Combining Cracks and Contact with Constitutive and Cohesive laws for Complete Calculations of Cutting

John A. Nairn¹ and Yamina Aimene²

¹Wood Science & Engineering Oregon State University Corvallis, Oregon, USA

²University of Antilles Guaina, France

> MPM Workshop 14-15 March 2013, Salt Lake City, Utah

Combining Cracks and Contact with Constitutive and Cohesive laws for Complete Calculations of Cutting

John A. Nairn¹ and Yamina Aimene²

¹Wood Science & Engineering Oregon State University Corvallis, Oregon, USA

²University of Antilles Guaina, France and a Carnot Cycle and Caoutchouc Compression

MPM Workshop 14-15 March 2013, Salt Lake City, Utah

Combining Cracks and Contact with Constitutive and Cohesive laws for Complete Calculations of Cutting

John A. Nairn¹ and Yamina Aimene²

¹Wood Science & Engineering Oregon State University Corvallis, Oregon, USA

²University of Antilles Guaina, France and a Carnot Cycle and Caoutchouc Compression ...if the Clock Consents

MPM Workshop 14-15 March 2013, Salt Lake City, Utah

Motivation

- Cutting of solid wood and wood-based composites
 - Historically done by empirical methods (Koch, 1950s)
 - Almost no analysis for wood-based composites
 - Plywood
 - Particle Board
 - Oriented Strand Board

- Wood Plastic Composites
- Should be able to do better
 - *e.g.*, Atkins, Williams, *etc*.

"You can cut *Trex* just like regular wood."

Experiments Too

- Build apparatus for cutting experiments
 - Based on Patel, Blackman, and Williams (from 5th ESIS TC4 meeting)
- New experiments and analysis
 - HDPE and LDPE
 - Trex (WPC)
 - Timber Tech (WPC)
 - Wood
- Theory and Numerical modeling
 - Material Point Method (MPM)

Experiments

- Four materials HDPE, LDPE, Trex, and Timber Tech
- Rake Angles 15, 20, 22.5, 25, 30, 35, 40, 45, 50, and 55
- Depth of cut up 0.006 mm to 0.59 mm
- Semi-automatic data acquisition
- Most likely, the non-zero intercept relates to a "cutting toughness," but how it is best determined?

Griffith-Like Energy Balance (from Atkins)

$$F_c V = \tau_y \gamma(hbV) + T\left(\frac{V\sin\phi}{\cos(\phi - \alpha)}\right) + G_c bV$$

Work = Plastic Energy + Frictional Work + Fracture Work

Griffith-Like Energy Balance (from Atkins)

$$F_c V = \tau_y \gamma(hbV) + T \left(\frac{V \sin \phi}{\cos(\phi - \alpha)}\right) + G_c bV$$

Work = Plastic Energy + Frictional Work + Fracture Work

Williams/Atkins Analysis — Chip Force Method

• Energy balance to forces, energy release rate, yield stress, and shear angle

$$\frac{\sigma_y}{2}\frac{h}{\sin\phi} = \left(\frac{F_c}{b} - G_c\right)\cos\phi - \left(\frac{F_t}{b} + G_c\tan\alpha\right)\sin\phi$$

• Observations show that $T \neq \mu N$, Williams tried:

$$T = G_a + \mu N \longrightarrow \frac{F_t}{b} = Z \frac{F_c}{b} + \frac{G_a}{\cos \alpha + \mu \sin \alpha}$$

Minimize work (to eliminate φ)

$$\frac{F_c}{b} = G_c + \sigma_y h \left(Z + \sqrt{1 + Z^2 + H} \right)$$
$$H = \frac{2}{\sigma_y h} \left(\frac{G_a}{\cos \alpha + \mu \sin \alpha} + G_c (Z + \tan \alpha) \right)$$

Sample Extrapolation

"Multiphysics" Numerical Modeling

Contact Physics

- Tool = Rigid Material
- Coulomb Friction on chip and on bottom

MPM Contact

- a. Contact available for "free"
- b. But needs revision to work
- c. Key is contact normals (fixed in this problem)
- Simulation output total force on tool (same as F_c and F_t and new code option)

