constant and the yield surface remains fixed in stress space. For an
isotropically work hardening material (assuming a non-negative plastic work rate), &
increases with plastic deformation. In either case, 6™ will—as required for application
of (3.19a, ¢)—remain on or within the yield surface as a particle passes through a
shock.

Nemat-Nasser and Obata use rate instead of incremental forms of the constitutive
laws, so we will follow their conventions in this section. They consider a plastic strain
rate of the form

& =is+7"'8, (3.21)
k

where 4, and 4 are scalars, with Ai,/k assumed constant, and a superimposed dot
denotes the material time derivative. For a non-hardening material, continued
satisfaction of (3.20) requires that S:8 = 0. For an isotropicaily work hardening
material, k increases with plastic deformation, but Horr and NEMAT-NASSER (1989)
imply that, to leading order as the crack tip is approached, S: S & 0 (see their equation
3.12) and that the plastic strain rate is approximated by (3.21); furthermore, by
plotting their results for a given value of their modified Mach number (which depends
on /4,/k) they tacitly assume that 4,/k is approximately constant. Accepting these
claims only for the purpose of contradiction, we conclude that for both non-hardening
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and hardening materials, the second term in (3.21) i1s orthogonal to S and, therefore,
represents the tangential component of the plastic strain rate (at least to leading order
for the hardening material). Furthermore, because S$:S=0, an assumption of non-
negative plastic work rate guarantees that 4 = 0.

Assuming elastic as well as plastic incompressibility, Nemat-Nasser and Obata find
that the flow rule for the rotal strain rate is

. 3o
= 2E*S+AS, (3.22)
where
11 24
Fx = E-I— 3 (3.23)

and Eis Young's modulus.
This simple material model is a special case of the general model studied in the
preceding section. Comparing (3.22) with (3.8), we identify

S S

2 (3.24)
JS:S 2%

7= 1S:S = /2ks, (3.25)

M* — (’11 + 2o (3.26)
“\k T2E)7T '

where D, is the fourth-order orthogonal projection operator from nine-dimensional
tensor space to the linear manifold, .7, of symmetric deviatoric tensors; i.e. for any
second-order tensor A,

D,:A =sym A— i(tr A)L (3.27)
In component form,
(D) = 5(8,,0,,4+0,0,,) — 16,0, (3.28)
Observe that
M* = D, :M*: D,, (3.29)

and, because [, is a projection operator, the premises for application of (3.19) are
satisfied.

Using (3.26), we see that for any non-zero, symmetric, deviatoric, second-order
tensor A,

3k
2E°

A:M*:A:<’}(‘+2‘E>A:A>o if 2, > - (3.30)

Applying (3.19a). we conclude
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3k 5
2 (3.31(1)
3k

T (3.31b)

To this point, we have no information about a jump in pressure. However, (2.8)
shows that continuous strain requires continuous traction, which in turn implies that
a jump in pressure 1s necessarily accompanied by a jump in deviatoric stress. Hence,

o~
()
Us
13
S

Observe that not only must /, be negative for a stress jump to occur, 1t must be
sufficiently negative and, for the non-hardening material, it must be identically equal
to —3k/2E. An infinitesimal amount of non-normality will not permit stress jumps
with continuous strain in the growing crack stress field.

Small, but not infinitesimal, amounts of non-normality may affect the solution to
field equations. Consider, for example, the flow law (3.21) when 1, is at its critical
negative value, —3k/2F:

o 38

& = S~ 5 E (3.33)
The tangential term is of the order of the stress rate divided by elastic modulus and
may, therefore, be neglected except in regions of high stress rates (such as shock
transition zones).

4. IMPROVED SPECTRAL SHOCK WAVE ANALYSIS APPLIED TO NON-CLASSICAL
MATERIALS

In this section we perform a more conventional shock wave eigenvalue analysis on
an extremely general class of non-conventional rate-independent material models that
permit non-normality of the plastic strain increment to the yield surface, plastic
compressibility, elastic anisotropy and coupling phenomena such as dependence of
the elastic moduli on previous plastic deformation.

The shock wave speeds and direction of the jump in traction are determined by an
eigen-problem mathematically identical to the acceleration wave eigen-problem. By
employing a very useful tensor identity, we present a complete solution that exhibits
an appealing, lucid structure. In the case of elastic isotropy, we derive closed-form
solutions for the plastic eigenvalues and eigenvectors in terms of only rwo key scalars
which are coefficients in the characteristic polynomial and are easily calculated from
the tangent stiffness tensor. It is known that, for elastic isotropy, at least one of the
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three plastic eigenvalues always equals the elastic shear eigenvalue, while the other
two depend on the state in the transition layer. We show that at least one of these
“state-dependent™ plastic eigenvalues can equal an elastic eigenvalue if and only if
one of the two key scalars vanishes. Simple necessary and sufficient conditions for the
existence of zero or complex-conjugate eigenvalues are derived. and these conditions
depend only on the two key scalars. By plotting the two key scalars against each
other, we illustrate the locus of points that correspond to double roots, negative roots
and lines of constant eigenvalue. This figure also illustrates specific ranges of the
two key scalars that will result in any given ordering of the state-dependent plastic
eigenvalues with respect to the elastic eigenvalues. Finally, we derive the complete set
of eigenvectors associated with any given eigenvalue, showing that the eigenvector
associated with a non-elastic eigenvalue has a very simple structure in terms of the
elastic eigen-system.

Novel features (to our knowledge) of the analysis include the generality of the
constitutive class analyzed. the lucidity and completeness of the solution, and the
expression of the isotropic material results in terms of only two scalars with an
associated graphical classification of the eigenvalues.

