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1. The Problem!
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Simplifying Assumptions:!
!
1. Blast source is cylindrical – plane strain!
!
2. Blast source replaced by a larger cylinder!

!(excludes region with plasticity, massive failure and thermal effects)!
!
3. Forcing term is a single compressive pulse.!
!
4. Rock modeled as elastic-decohesive failure.!



1. The Problem!
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2. Decohesive Failure - Experimental Features!

(c) Axial splitting

Experimental Data - 
Sea-ice (anisotropic)
Plane stress: 
From Schulson



2. Decohesive Failure- Experimental Features!

Triaxial Compression	
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Ref:  Rutland, C.A., 1994, The Effects of Confinement on	


 the Failure Mechanisms in Cementitious Materials,	


Ph.D. Dissertation, Dept. of Civil Eng’g, 	


Univ. of New Mexico.	





2. Decohesive Failure - CLASSICAL MODELS!

Stress - σ

Traction:   τ = σ ⋅n

τn = τ ⋅n = σnn
τ t = τ ⋅ t = σnt
τp = τ ⋅p = σnp

τs
2 = τt

2 + τp
2

triad - n, t, p

t, p - in tangent plane

Surface defined by normal - n

t

p

n

Components of traction: Magnitude of shear on surface:

Components of stress not used: σ tt, σpp, σ tp



2. CLASSICAL MODELS!

F = max
n

 Fn

Maximum Principal Stress Criterion (Rankine):!
FR
n =

τn
τnf

−1

Maximum Shear Stress Criterion (Tresca):! FT
n =

τs
2

τsf
2 −1

Maximum Coulomb Friction Criterion (Mohr-Coulomb):! FMC
n =

τs
τsf

+ cτn −1

n = e1sinφcosθ+e 2 sinφsinθ+e 3 cosφ

F =max
θi, φ j

 Fn

F =max
θ, φ

 Fn

Failure:! F = 0

Discrete values of !
polar angles!



2. CLASSICAL MODELS - Application to plane stress!

Principal directions - stress:  p1, p2, p3

Tresca (shear) Mohr-Coulomb

Rankine (Mode I)

Some aspects:
Wrong shape of failure surface
Wrong orientation of failure plane



3. DECOHESIVE PROPOSED MODEL - Assumption!

Location	



m - mode

n - normal to failure
      surface

[u]

Assumption - cohesive crack,!
     !(decohesive),!

!(discrete const. eq.),!
        (discontinuum constit. eq.)!



2. DECOHESIVE PROPOSED MODEL - General Approach!

Decohesion Function: 	



Softening Function	

 1	


f (x,n)

F < 0 -  decohesion not occurring
F = 0 -  decohesion may be occurring
           -  also called the failure surface
F > 0  - not allowed

f (x,n, [un])

[un] / u01!

F [{σ,n} ; {f(n)}]    or    Fn[(σ),fn]



2. Decohesive Failure!

!

F = max
n

Fn                       Fn =
τ s2

(smτ sf )2
+ e Bn −1

Bn =κ [ τ n

τ nf
+

−σ tt*
2

( fc' )2
− fn ]             fn = 1− [u]n

[u]0

Orientation of failure –!
Principal directions of stress!

" Brittle failure"

α=0      
τ sf

τ nf
> 0.35



2. Decohesive Failure!
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2. Decohesive Failure!

ALGORITHM!

1.!1.  Does a crack or do cracks already exist?!
!

If yes, allow decohesion to evolve for each until F = 0!

2. Check to see if an additional crack starts, i,e., search for worst orientation.!
!

!If yes, store orientation, n, and provide storage for discontinuity variables.!

Represent effect of discontinuity through a smeared crack-!
!

!result is an algorithm closely related to plasticity.!



2. Decohesive Failure!
"Choice of material parameters"
Y = 50,000 MPa      ρ=2660kg/m 3

c = 4,300 m / s         fc' = Y / 1000 = 50MPa
τ nf = fc' / 10 = 5MPa
G f = K c2 / Y = 80 Pa ⋅m
[u0 ] = 2G f / τ nf = 3×10 −5 m

hcr ≈ [u0 ] Y
τ nf

= 10,000[u0 ] = 0.3m

Force stress amplitude σ 0 = fc'

Pulse duration t D = 3ms
Mesh size h = 0.25 m



3. One-Dimensional Cylindrical Wave Propagation!

x x x x x
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3. One-Dimensional Cylindrical Wave Propagation!
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!- no tunnel (simple wave propagation)!



3. One-Dimensional Cylindrical Wave Propagation!
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-20

-10

0

10

20

30

1 2 3 4 5 6 7

σ rr(MPa)

Time(ms)

12

15

r(m) = 9

-5

0

5

10

15

1 2 3 4 5 6 7

σ θθ (MPa)

Time(ms)

12

15

r(m) = 9

Free wave!
solution!



3. One-Dimensional Cylindrical Wave Propagation!

Radial and circumferential stress as functions of time at various radii!
   with effect of free surface at r = 15 m and pre-existing radial cracks from 3 < r < 9 m!
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4. Two-Dimensional Solutions of Free Waves with MPM-Elastic!
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4. Two-Dimensional Solutions of Free Waves with MPM-Failure!
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5. Solutions with Cracking around Tunnel!

Crack distribution at t = 7 ms.!

Stress as function of!
 time at r = 9 m.!

Cracking with tunnel!
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5. Solutions with Cracking around Tunnel that is Turned!

Crack distribution at t = 7 ms.!

Stress as function of!
 time at r = 9 m.!

Cracking with tunnel!
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5. Solutions with Cracking around Tunnel closer to Source!

Crack distribution at t = 4 ms.!
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5. Solutions with Cracking around Tunnel with short duration !

Crack distribution at t = 7 ms.!
!
With t_d = 0.5 ms!

Short-duration pulse, t_d =0.2ms!
!
provides vertical cracks!
!
much closer to front face!
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6. SUMMARY!

1.  Several simplifying assumptions!

2. Cylindrical (and spherical) waves –!
!large tensile radial tails and circumferential component !

!
3. Reflections off free surface!
 !

!- initial compressive part enhances tensile radial component!
!

!- region of large tensile circumferential stress enhanced!
!
      Result –!

!Region of significant radial and circumferential cracks adjacent to front face!
!
4. Multiple cracking handled “straight-forwardly” with MPM!
!
5. Axial splitting –!

!source of additional cracks tangent to tunnel walls –possible source of slabbing!


