MPM Workshop 2013

Shane C. Schumacher
Kevin P. Ruggirello
Sandia National Laboratories

Byran Kashiwa
Los Alamos National Laboratory
Project Goals

- Add full Lagrangian capability into CTH
- Fully coupled fluid-structure interactions
 - Numerical method integrated into CTH
 - Common input between CTH and Lagrange method
 - Coupled to Adaptive Mesh Refinement (AMR)
 - Dynamic load balancing between CTH and Lagrange method
- Improve strength and failure mechanics
 - Lagrangian fracture mechanics
 - Reduce advection errors in damage and failure
- Fast, Robust and Easy to use
Challenges

- Interface existing CTH data structure
 - Create new data structure for Lagrangian capabilities using Fortran 90
 - Interface new data structure to CTH
- Interface existing CTH models
 - EOS, strength and failure models
 - New material interface for Lagrangian materials
 - Lagrangian fracture coupled to CTH
 - Material switching and void insertion
- Visualization
 - Using Spymaster for on-the-fly and post visualization
 - Interface new data structure to Spymaster
CTH Overview

CTH is a massively-parallel shock-physics code.

- Eulerian shock wave physics computer code solving conservation equations of mass, momentum, and energy for up to 98 simultaneous materials including gases, fluids, solids, and reactive materials
 - Analytic & Tabular Equation-of-State representations
 - Advanced Strength & Fracture models
 - Adaptive Mesh Refinement
- Applications (partial list):
 - National Missile Defense (NMD), Nuclear Emergency Response (NEST), Weapon effects & vulnerability
 - Armor, Anti-Armor, Munitions Design, Blast Effects
 - Planetary Science, Asteroid Impact & Planetary Defense
- CTH licensed to hundreds of external DOE & DoD agencies and their subcontractors
 - 600+ users

32,000 processor Cielo calculation showing nearby blast on aluminum and steel structure
Fluid-Structure Interaction

- Applications
 - Blast on target
 - Ballistics
 - Biomechanics
 - Damage and failure mechanics

- History
 - Charles S. Peskin
 - Immersed boundary method Heart valve modeling
 - Los Alamos National Lab (LANL)
 - Sandia National Laboratories (SNL)
 - Notables: S. W. Attaway, G. C. Bessette, D. A. Crawford, R. L. Bell
Lagrangian Numerical Method to Use?

- Finite Element versus Particles
- Long history of both methods being used for Lagrangian Numerics
 - Los Alamos National Laboratories
 - Many projects over the past 50+ years looking at coupling methods
 - Finite element versus finite volume versus particles
 - Los Alamos National Laboratories – Particle-In-Cell (PIC)
 - Los Alamos National Laboratories – Fluid Implicit Particle (FLIP)
 - Sandia National Laboratories – Fortissimo (2008)
 - Sandia National Laboratories – Zapotec II (2011)
 - NAVSEA - DYSMAS (DYNA-GEMINI)
 - Others, Material Point Method, Smooth Particle Hydrodynamics, etc.
- Mesh objects versus material insertion
- Adaptability to future numerical methods in Hydrodynamics
Choice: Particles (Markers)

Why?

- Material Point Method (MPM) and material tracking
 - MPM (Sulsky, D., Chen Z. and Schreyer, H. L.)
 - Both use structured background grid for gradient computations (no neighbor searching)
- History of working well in a finite volume shock hydrocode
 - Challenges in finite elements in a finite volume
 - Integration into a finite volume numerical framework by Bryan Kashiwa at Los Alamos National Laboratory
- Next generation failure mechanics
 - No element boundaries
 - Lagrangian fracture mechanics in a finite volume shock code
- No unstructured meshing
- Massively parallel
 - Dynamic load balancing based on marker count on processors
- Adaptive Mesh Refinement
 - Marker combining and splitting
Marker Methods

- 1D, 2D and 3D
- Interface into existing material insertion capability in CTH
 - Diatom insertion of marker fields
- Strength
 - Track material behavior through grid to marker differences (Material tracking)
 - Compute stress and accelerations on markers and update to grid (MPM)
- Boundary Conditions
 - Symmetric, outflow, inflow and outflow
- Failure
 - Material switch from shear supporting to hydrodynamic
 - Void insertion based on marker failure
 - No failure
- Massively parallel marker capability with/without AMR
 - Ghost markers
 - Combining and splitting
- All existing CTH material models have been integrated
 - All EOS models
 - Full stress tensor or deviatoric tensor options (except GEFFS and PSDAM)
 - All failure models
Marker Methods – cont.