4.1. Wave propagation cigen-problem for a general class of arbitrarily anisotropic
elastic-plastic flow laws

The constitutive law considered in this section is more general than the one employed
in Section 3. The stress increment de 1s regarded as a function of the strain increment
de, stress ¢ and various other parameters {%,a.,....,} such as temperature and
hardening moduli. The material is assumed to be rate independent ; that is, for any
scalar s,

do(e,sde, o), ..., o) = sde(e,de, o, ..., a,). 4.1)

By Euler’s theorem for homogeneous functions, there exists a fourth-order tensor §
such that

de = §:de, (4.2)

where

_ 9do);
e Ade)y,

(4.3)

AN

According to Euler’s theorem, the fourth-order tensor § could in general be homo-
geneous of degree zero in de. We will assume that € is independent of de, but otherwise
arbitrarily dependent on strain, plastic strain history, or any other relevant parameters.
To our knowledge, most rate-independent flow laws currently in use satisfy this
assumption. Because de and de¢ are symmetric, § is necessarily range-symmetric and,
without loss in generality, domain-symmetric ; i.e.

gi[)?!ll = C/‘imn = C(/'rr/n' (44)
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However, § is not necessarily self-adjoint (that is, in general &, # ;). Physical
mechanisms such as internal {riction or the nucleation of microvoids can result in a
non-associative (non-normal) plastic flow law. Implicitly neglecting coupling effects,
Hrirr (1968) proved that § will be self-adjoint if the plastic strain rate is normal to the
yield surface in tensor space, where Hill defines the yield surface as the boundary of
the set of stresses achievable from the current stress state via an elastic strain. However,
as demonstrated in Section 5, such normality does not imply self-adjointness of § if
one allows coupling effects such as dependence of the elastic moduli on plastic strain-
ing. Hence, an associative plastic flow law is not necessarily self-adjoint, and vice versa.
Using the jump equation (2.12), the flow law (4.2) becomes

do = piz (§-n)-dT. (4.5)
Dotting both sides of this equation by n leads to the well-known eigen-problem
(A—xD) w=0, (4.6)
where
X = pc?, 4.7
A=n§n (4.8)

and the eigenvector w is parallel to the traction increment dT. Once the eigenvector
for the traction increment is found, the associated directions for the stress and strain
increments are obtained from (4.5) and (2.12), respectively.

The second-order tensor A in (4.8) is the same as the so-called plastic acoustic
tensor from plane and acceleration wave analysis except that A depends on the stress
and plastic strain states within the shock transition layer. Similar eigen-problems for
the wave speeds are reviewed for more specialized constitutive laws by TING (1976).

The wave speeds are guaranteed to be real if & is self-adjoint (i.e. if &, = £,.5).
However, there are important flow laws in the literature for which & is not self-adjoint.
Specifically, we are interested in flow laws for which the tangent compliance tensor
€ 'is of the form

g = M+;ZPQ, (4.9)

where M is the fourth-order, self-adjoint, positive-definite, instantaneous elastic com-
pliance tensor, £ is a scalar, P and Q are symmetric second-order tensors, and PQ is
a tensor—tensor dyad [i.e. in Cartesian components, (PQ);,., = P;0,.]. The elastic
compliance tensor M is arbitrarily anisotropic, and the elastic moduli may permissibly
change with plastic strain. The second term in (4.9) characterizes the non-recoverable
part of the material response, but no precise physical meaning of 4, P or Q 1s invoked
in the upcoming analysis (except in examples).

NeepLEMAN and Rick (1978) point out that the plastic compliance tensor (4.9) has
applications to metal plasticity, modeling, for example, the difference in compressive
and tensile yield strengths observed by SP1Tz1G and RiIcHMOND (1984) for high strength
steels, as well as void nucleation in metals. These models are usually used in con-
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junction with pressure sensitive yield criteria such as that of Gurson (1977). The flow
law (4.9) even includes some modern theories (e.g. PASTOR ef al.. 1990) that do not
employ the concept of a yield surface.

Because M is self-adjoint. & is self-adjoint if and only if P is coaxial with Q (i.e.
it P = Q. where « is a scalar). For some constitutive models. P and Q are coaxial
with the normals to the plastic potential and yield surface respectively; for these
models. associativity of the plastic flow law is equivalent to self-adjointness of &.
However, for many other important materials (such as the coupled material discussed
in Section 5), P and Q have different physical interpretations ; hence, for these models,
assoctativity of the plastic flow law is nor necessarily equivalent to self-adjointness of &,

Inverting (4.9), the tangent stiffness tensor § is

3 (E:PYQ:F)
h+Q:E:P°
where E is the fourth-order elastic stiffness tensor (t.e. E= M '). The general form

(4.10) is well defined even if the inverse § ' does not exist (i.e. if 1 = 0).
Applying the definition (4.8), the plastic acoustic tensor A may be written

1
A:A“—’]pq. (4.11)

E=F (4.10)

where pq is a vector—vector dyad, and

A°=n-kE'n (4.12)
n=h+Q:E:P (4.13)
p=n-k:P (4.14)
q=Q:E'n (4.15)

The elastic acoustic tensor A® 1s independent of the stress state within the shock
transition layer, but will depend on the plastic strain whenever the elastic moduli
change with plastic strain. In general #, p and q depend on both the plastic strain
history and the stress state within the transition layer. The scalar denominator # is
usually positive ; for the specific flow law discussed in Section 4.6, 1 would have to be
negative and of the order of elastic moduli in order to make x vanish.

In the case of elastic isotropy, a non-symmetric acoustic tensor like (4.11) has been
studied in the pioneering work of MANDEL (1963) and. more recently. by LORET er
al. (1991, 1990) and OTTOSEN and RUNESSON (1991). The form (4.11) for the plastic
acoustic tensor A is mathematically identical to a tensor studied by TING (1976).
However, Ting's tensor corresponds to classical plasticity (P = Q) with non-classical
elasticity (M, # M,;). the latter being at variance with classical thermodynamics.
We assume self-adjoint elasticity.

