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INTRODUCTION

The purpose of this paper is to describe the algorithms that are currently being used

in modern, production hydrocodes. A hydrocode may be loosely defined as a code for

solving large deformation, finite strain transient problems that occur on a short time scale.

Although the strength of the material may not be a major factor in the solution, it is

usually included, a point which distinguishes hydrocodes from the Eulerian codes used for

gas dynamics. In contrast to structural analysis codes, the energy equation is integrated

in time, and the deviatoric and pressure terms in the stress tensor are usually modeled

separately. The solution is advanced in time using an explicit integration scheme because

stress waves and shocks are an important part of the solution, and they must be resolved

accurately in both space and time. An alternative name for hydrocodes is “wave codes.”

The shock physics are built into a hydrocode either by including a shock viscosity, by

solving the Riemann problem on the element boundaries, or by using a flux limiter.

The original motivation for developing these codes was for solving defense problems,

but the range of applications has broadened considerably in recent years. Current appli-

cations include simulating astrophysical events, such as the collapse of stars or the impact

of a large meteorite on the earth, the shock compaction of powders, modeling void growth

in ductile materials, and analyzing high strain rate experiments. Lagrangian hydrocodes

are being used extensively by industry for solving problems in automobile crashworthiness,

bird impact on aircraft, and manufacturing. Eulerian hydrocodes are perhaps five to ten

years behind Lagrangian codes in terms of popularity largely because Eulerian codes have

been subject to greater classification restrictions than Lagrangian codes. Eulerian codes

have two great advantages over Lagrangian codes: 1) they allow new free surfaces to be

created in a natural manner, and 2) Eulerian codes allow turbulent flow and arbitrarily

large deformations. These two qualitities make the Eulerian formulation very attractive

for many manufacturing problems, and as the classification issues disappear, the use of

Eulerian codes will be more common in industry.

Despite the widespread use of hydrocodes, there are no textbooks outlining their

computational methods and much of the literature is buried in the form of unpublished

reports in government laboratories. Hence, the need for this paper.

No attempt has been made in this paper to set forth the historical development of hy-

drocodes, and the interested reader should read the surveys by Johnson and Anderson [53],

Anderson [68] and Zukas [85]. As a consequence, many first order accurate algorithms,
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and the codes that still use them, are not discussed here. The emphasis is on the methods

that are both currently popular and second order accurate. A few algorithms that will

undoubtedly see wider usage in the near future are also presented.

To prevent this paper from becoming a book, many interesting topics have been omit-

ted, including structural elements, numerical methods for integrating constitutive relations,

adaptive methods, transmitting boundary conditions, ad infinitum.

The derivation of the mean stress quadrilateral element is presented from both the

finite element and finite difference viewpoints. The derivations are not unique from either

viewpoint, but the plane strain element that virtually all finite difference and finite element

programs use seems to be the same. On the other hand, there is a wide variety of axisym-

metric elements, although any given axisymmetric element can probably be derived from

either viewpoint. The problem with most axisymmetric elements is they do not preserve

the spherical symmetry in spherical problems. Various fixes have been developed, and

most of them work well. Rather than present an exhaustive examination of the different

algorithms, only the simplest formulation, which is based on area weighting, is presented.

Energy conservation is very important in hydrodynamic calculations, and the energy

calculations in hydrocodes are discussed in detail. One advantage that the finite element

method has over the finite difference method is a natural means for ensuring that the forces

are always work conjugate to the displacements. For instance, it is demonstrated that a

finite difference algorithm in an Eulerian code for the edge forces is not work conjugate with

the edge displacements, and a remedy is proposed based on simple virtual work arguments.

Eulerian and ALE (Arbitrary Lagrangian Eulerian) codes allow material to flow

through the mesh. The general strategy is to perform a Lagrangian timestep and to

follow it with a remap step that maps the solution from the distorted Lagrangian mesh

on to the spatially-fixed Eulerian mesh or the ALE mesh. The discussion on Eulerian and

ALE codes is therefore focused on the remap step. In addition to the algorithms that are

currently used, several other algorithms that hold promise are presented.