• Composite model integration with markers
 – Initializing marker with material direction using existing layering techniques
 – Separate strain rates for markers in layers
 – With multifield can track layer interaction for delamination and other failure processes

• Plate, shell and beam theories added to CTH
 – Implemented existing plate theory from Los Alamos National Laboratory
 – Working with Los Alamos National Laboratory to add new shell theory

• Discard

• New mass footprint of marker fields
 – Second order accurate and sharp object interfaces

• New material models
 – Full-stress tensor with MPM
 – Integration of deformation tensor
 – Hyperelastic Models
 • Mooney-Rivlin
 • Transverse-Isotopic Mooney Rivlin
 – Stochastic models
 • Research on stochastic energetic ignition models
Using Markers

• Sample Input:

```
mark
mmat 1 6
mmat 2 4
stren 3
endmark
```

- Marker start
- Material (field) number
- Markers in linear direction
- Strength option
- Marker end
Using Markers
Select Options

• Strength options
 – Material tracking (stren 1)
 – Material Point Method (MPM) (stren 3)

• Energy options
 – Irreversible energy only (senrg 1)
 • Add only irreversible energy from stress power
 – Total energy, classical CTH, (senrg 2)
 • Total and irreversible energy from stress power
 • Controlled release of energy during fracture (reversible)

• Failure options
 – No failure (fail 10)
 – Reduce deviatoric stress (fail 2)
 – Field switching (fail 1)
 • Marker (fmat 0) or CTH type material (fmat 1)
Using Markers
Select Options cont.

• Split and Combine
 – Momentum conserving techniques
 – AMR or non-AMR problems
 – Set limit number of markers in one cell to combine (mcomb #)
 – Set lower limit number of markers in one cell to split (msplit #)

• Plates, shells and beams
 – Plate option from LANL
 – Set by field (mplate “field #” “h” “integration”)
 – Shells and beams to be added in the future
Triple Plate

- Two-dimensional cylindrical
- Rod impacting flat plates
- Velocity is 500 m/s
Triple Plate

V_{mag} at 0.00e+00 seconds

V_{MAG} (m/s)

-10 to 10 on the Y-axis and -15 to 15 on the X-axis.
Oblique Composite Plate

- Two dimensional rectangular
- Thin metal projectile
- Velocity of 100 m/s
- Composite
 - $[0^\circ, 90^\circ, 90^\circ, 0^\circ]$
Oblique Composite Plate

Graph showing composite failure across X (cm) and Y (cm) with a color scale indicating:
- 1 - No Failure
- 2 - Matrix Failure
- 3 - Complete Failure

Time 0.0 µs
Elastic Ball

- Three dimensional rectangular
- Elastic ball
- Velocity 500 m/s
Elastic Ball

Time 0.0 µs
Future Directions

• Thin structure mechanics
 – Shock support method for membranes/shells

• Integration of Convective Particle Domain Insertion (CPDI)
 – University of Utah collaboration
 • Summer student Michael Homel and Rebecca Brannon
 – Technique developed to expand a marker domain based on deformation

• Implicit Continuous Eulerian (ICE++)

• Multifield
 – Multiple velocities for each field (material) in a finite volume
 – Momentum, energy and mass interactions

• New material models
 – Fracture and failure
 – Non-linear elasticity in shock
 – Stochastic fields
Conclusions

- Beta release of Markers in CTH version 11.0
 - March 2013
 - User manual

- Full Lagrangian method coupled into CTH
 - Reduce advection errors
 - Failure mechanics
 - Framework for new constitutive models
 - Hyperelastic constitutive models

- Marker options
 - Strength
 - Failure
 - Energy

- Robust and easy to use technique for modeling fluid-structure interaction
 - No unstructured meshing
 - Fully coupled
 - Common “look and feel” input
 - Quick “total time-to-solution”
Questions?