4.2. Compact closed form solution for the wave specds

A closed form solution for the eigenvalues may be readily obtained by noting that
for any second-order tensor B and vectors u and v,
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(V%)

det(B+uv) =det B4+u-B°-v, (4.16)

where B¢ is the cofactor, or “adjugate”, tensor of B (i.e. the signed subminors tensor).
This identity, which is also known as the Sherman—Morrison formula, follows immedi-
ately from the invariant definitions of determinant, trace, and cofactor (e.g.
CHADWICK, 1976). Applying (4.16) to (4.6) using (4.11) shows that the eigenvalues
are the solutions to

1 ]
det (AT =3l = pr (A" D) q = 0. (4.17)

Given the self-adjointness and positive definiteness of the elastic stiffness tensor E, the
elastic acoustic tensor A° will be symmetric and positive definite and will, therefore,
have positive eigenvalues and be diagonal in its principal basis, which may be deter-
mined a priori. By writing (4.17) in terms of the principal basis of A®, one immediately
obtains the characteristic polynomial for the cigenvalues:

(x=xD(x =X (x =x5) + 0, (x = x5) (x —x5) + 02 (x = x)(x = x3)
+0;(x—x))(x—x5) =0, (4.18)

where
L. X
0, = ’ (0% p)(g-d%). etc., (4.19)
1

and x{ and 0} are the elastic eigenvalues and normalized eigenvectors, respectively.
Note that in the limit as # — o0, we recover the three elastic eigenvalues. The charac-
teristic polynomial (4.18) holds for arbitrary plastic and elastic anisotropy and seems
to have greater generality and a more compact and lucid form than previous results
(cf. LorET et al., 1990 ; OTTOSEN and RUNESSON, 1991). Equation (4.18) is similar to
expressions by MANDEL (1962) and TinG (1976) except that these authors consider
classical associative flow rules, and Mandel assumed proportional stressing across the
shock.

Specialization when the elastic part of the response is isotropic. We now consider
the case that the elastic part of the response is both linear and isotropic (and remains
so even after plastic deformation, though plastic strain is permitted to affect the
moduli) ; then

A = GI+(G+A)nn, (4.20)
where G and / are the Lamé moduli. The corresponding elastic eigen-system is
X =26+ x5=x8=G, & =n, (.21

with the remaining eigenvectors, 85 and 8%, being any two perpendicular vectors in
the discontinuity surface. To emphasize the structure of the solution to the eigen-
problem, we define

X =2G44, (4.22a)
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=0 (4.22b)
0, = 1 ! 4.23.
n — ’].171‘{1 - " Pn‘[u-, ( B d)
1 1
#; = }]([1:6/:-%/73(13) =, P (4.23b)

[T L

The subscript **n” stands for the normal projection component (e.g. p,=p-n) and
the subscript *t”" stands for the tangential projection vector (e.g. p, = p—p,n). We
will now show that the complete spectral solution depends on the values of 6, and 0,
as summarized in Table 1.

Using the above definitions in (4.20) and (4.11), the original eigen-problem (4.6)
becomes

1
[(.\'—.\f)l — (X} —x{)nn+ " qu w =0, (4.24)

and the characteristic polynomial becomes
(X=X =) (x—xD)+ 0, (x — X)) +0,(x—x)] = 0, (4.25)

which has a structure similar to the general polynomial (4.18).

Note that whenever there is elastic isotropy, one plastic wave speed is ahvays the
elastic shear wave speed. The quadratic formula gives the remaining two “stare-
dependent”™ eigenvalues :

0= S 45 = (0, + 0] £ 5/ (0, + 007 = 20, — 0) (38 — x%) + (x5 — x5)2.
(4.26)

OTTOSEN and RUNESSON (1991) recently presented an exact solution for acceleration
wave speeds in elastic -plastic materials with isotropic elastic response. Their solution

TaBLE 1. Complete spectral solution

0, 0, Eigen-pairs
0 0 x; (4.43) x; (4.43) X, (4.47)
0 1 x; (4.42) xi (4.42) X7 (4.42)
0 |#1,0 X, (4.43) X, (4.43) x,—0, (4.41)
—1 0 x @45 | X (446 X (4.46)
£-1,0 0| x5 (@445 | x @447 | <—0, (441
#0 # 0 x; (4.45) NE (4.41) NE (4.41)

The over-bar denotes division by G+ 4. In parentheses is the equation
number for the cigenvector, and “NE means the cigenvalue [given by
(4.26)] is not equal to an elastic eigenvalue. The last two columns correspond
to the “state-dependent” eigenvalues.
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{derived using a less direct method) is consistent with ours, but has a less compact
and transparent structure and might, therefore, be less convenient for general appli-
cations. The solution (4.26) may also be applied to the multi-phase material with
incompressible constituents of LORET and HARIRECHE (1991) if x{ and 6, are replaced
by xi/r and 0,/r, respectively, where r is defined in their equation (6.8).

Non-dimensionalization of the eigen-problem with elastic isotropy. Specific properties
of the eigenvalues (such as their numerical sign and ordering relative to the elastic
eigenvalues) are most easily derived by using a non-dimensionalized version of the
eigen-problem. For any scalar or arbitrary order tensor Z, define an over-bar by

7= 2 - 7 4.27)
T —xt G+ (4.2
From (4.22),
G 2G+4
e = 1 =2y oz IR, S I )
< Gl 2v and X Gii (1-v), (4.28)

where v is Poisson’s ratio. The eigen-problem (4.24) takes the following non-
dimensional form :

1
[(g—xﬁ)l—nw - ﬁq} ‘w =0, (4.29)
i

and, from (4.26), the solution for the non-dimensionalized eigenvalues is

T = M+ ) — O+ 0]+ 4/ (0, +0) =20, —0)+ 1. (4.30)

Noting that 2 — % = 1, we see that ¥—x° and ¥— are each pure functions of f,
and 0, which will be later exploited to deduce the ordering of the plastic eigenvalues
with respect to the elastic eigenvalues.