It is hoped that this paper will be of interest to both the finite difference and the finite

element communities. There are very few algorithms that can not be derived from both

the finite element and the finite difference viewpoints. The notation for both viewpoints is

defined and used throughout the paper as appropriate.
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Chapter 1

A REVIEW OF THE GOVERNING EQUATIONS

1.0 NOTATION

The current Cartesian coordinates of a point are denoted x, its spatial velocity is u,

and the reference (original) coordinates are X. For two-dimensional plane strain and plane

stress problems, the coordinates y and z are often used to simplify the notation and they

correspond to x1 and x2. When the cylindrical coordinates r and z are used, the problem

is assumed to be axisymmetric (i.e., no dependence on θ). The equations that are valid

for both Cartesian and cylindrical coordinates are presented only in Cartesian coordinates,

and (r, z) corresponds to (x1, x2) and (y, z). Material time derivatives are indicated by a

dot above the symbol, e.g., u̇ is the spatial acceleration. The Cauchy stress, which is the

only stress that is used in this paper, is denoted σ, the internal energy per unit mass is

e, the density is ρ, the body force per unit mass is f , and a concentrated force at X is

f∗(X, t). The summing convention is used unless otherwise stated.

For convenience, some of the common kinematic quantities are defined here. The

deformation gradient, Fij , is the derivative of the spatial coordinates with respect to the

reference coordinates.

Fij =
∂xi

∂Xj
(1.0.1)

The velocity gradient, Lij , is defined in terms of the current spatial coordinates. It can

be split into its symmetric component, Dij , the deformation rate, and its skew component,

Wij , the spin.

Lij =
∂ui

∂xj

Dij = 1
2 (Lij + Lji)

Wij = 1
2 (Lij − Lji)

(1.0.2)

The deformation rate is also labelled the strain rate, ε̇, because it is conjugate to the

Cauchy stress. This is something of a misnomer since the time integral of the deformation

rate does not define a measure of large deformation strain.
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1.1 THE LAGRANGIAN EQUATIONS

1.1.1 The Lagrangian mass, momentum and energy equations. The derivation

of the equations of motion can be found in any book on mechanics, e.g., Ref. [1]. The

conservation of mass, Eq. (1.1.1.1), is used to calculate the current density from the initial

density, ρo, in a Lagrangian hydrocode, where J is the volumetric strain.

ρJ = ρo

J = det
(

∂xi

∂Xj

)
(1.1.1.1)

In two and three dimensions, the momentum equation is given by Eq. (1.1.1.2), where

i and j range from 1 to the number of dimensions.

ρu̇i = σij ,j +ρfi (1.1.1.2)

The corresponding equation for axisymmetric problems is Eq. (1.1.1.3).

ρr̈ = σrr,r +σrz,z +
σrr − σθθ

r

ρz̈ = σzz,z +σzr,r +
σzr

r

(1.1.1.3)

The boundary conditions are either a specified displacement, a contact inequality

constraint, or a traction, where the exterior normal is denoted n and the superscripts

denote different surfaces. The boundaries where the displacement, contact and traction

boundary conditions are applied are Γx, Γc, Γτ .

xi(X, t) = gi(X, t) on Γx

(x1
i − x2

i ) · n1
i ≤ 0 on Γc

σijnj = τi on Γτ

(1.1.1.4)

The energy equation, Eq. (1.1.1.5), is used to update the internal energy for the

equation of state and to check the energy conservation in a hydrocode.

ρė = σij ε̇ij + ρfiui (1.1.1.5)

1.1.2 The weak form of the momentum equation. The finite element method uses

the weak form of the momentum equation. In mechanics, the weak form is often referred

to as the “principle of virtual work.” The derivation of the weak form presented in this
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section ignores the contact constraint, which will be covered separately in another section.