"Multiphysics" Numerical Modeling

MPM Contact

- Contact Detection
 - Volume Screening: $V_{total} > V_c$
 - Approaching: $\Delta \vec{p}_{i,a} \cdot \hat{n} < 0$
 - Overlap: $\vec{\delta}_i \cdot n \delta_{contact} < 0$
- Normal Vector Calculation Options
 - MVG: maximum volume gradient
 - AVG: average volume gradient
 - SN: Specify the normal
- Extension of Contact to Model Interfaces

 $T_n = D_n[u_n]$ and $T_t = D_t[u_t]$

One Imperfect Interface Result

Challenges

- 1. Finding contact area for arbitrary interface orientation
- 2. Working with stiff interfaces $D_n, D_t \to \infty$

J.A. Nairn, "Modeling Imperfect Interfaces in the Material Point Method using Multimaterial Methods," Computer Modeling in Eng. & Sci., in press (2013) — <u>http://www.cof.orst.edu/cof/wse/faculty/Nairn/papers/MMInterfaces.pdf</u>

15°

30°

45°

Model Verification

- Elastic, perfectly-plastic material
 - E = 1000 MPa, v = 0.33, $\sigma_y = 25$ MPa
 - Plane strain analysis
- Simple fracture law
 - n = 1, $G_{lc} = G_{llc} = G_c = 2000 \text{ J/m}^2$ (constant G_c regardless of mode)
 - Cubic traction law, $\sigma_c = 40$ MPa
- Frictionless contact
- Compare to analytical model
 - J. G. Williams, Eng. Fract. Mech., 77, 293-308 (2010).

Simulations Problems

• Numerical difficultly resolving contact at the tool tip

"Elastic-plastic bending"

Simulations vs. Plastic Bending Analysis

Simulations vs. Plastic Bending Analysis

Simulations Reveal Non-Negligble Bottom Force

Semi-Analytical Model

- Revise elastic-plastic bending for F_b^n
- Insert F_b^n from simulation results

$$T \neq G_a + \mu N$$
 but instead:
 $T = \mu N$
 $F_b^t = \mu F_b^n$ \longrightarrow $\frac{F_t}{b} = Z \frac{F_c}{b} + (1 - \mu Z) \frac{F_b^n}{b}$

Simulations/Modeling with Friction

Effect of Cohesive Stress

Effect of Toughness

Effect of Rake Angle

Hyperelastic-Plastic, Large Strain Material

Hyperelastic

Hypoelastic

Cumulative Plastic Strain

Hyperelastic-Plastic, Large Strain Material

Equivalent Stress

Cutting Forces

In-conclusions

- HDPE, LDPE, Trex, and Timber Tech Experiments
 - Works reasonable well, but answer depends on interpretation of the F_t vs. F_c intercept.
 - New results for Trex and Timber Tech Wood Plastic Composites
- Numerical simulations (by MPM) are working
 - Uncertain validation
 - Potential simulations (e.g., veneer peeling) may be useful
- Forces on bottom of tool
 - How to handle it?
 - Related to sharpness
 - Essential to theory and to modeling

In-conclusions

- HDPE, LDPE, Trex, and Timber Tech Experiments
 - Works reasonable well, but answer depends on interpretation of the F_t vs. F_c intercept.
 - New results for Trex and Timber Tech Wood Plastic Composites
- Numerical simulations (by MPM) are working
 - Uncertain validation
 - Potential simulations (e.g., veneer peeling) may be useful
- Forces on bottom of tool
 - How to handle it?
 - Related to sharpness
 - Essential to theory and to modeling

Carnot Cycle or an MPMgine™

- Ideal Gas as Hyperelastic Material
- Custom boundary conditions
- Trick is when to switch on returning
- Why not other materials
 - Carnot claimed general result

Carnot Cycle on Other Materials?

- First step is cooling on isothermal expansion
 - True in coupled conduction-elasticity
 - Small effect, usually neglected

- Tungsten with MG EOS
- But plasticity always heats?
- Eliminate yielding

Ideal Rubber Elastic Material

 In 1805, John Gough described a series of experiments on caoutchouc or Indian rubber:

"For the resin evidently grows warmer the further it is extended; and the edges of the lips possess a high degree of sensibility, which enables them to discover these changes with greater facility than other parts of the body."

- Mooney-Rivlin Hyperelastic Material
- "Ideal Rubber" from Flory

$$\left(\frac{\partial U}{\partial L}\right)_T = 0 \quad \text{therefore} \quad dq = -dw$$
$$dS = \frac{dq}{T} = -\frac{dw}{T}$$

Isothermal Loading of Ideal Rubber