Properties of the eigenvalues. The eigenvalues are real only if the discriminant in
(4.30) is non-negative. Figure 1 illustrates the (tilted) parabola for which the dis-
criminant vanishes. A sufficient condition for real eigenvalues is 0, < 0 and/or 8, = 0,
or, equivalently,

0,—0, <10,+0,. (4.31)

Recall that if P and Q are known, then 8, and 6, are known. When the elastic part
of the response is isotropic, (4.14) and (4.15) give

p=2Gn-P+/ntrP=2Gn P+ Kntr P, (4.32a)
¢q=2G"Q+/ntrQ =2Gn-Q*+Kn tr Q, (4.32b)

and (4.13) gives
n=h+2GP": Q%+ K(tr P)(tr Q), (4.32¢)

where K is the bulk modulus, “tr”” denotes the trace, and a superscript ““d” denotes
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two negative real

eigenvalues \J\ _én

complex one positive
conjugate real eigenvalue

eigenvalues

& one negative
real eigenvalue

two positive
real eigenvalues

Fia. 1. State-dependent cigenvalues for elustic isotropy. Points on the parabola correspond to a vanishing
discriminant in (4.30) and, therefore. to double roots. The slanted line tangent to the parabola corresponds
to the situations in which at least one eigenvalue is zero.

the deviatoric part. Thus, using an orthonormal basis having the 1-direction aligned
with n,

1

O, = . 2GPY, +K ir PYQ2GOY, + K tr Q), (4.33a)
4G* ;

0, = = (P1,Q1.+P{.Q1). (4.33b)

When the constitutive law is self-adjoint (i.e. when P is coaxial with Q), both 6,
and 0, will have the same sign and, referring to Fig. 1, the eigenvalues will be real (as
expected). Observe that 0, = 0 whenever n is a principal direction of either P or Q,
which confirms a weaker sufficient condition by O1roseny and RUNESSON (1991) given
in their Table 1. Whenever # > 0 and the second-order tensors P and Q share the
same deviatoric part, (4.33b) shows that 0, > 0. thereby guaranteeing real eigenvalues
(see Fig. 1), which was also noted for single phase materials by LORET et al. (1990).
This result is in agreement with the stronger result by OTTosEN and RUNESSON (1991)
that (in the present notation) #, = 0 whenever n > 0 and P and Q share both the same
principal directions and the same ordering of the eigenvalues.

For the multi-phase material with incompressible constituents discussed by LORET
and HARIRECHE (1991). recall that the eigenvalue solution may be obtained by replac-
ing xj and 6, by xi/r and 0,/r. respectively. If # is large enough, the denominator in
the normalization equation (4.27) could be negative, thereby placing the complex
parabola in the fourth instead of the second quadrant in Fig. 1, and 0, > 0 would be
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insufficient to rule out complex eigenvalues. The inequality guaranteeing a non-
negative normalization factor can readily be shown to be equivalent to the inequality
7 > 0 derived by LORET and HARIRECHE (1991), where 7 is defined in their equation
(6.17). In the remainder of the present analysis. we will be concerned with a single
constituent so that the complex parabola will always be in the second quadrant as
tllustrated in Fig. 1.

The critical condition for localization to occur in a homogeneous, uniformly
deformed body is known to correspond to the vanishing of a wave speed [e.g. MANDEL
(1964) and RicE (1976)]. From (4.25), at least one eigenvalue will be zero if and
only if

0, 0,
NETRSN (4.34)
Xn X

which is a straight line in the 0, vs 0, plane. Figure | divides the real eigenvalue region
according to the sign of the state-dependent eigenvalues. The line tangent to the
parabola describes the set of (0., 0,) values for which at least one cigenvalue is zero,
with two zero eigenvalues being possible only at the point of tangency.

The ordering of the eigenvalues with respect to the elastic eigenvalues may be
determined by regarding the characteristic polynomial (4.25) as a function of 0, and
0, with v fixed. It is straightforward to show that lines of constant cigenvalue are
straight lines tangent to the complex parabola. As illustrated in Fig. 2, each point in
the interior of the real eigenvalue region is intersected by two such lines, one for each
state-dependent eigenvalue. Any line tangent to the complex parabola at the part
marked “x < x{”" is a line of constant eigenvalue of magnitude less than the elastic
shear eigenvalue and, similarly, any line tangent to the part marked “x > x; " cor-
responds to an eigenvalue greater than the elastic longitudinal eigenvalue. Any line
tangent to the part of the parabola between the points (0,1) and (—1,0) has an

O,

k 4 o
x<xf complex A -ee
eigenvalues

Y B e
® i
-y : ; y ¢ —ob—ts
3 G
o | )
z N PPN
5 / — °
. .
\ D c . .o

F1G. 2. Eigenvalue ordering for elastic isotropy. Lines of constant eigenvalue are tangent to the parabola.

The number lines at the right show the ordering of the plastic cigenvalues relative to the elastic cigenvalues

(at least one cigenvalue always equals the clastic shear eigenvalue). Assuming y > 0, all self-adjoint

constitutive laws will lie in region B. and constitutive laws for which the deviators of P and Q arc equal
will lie in regions B and C.
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eigenvalue x satisfying x¥ < x < x§. The ordering of the eigenvalues relative to the
elastic eigenvalues is illustrated by the number lines in Fig. 2. Our ordering for
classical self-adjoint constitutive laws (region B in Fig. 2) agrees with that derived by
MANDEL (1962). Non-self-adjoint constitutive laws will in general have different
ordering. Our ordering for deviatoric associativity (regions B and C in Fig. 2) agrees
with that reported by LORET ef al. (1990).

