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Motivation

• Cutting of solid wood and wood-based composites

• Historically done by empirical methods (Koch, 1950s)

• Almost no analysis for wood-based composites
• Plywood
• Particle Board
• Oriented Strand Board

• Wood Plastic Composites

• Should be able to do better

• e.g., Atkins, Williams, etc.

“You can cut Trex just

like regular wood.”
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Experiments Too

• Build apparatus for cutting 
experiments

• Based on Patel, Blackman, 
and Williams (from 5th ESIS 
TC4 meeting)

• New experiments and analysis

• HDPE and LDPE
• Trex (WPC)
• Timber Tech (WPC)
• Wood

• Theory and Numerical modeling

• Material Point Method (MPM)
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Experiments

• Four materials - HDPE, LDPE, 
Trex, and Timber Tech

• Rake Angles 15, 20, 22.5, 25, 
30, 35, 40, 45, 50, and 55

• Depth of cut up 0.006 mm to 
0.59 mm

• Semi-automatic data 
acquisition

• Most likely, the non-zero 
intercept relates to a “cutting 
toughness,” but how it is best 
determined?
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Atkins Energy Analysis
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• Energy balance to forces, energy release rate, yield stress, and shear angle

• Observations show that                , Williams tried:

• Minimize work (to eliminate φ)

Williams/Atkins Analysis — Chip Force Method
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Sample Extrapolation

Depth of Cut (mm)
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HDPE, rake angle = 55˚

Gc = 0.88 kJ/m2
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Velocity = V
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α

N

“Multiphysics” Numerical Modeling

Material Point Method (MPM) Modeling
1. For crack propagation
2. Cracks with cohesive zones
3. Contact capabilities

T
h

Fbn

Fbt
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“Multiphysics” Numerical Modeling

Material Point Method (MPM) Modeling
1. For crack propagation
2. Cracks with cohesive zones
3. Contact capabilities

Material Model
• Any option implemented in code
• Used elastic/plastic with work 

hardening
• Have used anisotropic wood 

properties for trial log peeling 
simulations

T
h

Fbn

Fbt
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“Multiphysics” Numerical Modeling

Material Point Method (MPM) Modeling
1. For crack propagation
2. Cracks with cohesive zones
3. Contact capabilities

Fracture Mechanics
• Cohesive law (cubic)

• Mixed mode fracture (found 90% opening mode)
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“Multiphysics” Numerical Modeling

Material Point Method (MPM) Modeling
1. For crack propagation
2. Cracks with cohesive zones
3. Contact capabilities

Contact Physics
• Tool = Rigid Material
• Coulomb Friction on chip and on 

bottom
• MPM Contact

a. Contact available for “free”
b. But needs revision to work
c. Key is contact normals (fixed in 

this problem)
• Simulation output - total force on 

tool (same as Fc and Ft and new 
code option)
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h

Fbn

Fbt

Thursday, March 14, 13



Velocity = V

Fc

Ft

α

N

“Multiphysics” Numerical Modeling

Material Point Method (MPM) Modeling
1. For crack propagation
2. Cracks with cohesive zones
3. Contact capabilities

T
h

Fbn

Fbt

Inertial Effects
• Explicit code
• Solution

a. Ramp up tool velocity
b. Kinetic energy “thermostat”
c. If damping controlled, good results, 

otherwise failed simulation
d. Good results gave steady state forces
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• Contact Detection

• Volume Screening:

• Approaching:

• Overlap:

• Normal Vector Calculation Options  

• MVG: maximum volume gradient

• AVG: average volume gradient

• SN: Specify the normal

• Extension of Contact to Model Interfaces

MPM Contact
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Material b
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One Imperfect Interface Result

1/Dt = 1/Dn (mm/MPa)
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CSA

Challenges
   1. Finding contact area for arbitrary interface orientation
   2. Working with stiff interfaces Dn, Dt ! 1

J.A. Nairn, "Modeling Imperfect Interfaces in the Material Point Method using Multimaterial Methods," Computer 
Modeling in Eng. & Sci., in press (2013) — http://www.cof.orst.edu/cof/wse/faculty/Nairn/papers/MMInterfaces.pdf
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Model Verification

• Elastic, perfectly-plastic material

• E = 1000 MPa, ν = 0.33, σy = 25 MPa

• Plane strain analysis

• Simple fracture law

• n = 1, GIc = GIIc = Gc = 2000 J/m2 (constant Gc regardless of mode)

• Cubic traction law, σc = 40 MPa

• Frictionless contact

• Compare to analytical model

• J. G. Williams, Eng. Fract. Mech., 77, 293-308 (2010).
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Simulations Problems
• Numerical difficultly resolving contact at the tool tip

• Simulation Forces

Chips

Add Linear
Hardening “Elastic-plastic bending”
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Simulations vs. Plastic Bending Analysis
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Williams
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Nairn Extension

Thursday, March 14, 13



Simulations Reveal Non-Negligble Bottom Force
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Semi-Analytical Model
• Revise elastic-plastic bending for Fbn

• Insert Fbn from simulation results
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Semi-Analytical Model
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Simulations/Modeling with Friction
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Effect of Cohesive Stress
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Effect of Toughness
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Effect of Rake Angle
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Hyperelastic-Plastic, Large Strain Material

Cumulative Plastic Strain

Hyperelastic

Hypoelastic
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Hyperelastic-Plastic, Large Strain Material

Equivalent Stress

Hypoelastic

Hyperelastic

Thursday, March 14, 13



Cutting Forces
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In-conclusions

• HDPE, LDPE, Trex, and Timber Tech Experiments
• Works reasonable well, but answer depends on interpretation of the Ft vs. 

Fc intercept.
• New results for Trex and Timber Tech Wood Plastic Composites

• Numerical simulations (by MPM) are working
• Uncertain validation
• Potential simulations (e.g., veneer peeling) may be useful

• Forces on bottom of tool
• How to handle it?
• Related to sharpness
• Essential to theory

and to modeling
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Carnot Cycle or an MPMgine™

• Ideal Gas as Hyperelastic Material

• Custom boundary conditions

• Trick is when to switch on returning

• Why not other materials

• Carnot claimed general result
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Ideal Gas Carnot Cycle
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Carnot Cycle on Other Materials?

• First step is cooling on isothermal expansion

• True in coupled conduction-elasticity

• Small effect, usually neglected

• Example

• Tungsten with MG EOS

• But plasticity always heats?

• Eliminate yielding
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η = 0.0035?
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Ideal Rubber Elastic Material

• In 1805, John Gough described a series of experiments on caoutchouc or 
Indian rubber:

• Mooney-Rivlin Hyperelastic Material

• “Ideal Rubber” from Flory

“For the resin evidently grows warmer the further it is 
extended; and the edges of the lips possess a high degree 

of sensibility, which enables them to discover these changes 
with greater facility than other parts of the body.”
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Isothermal Loading of Ideal Rubber
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