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1. The Problem

Cylindrical
cavity wall \
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Simplifying Assumptions:
1. Blast source is cylindrical — plane strain

2. Blast source replaced by a larger cylinder
(excludes region with plasticity, massive failure and thermal effects)

3. Forcing term is a single compressive pulse.

4. Rock modeled as elastic-decohesive failure.




1. The Problem

Wave source

Radial stress
On surface
Of cylinder
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2. Decohesive Failure - Experimental Features

Experimental Data -
Sea-ice (anisotropic)
Plane stress:

From Schulson

)

(c) Axial splitting




2. Decohesive Failure- Experimental Features
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Ref: Rutland, C.A., 1994, The Effects of Confinement on
the Failure Mechanisms in Cementitious Materials,
Ph.D. Dissertation, Dept. of Civil Eng’ g,

Univ. of New Mexico.




2. Decohesive Failure - CLASSICAL MODELS

Surface defined by normal - n

Stress - o
Traction: T=0-n

Components of traction:
Tt =T -t=0py
T, =T-P=0Opp

Components of stress not used:

tiad - n, t, p

t,p - in tangent plane

Magnitude of shear on surface:

P

Tg =

2,2
Ty + T,




2. CLASSICAL MODELS

Failure: F=0 = mr?x F"

n=e,sinpcosO+e,singsind+e;Ccoso

F=max F"
0, ¢

F=max F" Discrete values of
0;, q)j polar angles

Maximum Principal Stress Criterion (Rankine):

Maximum Shear Stress Criterion (Tresca):

Maximum Coulomb Friction Criterion (Mohr-Coulomb):



2. CLASSICAL MODELS - Application to plane stress

Principal directions - stress: p4, P», P

Some aspects:
Wrong shape of failure surface
Wrong orientation of failure plane

Tresca (shear) Mohr-Coulomb




3. DECOHESIVE PROPOSED MODEL - Assumption

Assumption - cohesive crack,
(decohesive),
(discrete const. eq.),
(discontinuum constit. eq.)

Locatio

Stress at which
failure initiates

Fracture energy

Shape of "softening"
curve

/ Displacement at

separation




2. DECOHESIVE PROPOSED MODEL - General Approach

Decohesion Function: F[{o,n};{f(n)}] or F|[(c)f]

F <0 - decohesion not occurring

F =0 - decohesion may be occurring
- also called the failure surface

F >0 -not allowed

Softening Function f(x, n)




2. Decohesive Failure

F=maxF, F,= +eBn — 1
n (Sstf)Z
£\ 2
By =xi e S0y g L
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Tsf
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Tnf
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P max

Orientation of failure —
Principal directions of stress



2. Decohesive Failure

Plane stress failure surface

Dimensionless Parameters




2. Decohesive Failure

ALGORITHM

1. Does a crack or do cracks already exist?

If yes, allow decohesion to evolve for each until F =0

2. Check to see if an additional crack starts, i,e., search for worst orientation.

If yes, store orientation, n, and provide storage for discontinuity variables.

Represent effect of discontinuity through a smeared crack-

result is an algorithm closely related to plasticity.



2. Decohesive Failure

"Choice of material parameters"

Y =50,000 MPa  p=2660kg/m?3
c=4,300m/s f.=Y /1000 =50MPa
T, = fe/10=5MPa
G,=KZ2/Y=80Pa-m

[ug] =2G /T, =3X107 m

h. = [uO]L =10,000[uy] =0.3m
Tnf

Force stress amplitude o, = f,

Pulse duration tp = 3ms
Mesh size h=0.25 m



3. One-Dimensional Cylindrical Wave Propagation

Front Tunnel

Wall
Cylindrical Wall




3. One-Dimensional Cylindrical Wave Propagation

. Ti
Time (ms) tme (ms)

Radial and circumferential stress as functions of time at various radii

- no tunnel (simple wave propagation)




3. One-Dimensional Cylindrical Wave Propagation
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4. Two-Dimensional Solutions of Free Waves with MPM-Elastic

Mesh refinement

stress (MPa)
stress (MPa)

Comparison with
1-D Solution

2 3
time (ms) time (ms)

Effect of mesh
orientation

stress (MPa)

stress (MPa)




4. Two-Dimensional Solutions of Free Waves with MPM-Failure

Crack distribution at t = 6 ms.

point ¢

No cracking

time (ms)

Stress as function of
timeatr=9m.

point ¢

With cracking




5. Solutions with Cracking around Tunnel

Crack distribution att = 7 ms.

Free-field cracking

point ¢

stress (MPa)

time (ms)
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5. Solutions with Cracking around Tunnel that is Turned

point ¢

3
time (ms)

Free-field cracking

Stress as function of
timeatr=9m.
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5. Solutions with Cracking around Tunnel closer to Source
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5. Solutions with Cracking around Tunnel with short duration

Short-duration pulse, t_d =0.2ms
provides vertical cracks

much closer to front face
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6. SUMMARY

1. Several simplifying assumptions

2. Cylindrical (and spherical) waves —
large tensile radial tails and circumferential component

3. Reflections off free surface

- initial compressive part enhances tensile radial component

- region of large tensile circumferential stress enhanced

Result —
Region of significant radial and circumferential cracks adjacent to front face

4. Multiple cracking handled “straight-forwardly” with MPM

5. Axial splitting —
source of additional cracks tangent to tunnel walls —possible source of slabbing