Conditions for a plastic eigenvalue 1o equal an elastic eigenvalue. Determination of
eigenvectors depends on whether the plasticeigenvalue is equal to an elastic eigenvalue,
and, if it is, on its algebraic multiplicity. Whenever 0, and 0, are both non-zero, neither
of the state-dependent eigenvalues given by (4.26) will equal an elastic eigenvalue.
Otherwise, at least one of the state-dependent eigenvalues will equal an elastic eigen-
value as outlined below.

(1) At least one state-dependent plastic eigenvalue will equal the elastic longitudinal
eigenvalue x% if and only if 8, = 0, in which case the state-dependent eigenvalues are

given by
} R 2(1 —v)
S EC S S [ B T S (4.35)

The algebraic multiplicity of x§ is rwo at the point ( — 1, 0) in Fig. 1, and uniry elsewhere

on the 6, = 0 axis (see the first, fourth and fifth rows in Table 1).

(2) At least one state-dependent plastic eigenvalue will equal the elastic tangential
eigenvalue x{ if and only if 0, = 0, in which case the state-dependent eigenvalues are

given by
) x5 -0, 2(1 —v)—0,
X = & =11 -2 ) (4.36)

The algebraic multiplicity of x7 is three at the point (0, 1) in Fig. 1, and rwo elsewhere
on the 0, = 0 axis (see the first, second and third rows in Table 1). As mentioned
earlier, a sufficient (but not necessary) condition for 6, = 0 is that n be a principal
direction of either P or Q.

4.3. Eigenvectors—arbitrary elastic anisotropy

To find the eigenvectors, we return to the original eigen-problem (4.6), which, using
(4.11), we rewrite as

1
(xI—A%)-w+ " plq-w) =0 (4.37)

In terms of the elastic principal basis, this equation may be decomposed into the
following system :

1
(x—x)w, + 0 pilgw +qaws+giws) =0, (4.38a)
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1 )
(x=x9wa+ = palg Wi +gwa+gsws) =0, ) (4.38b)
U
, . 1 ,
(x—xw1+ f? pilgwi+q.wy+gaws) = 0. (4.38¢)

Thus, the eigenvector associated with a non-elastic eigenvalue is

€ €

Xx—x5  x—Xx5 x—x5

w:oc( LA & SR ) = (4.39)

e

where p; is the projection of p onto the /th elastic eigenvector, and « is an arbitrary
scalar (chosen to normalize w if so desired). Although the constitutive tensor Q does
not appear explicitly, it does affect the plastic eigenvalue x. The geometric multiplicity
of a non-elastic eigenvalue (i.e. the number of associated eigenvectors) is always unity,
even if the algebraic multiplicity is greater than unity.

The solution to (4.38) complicates considerably whenever the eigenvalue is equal
to an elastic eigenvalue. For example, if x = x{, satisfaction of (4.38a) depends on
whether or not p, is zero, and for each of these cases, the solution further depends on
whether x5 or x5 equals x§ and on the algebraic multiplicity of the eigenvalue x. Each
of these possible sub-cases will now be analyzed for the simpler case that the elastic
part of the response 1s isotropic.

4.4. Eigenvectors-—elastic isotropy
When the elastic part of the elastic-plastic response is isotropic and linear, the

eigen-problem (4.29) may be written as the following system :

, . b . _ ;
(X—X)w, + 7 PUGawn G w) = 0, (4.40a)

1
(f*fﬁ)w“ + l/7 ﬁn (Cjn Wy +(—}t : Wt) = O* (440b)

where the subscript “n” stands for the normal projection component (e.g. p, = n-p)
and “t” stands for the tangential projection vector (e.g. p, = p—p.n).

The eigenvector (4.39) associated with a non-elastic eigenvalue can be written in
the case of elastic isotropy as

w :—-oc( B , B ) ] : (4.41)
X=X, X—X t

where p, and p, are the projections of p normal to and tangent to the jump surface,
respectively, and « is an arbitrary scalar.

> @gwﬁ?i /P

{
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is straightforward to show that the two associated eigenvectors will
to each other if and only if

Py _pi
0, 0,

¢ non-clastic (last row in Table 1).
be perpendicular

where p, and p, are the magnitudes of p, and p,, respectively, neither of which [recalling
(4.35) and (4.36)] is zero when borh state-dependent eigenvalues are non-elastic.

Ei genvectors associated with

elastic eigenvalues depend not only on the nature of

p and q, but also on the algebraic multiplicity of the eigenvalue. That is, the points

(0, 1yand (—1

.0y in Fig. T must be treated as special cases.

Consider first the case that x = x{. It is shown in the Appendix that if x = x¥ with
an algebraic multiplicity of three (second row in Table 1), the solution for the eigen-

vector w depends on the tangential projections of p and q as follows :

g =0

g #0

p =10

p,#0

Three eigenvectors,

arbitrary direction

Two eigenvectors
nw =70

Two eigenvectors
g w=1>0

One eigenvector
= up,

(4.42)

where  is an arbitrary scalar. OTTosEN and RuNgsson (1991) showed that if the

tensors P and @ share both the same principal directions and ordering of the

eigen-

values, then only the upper-left solution is possible. This conclusion can be readily
verified for the special case that P and @ share the same (or coaxial) deviatoric parts

because, mn this special

sase, (4.3°

only if the tangential projections of p and q bosh vanish. In general

Ottosen—Runesson conditions do not hold, the geometric multiplicity of the

can be less than the algebraic multiplicity.