For the moment, the discussion is restricted to Cartesian coordinates.

An arbitrary function, δx, subject to the constraint that x+ δx satisfies the boundary

conditions, is referred to as an admissible “virtual displacement.” A solution for x that

satisfies Eq. (1.1.1.2) and Eq. (1.1.1.4) will also obviously satisfy Eq. (1.1.2.1) for any

admissible virtual displacement.

∫
Ω

(ρu̇i − σij ,j −ρfi)δxidΩ +
∫

Γτ

(σijnj − τi)δxidΩ −
n∑

k=1

f∗
i (Xk, t)δxi(Xk) = 0 (1.1.2.1)

By using the divergence theorem and the product differentiation rule, the two terms

involving the Cauchy stress are combined.

∫
Ω

σij ,j δxidΩ =
∫

Γ

σijnjδxidΩ

σijδxi,j = (σijδxi),j −σij ,j δxi

(1.1.2.2)

Substitution of Eq. (1.1.2.2) into (1.1.2.1) results in the principle of virtual work,

where δπ is denoted as the virtual work.

δπ =
∫

Ω

[(ρu̇i − ρfi)δxi − σijδxi,j ]dΩ−
∫

Γτ

τiδxidΓ−
n∑

k=1

f∗
i (Xk, t)δxi(Xk) = 0 (1.1.2.3)

Note that the continuity requirements on the stress tensor and the virtual displacement

changed between Eq (1.1.1.2) and Eq. (1.1.2.3) due to the use of the divergence theorem.

The weak form provides the justification for using constant stress elements in the finite

element method. The strong form of the momentum equation would seem to imply that

the stress in the solution must be differentiable. Both shocks and the boundaries between

constant stress elements have jump discontinuities in the stress, and therefore they are not

differentiable solutions.

The weak form of the momentum equation for axisymmetric problems is derived in

a similar manner, but with two small differences. First, for an axisymmetric slice of one

radian, the volume element is rdrdz and it is convenient to group δr and δz with the

factor of r. Second, the divergence theorem is not applied to the stress terms involving

the factor 1/r. Note that the domain Ω and the boundary Γ are the two dimensional
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figures obtained by taking a slice through the axisymmetric body, and not the full three-

dimensional volume, since the integration in the θ direction is eliminated through using a

one radian slice and the axisymmetry of the problem.

δπr =
∫

Ω

[(ρr̈i − ρfr − σrr − σθθ

r
)rδr − σrr(rδr),r −σrz(rδr),z ]drdz

−
∫

Γτ

τrrδrdΓ −
n∑

k=1

f∗
r (Xk, t)rδr(Xk) = 0

δπz =
∫

Ω

[(ρz̈i − ρfz − σzr

r
)rδz − σzz(rδz),z −σzr(rδz),r ]drdz

−
∫

Γτ

τzrδzdΓ −
n∑

k=1

f∗
z (Xk, t)rδz(Xk) = 0

(1.1.2.4)

Other than the terms −(σrr − σθθ)/r and −σzr/r, Eq. (1.1.2.4) is identical to Eq.

(1.1.2.3) if the virtual displacements in Eq. (1.1.2.4) are replaced with δr/r and δz/r.

This similarity makes implementing the plain strain and axisymmetric cases in the same

program trivial.

1.1.3 The equations of motion using a control volume. Some codes, such as

PISCES [2] and CAVEAT [3], use second order accurate Godunov methods. For Go-

dunov methods, a control volume formulation is more convenient to work with than either

of the traditional strong or weak forms of the equations of motion.

d

dt

∫
Ω

ρdΩ = −
∫

Γ

ρuinidΓ

d

dt

∫
Ω

ρuidΩ = −
∫

Γ

ρuiujnjdΓ +
∫

Γ

σijnjdΓ +
∫

Ω

ρfidΩ

d

dt

∫
Ω

ρedΩ = −
∫

Γ

ρeujnjdΓ +
∫

Γ

niσijujdΓ +
∫

Ω

ρfiuidΩ

(1.1.3.1)