If v = x7 with an algebraic multiplicity of rwo (first and third rows in Tabl

e

cigenvector solution is

=0

p#0

q =10

g, #0

Two eigenvectors,
nrw =10

Two eigenvectors
new =0

W

Two eigenvectors
= w,n-og, +

One eigenvector

fqin X {Si} W= J{pa

where x denotes the v
fower left solution,

ector cross product,

zand fa

e arbitra

3b) shows that 0, can be zero [as required by (4.36}]
. however, if the
eigenvalue

1), th

(4.43)

vy scalars, and, in the
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v = p?(qtfh). (4.44)
7 {(1-0,)
If the Ottosen—~Runesson conditions hold, only the upper left solution in (4.43) is
possible.
If x = xy with an algebraic multiplicity of unify (last three rows in Table 1), the
only eigenvector is

w=anxq) |. {4.45)

where o is an arbitrary scalar. This eigenvector will be perpendicular to the two
remaining eigenvectors if p, is coaxial with q,, as is the case with the specific flow law
discussed in Section 4.6.

OtTosEN and RUNESSON’s (1991) solutions for the eigenvectors associated with
x{ are incomplete. They implicitly assume (except, apparently, when the Ottosen—
Runesson conditions hold) that the tangential projection of p is non-zero. Ottosen
and Runesson state that the eigenvector associated with x{ must be perpendicular to
both n and g, which we have shown is correct only if the tangential part of p is
non-zero (in Ottosen and Runesson, the notations for p and q are reversed and differ
by a scalar multiplier).

Now consider the case that x = xj. It is shown in the Appendix that when the
algebraic multiplicity of x% is rwo (fourth row in Table 1), the solution for the
eigenvector w depends on the normal components of p and q as follows :

po=0 Py #0
0 =0 Two eigenvectors, One cigenvector
o = w = on-+ fip W= on ‘
(4.46)
g 40 One eig_env:cctor
w = fip

where o and f§ are arbitrary scalars. Any one of these solutions is possible even if the
Ottosen~-Runesson conditions hold.

When the algebraic multiplicity of x§ is uniry (first and fifth rows in Table 1), the
solution is

Py =0 P. # 0
0 =0 One cigenvector One eigenvector
I =Y W = on W = on
4.47)
One eigenvector
g, # 0 BENVECC
w = w.n-+[p
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where o and f§ are arbitrary scalars, and. in the lower-left solution,

W, = ~/)’;;' (1+0). (4.48)

4.5. Jump restriction implied by the spectral analysis

Although the spectrat analysis gives no information about the magnitude of the
stress increment. it does imply a restriction on the evolution of stresses within the
transition layer for a given wave speed, ¢*. The stress and flow parameters must vary
throughout the transition layer in such a way that the eigenvalue x* satisfies the
characteristic polynomial (4.25) for every staie in the transition layer. If x* is not
equal to an elastic eigenvalue, then

0, 0,

C

Xp—X X

0. 0]
=1 and
— x* " e v + ot

=0 (4.49)
throughout the shock ; in other words, any shock propagating at a non-elastic wave
speed will have a state path such that 0, vs 0, is a straight line tangent to the complex
parabola in Fig. 2. If x* = x, then 6, must equal zero throughout the shock. In
contrast, il x* = x7, the characteristic polynomial is automatically satisfied for all
points within the shock, thereby leaving the state path unrestricted.

4.6. Terms in the spectral analysis for a specific flow law

The preceding spectral analysis holds for any physical interpretation for the second-
order tensors P and Q (so long as they are independent of the strain rate). One of the
better-known flow laws of the form (4.9) is that of RUpNICKT and RicE (1975), which
is expressed in the following form by NEEDLEMAN and RICE (1978):

P =S/27,4+al/3, (4.50a)
Q = S/2t,+h1/3. (4.50b)

Here, @ and b are scalars, S is the deviatoric stress tensor, 7. is the “equivalent” shear
stress (i.e. 7, = V/S :S/2), and Lis the identity tensor. The yield surface corresponding
to (4.50b) is axisymmetric about the one-dimensional linear manifold of 1sotropic
second-order tensors. In other words, the yield criterion is the same as the Mises
criterion except that the flow stress is pressure dependent, as is commonly observed
for rocks and porous metals. For this specific flow law, the tensor Q is parallel to the
normal to the yield surface in stress space, and P is parallel to the plastic strain
increment. Because P has an isotropic component, this material exhibits plastic
compressibility.
Assuming elastic isotropy, (4.32) gives

-

p= n-S+ Kan, (4.51a)

¢




Existence of shock waves 323

G ‘
q=_ n'S+ Kbn, (4.51b)

and
n=h+G+Kab. (4.52)

Typically, ab = 0 and h > — G, and, therefore, > 0. The scalars 6, and 8, are

/G G
0, = n(flsn‘i‘Ka) (;Sn‘i‘Kb), (4.53a)
16 : \
0, = - [(S1)"+(S071 (4.53b)

where the components refer to an orthonormal basis with the 1-direction parallel to
n. With > 0, the quantity 6, is non-negative so that constitutive laws with (4.50) will
always fall in regions B or C of Fig. 2, and, referring to Fig. 1, the state-dependent
eigenvalues will be real, and no more than one can equal zero. Also note that 6, is of
first-order in 4(h+ a), but second-order in 4(h—a) ; thus, plastic wave speeds for this
material appear to be an order of magnitude more sensitive to plastic compressibility
than to plastic non-normality.

Substituting (4.53) into (4.34) leads immediately to Rupnickl and Rice’s (1975)
equation for the critical hardening modulus at localization. Because the model (4.50)
is intended for porous materials, one might obtain a better prediction for the critical
hardening modulus by using the apparent plastic flow direction P* and the apparent
hardening modulus A* of (5.13).

5. Evastic-Prastic COUPLING

In this section we demonstrate that dependence of the elastic moduli on plastic
dilatation does not affect the fundamental structure of the non-associative tangent
compliance tensor (4.9), so the results of the previous sections may be used for these
materials,

If the elastic part of the strain response is linear but includes dependence of the
elastic moduli on plastic straining, the elastic strain increment may be written as the
sum of a recoverable part and a coupled part:

de® = M :de+dM:ae, (5.0

where M is the instantaneous macroscopic fourth-order elastic compliance tensor.

Elastic—plastic coupling is commonly caused by the presence of microvoids, so we
will discuss it in this context. ZHAO er al. (1989) give the macroscopic (effective)
isotropic elastic moduli for a spherically voided material as

G o 1=5, 2 [4-5y,
L ’ here fiy = [ " 2
G ‘f’“<l~.f§n!3.n) where - fin 15(1~v > (5.28)

m
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K | — %« 1 14w
o 1 he e 52
K, 'f“‘<1~.f;ﬂxm> he i D 4 pry -

Here, G and K are the shear and bulk moduli respectively, and Ju is the volume
fraction of the matrix. A subscript “m™ indicates the matrix material (e.g. G, is the
shear modulus of the matrix material). This model may be subsumed under a more
general form for the macroscopic elastic compliance tensor. namely,

1 “.]x‘n MC,

.fﬂ]
where M, is the elastic compliance tensor for the matrix material, and M. is a fourth-
order elastic-plastic coupling tensor dependent only on the matrix material properties.
The tensor M, corresponding 1o (5.2) is

M = M+ (5.3)

1 1 s
M, = D, Il
‘ 2Gm(;l ‘“ﬁm) o 31{111(] _O(m)

3=v)[ 5 S
=5 D I . 5.4
sz [7 - 5vm o 2(1 + \'m) :l ( )

where [, is the symmetric deviator operator of equation (3.27), T is the identity tensor
divided by its Euclidean magnitude, and I is a fourth-order tensor-tensor dyad having
components

(ii)ijrx = ;(51[(57'(\' (55)

Assuming the spherical voids remain spherical after permanent deformation [which.
according to RICE and TRACEY (1969). is reasonable for high ratios of pressure to
effective stress], and assuming the elastic moduli of the matrix material are independent

of plastic straining, the increment of the macroscopic elastic compliance tensor in
(5.3) 1s

df, :
dM = — /] M. (5.6)
S
For a plastically incompressible matrix material, the rate of change of void volume
fraction f, at the unloaded state depends on the rate of plastic deformation according
to the kinematic relationship

fo=U=f)uwpr, (5.7)

where D is the plastic part of the rate of deformation and may be approximated by
the plastic strain rate for small displacement gradient deformations. Equation (5.7)
is used by several authors (e.g. NEEDLEMAN and RICE, 1978), except that the distinction
between the current void fraction and the void fraction at the unloaded state is ignored
in these works. It is straightforward to show that the difference is negligible if elastic
dilatation is negligible compared to plastic dilatation. However, even if the elastic
deformation is small compared to the plastic deformation. the elastic dilatation may
still be large compared to the plastic dilatation—-after all. for non-voided materials,
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the plastic dilatation is identically zero and so the elastic dilatation is indeed large in
comparison. Equation (5.7) i1s a kinematic equation—-it does not depend on the
mechanism of void growth. However, the void rate in (5.7) is frequency interpreted
in the literature as the contribution resulting from void growth only, with other
mechanisms such as void nucleation contributing separately. This approach is legiti-
mate if f, is regarded as an effective void fraction; for example, the effective void
fraction might be defined as the actual void fraction plus the volume fraction of
cracked or debonded particles. Even if this approach is adopted, however, the effective
void fraction should be carefully distinguished from the true void fraction when
writing equivalent work expressions equating macroscopic plastic work rate to the
matrix plastic work rate because the frue matrix fraction (not 1 — f, .peive) should be
used in these expressions.
In the present analysis, f, is the true unloaded void fraction so that f,+ fi, = 1

Equation (5.7) may therefore be integrated to give

Jo = fuly, (5.8)

where /3, is the initial matrix fraction, and J, is the accumulated plastic Jacobian
(equal to the ratio of the initial unloaded macroscopic density to the current unloaded
macroscopic density). The rate of macroscopic elastic compliance may now be written
o
M = -2 M, (5.9
<flﬂ

which, for small displacement gradients, becomes, in incremental form,

!
dM = ( - M) tr (de?). (5.10)
Thus, using (3.1) and (5.1) together with a plastic strain increment of the form
|
dsp:hPQ:dc‘. (5.11)

the tangent compliance tensor § ' of (4.2) becomes

I
£ =M+, PHQ. (5.12)

where

1 pr ] P i
e hiy

m

(d:P)M. 1o (5.13)

Neglecting elastic—-plastic coupling, Hivy. (1968) proved that normality of the plastic
strain increment to the yield surface implies self~adjointness of the constitutive tensor
&. Equation (5.12) shows that even if the plastic strain rate is normal to the yield
surface (i.e.if P is coaxial with Q), elastic-plastic coupling generally makes the tangent

compliance tensor & ' non-self-adjoint. Non-self-adjointness of associative flow laws
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has also been noted by Mamer and HUECKEL (1979) for elastic—plastic coupling and
by TVERGAARD (1982) for thermo-mechanical coupling.

For isotropic elastic response, if the deviatoric part of P is coaxial with the stress
deviator, then the deviatoric part of P* is also coaxial with the stress deviator. If, as
in the specific flow law of Section 4.6, the deviatoric parts of hoth P and Q are coaxial
with the stress deviator, then [assuming # in (4.13) is non-negative] elastic—plastic
coupling will nor produce complex eigenvalues for shock waves.

6. DiscussioN

The first analysis presented in this paper serves to bound the magnitude of a
proposed jump in stress. With our example, we demonstrated that in some cases the
magnitude of the jump in stress can be shown to be zero, thereby ruling out the
existence of such a jump altogether.

The extended spectral analysis gives no information about the magnitude of a
proposed jump in stress. Instead. we used the eigen-analysis to derive explicit solutions
for the permissible speeds at which a jump can travel and the direction for the jump
in stress.

These results can be used together to restrict the class of possible solutions to
boundary value problems, such as dynamic crack growth, that may involve moving
stress discontinuities.
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APPENDIX . DERIVATION OF THE EIGENVECTORS ASSOCIATED WITH ELASTIC EIGENVALUES
1. Solution when x = x¢

With ¥ = . the system (4.40) becomes

i)l((inn'n'*'(-h ‘wl) =0, (Al'd)
1
—w+ﬁmwwywuw):& (A.1b)
where we have used (4.28) to write ¥ — & = — 1.

First consider the case that the algebraic multiplicity of x{ is two or three, which, by (4.36),
is possible il and only if ), = 0. Thus, recalling (4.23b). exactly onc of the following holds.

Case 1:p, = 0 and q, = 0. Here. (A.1a) is automatically satisfied and, using (4.23a). (A.1b)
becomes

(0, =, =0. (A2)

Il the algebraic multiplicity of &7 is three, (4.36) shows that 0, = 1. and the eigenvectors are,
therefore. arbitrary. If the algebraic multiplicity of x¢ is two. (4.36) shows that 7, # I, and,
therefore. the cigenvectors must satisfy n-w = 0. but arc otherwisc arbitrary.

Case 2: p, # 0 and q, = 0. Equation (A.l) becomes
G,w, = 0. (A.3a0)

|
=t pa(G,) = 0 (A.3b)
7]

which show that n w = 0.

Case 3: p, = 0 and g, # 0. Equation (A.la) is automatically satistied and. recalling (4.23a),
(A.1b) becomes

L 1
O =Dt - Po@w) = 0. (A4)
1

I the algebraic multiplicity of x{ is three (ic. if 0, = 1), then the only restriction on the
cigenvector is - w = 0, which follows from (A.4) because (1, = 1 guarantees p, # 0. 1f. on the
other hand. the algebraic multiplicity of x{ is nvo (ie. if 0, # 1). then (A.4) is a restriction
between the normat component of w and its component in the direction of §,. By the projection
theorem. there must exist scalars w,, x and f. such that

w = w,n+x2q,+ f(nxq,), (A.5)
where x is the vector cross product. Equation (A.4) shows that
_ 2 7.(q,0q)

W = =0 (A.6)

and the scalars % and f} arc unrestricted.
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Case 4: p, # 0 and g, # 0. with p, perpendicular to g,. Equation (A.1) becomes
(qnwn +Q1 i wx) = 0, (A73)
i .
ot Bl W) = 0. (A.7b)
Using (A.7a) in (A.7b) shows that w, = 0, which, from (A.7a). implies q,*w = 0. Thus, the
eigenvector w must be perpendicular to both n and §q,, or, in other words,
w = a{n xg,), (A.8a)

where o 18 an arbitrary scalar. Because p, is perpendicular to g, and (by definition) to n, the
eigenvector may alternatively be written

W = op,. (A.8b)

which concludes the solution for the eigenvectors associated with x{ having an algebraic
multiplicity of two or three.

If the algebraic multiplicity of x¢ is uniry, (4.36) shows that §, % 0. Thus, {from (4.23b), p,
and g, must be non-zero and non-perpendicular. The system (A.7) still applies, and the
eigenvector is given by (A.8a).

2. Solution when X = X§,

With ¥ = &}, the decomposed eigen-system (4.40) becomes
1. . _
W, 7 PlGowa+q W) =0, (A.9a)

ﬁn(gn Wy +(_lt ) "vz) = 0~ (Agb)

where we have used (4.28) to write &5 — ¢ = 1. By (4.35), the eigenvalue x can equal x§, if and
only if §, = 0. Thus, recalling (4.23a), exactly one of the following holds.

Case 1: p, = 0 and ¢, = 0. Here, (A.9b) is automatically satisfied and (A.9a) becomes

i
w, -+ 7 f‘l(‘ii.wl) =0, (A]O)
which shows that w, = f3p,, where [ is a scalar. Using (4.23b), (A.10) requires that f satisfy
(1+0)pp, = 0. (A1)
If the algebraic multiplicity of x° is rwo, (4.35) shows that §, = — 1, and, therefore, w = om+ Sp,,

where o and [ are arbitrary scalars. If, on the other hand, the algebraic multiplicity of x7 is
unity, (4.35) shows that 0, % — 1, and, therefore, fp, = 0 and the eigenvector is n.

Case 2: p, # 0 and ¢, = 0. The system (A.9) becomes
1
W§+ﬁ f’((‘il.wi) =0, (A.128)

q-w, =0, (A.12b)
which implies that w, = 0, or, in other words, w = n,

Case 3: p, = 0 and ¢, # 0. Equation (A.9b) is automatically satisfied and (A.9a) becomes

1
W+ i Bldow, +qow) =0, (A.13)

which, because p, = 0, shows that w = w,n+ fip. Equation (A.13) requires
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(A.14)
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_ 1
P (L+0)B+ P 0.
Thus,
W= —/;;(H(’Z) n+ fp. (A.15)
[¢ n
If the algebraic multiplicity of X% is oo (i.e. if §, = —1). the eigenvector becomes simply f5p.
where f is arbitrary. If p, = 0 (in which case p = 0. and. therefore, 0, = 0, = 0), the eigenvector

reduces (o the elastic cigenvector xn, where « is arbitrary.