1.2 THE ALE EQUATIONS

In this section, the governing equations are derived for the case when the reference

coordinates move at an arbitrary velocity [9], [35], [36]. This formulation is referred to as

the arbitrary Lagrangian-Eulerian (ALE) formulation as it contains both the Lagrangian

and Eulerian equations as subsets. The velocity of the material is u, the velocity of the
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reference coordinates is v, and their difference, u − v, is denoted w. The Jacobian, J ′, is

the relative differential volume between the reference and the spatial coordinates.

∂J ′

∂t
= J ′ ∂vi

∂xi
(1.2.1)

The material time derivative can be expressed in terms of both the spatial and ref-

erence coordinates, where fr means that f is expressed as a function of the reference

coordinates.

ḟ =
∂f

∂t
+ ui

∂f

∂xi
(1.2.2a)

ḟ =
∂fr

∂t
+ (ui − vi)

∂f

∂xi
(1.2.2b)

The ALE equations are derived by substituting Eq. (1.2.2) into the equations in the

previous section, but they are not in conservation form.

∂ρr

∂t
= −ρ

∂ui

∂xi
− wi

∂ρ

∂xi
(1.2.3a)

ρ
∂ur

i

∂t
= (σij ,j +ρbi) − ρwj

∂ui

∂xj
(1.2.3b)

ρ
∂er

∂t
= (σijui,j +ρbiui) − ρwj

∂e

∂xj
(1.2.3c)

To put them into conservation form, an additional identity is derived by multiplying

Eq. (1.2.3a) by J ′, multiplying Eq. (1.2.1) by ρ, and adding them.

∂J ′ρ
∂t

= −J ′ ∂ρwi

∂xi
(1.2.3)

After multiplying Eq. (1.2.3) by f , Eq. (1.2.2b) by ρJ ′, and arranging terms, the ALE

equation for f is written in its general form. The first term on the right hand side of

Eq. (1.2.4) is the source term for f , and the second term, the transport of f .

∂(J ′ρf)
∂t

= J ′ρḟ − J ′ ∂ρfwi

∂xi
(1.2.4)

The conservation form of the ALE equations is obtained by substituting the La-

grangian equations of the previous section into Eq. (1.2.4).
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∂ρJ ′

∂t
= −J ′ ∂ρwi

∂xi
(1.2.5a)

∂ρJ ′ui

∂t
= J ′(σij ,j +ρbi) − J ′ ∂ρuiwj

∂xj
(1.2.5b)

∂ρJ ′e
∂t

= J ′(σijui,j +ρbiui) − J ′ ∂ρewj

∂xj
(1.2.5c)

When w is zero, J ′ is one and the Lagrangian equations are recovered from Eq. (1.2.5).

If the reference coordinates are the current spatial coordinates, w is v, J ′ is again one, and

the Eulerian equations are recovered.

The ALE equations for the axisymmetric case are similar to Eq. (1.2.5). In addition to

the extra terms involving the stress, the axisymmetric equations differ from the Cartesian

equations because the velocity divergence wr is replaced by rwr.

1.3 THE RANKINE-HUGONIOT CONDITIONS

The physics across a shock or contact discontinuity are governed by the Rankine-

Hugoniot conditions. The line integral derivation presented in this section follows Noh [4].

For a smooth shock front, the solution is discontinuous only in the direction normal to the

shock front, making a one-dimensional analysis sufficient. Additional complexities arise at

the intersection of shocks, and the interested reader is referred to [5].

For the moment, a single equation in conservation form is considered, where u is the

unknown, f is the flux of u, and x is the single space dimension.

u,t +f(u),x = 0 (1.3.1)

Based on the same arguments that were used to derive the weak form of the equations

in Section 1.1, the integral of Eq. (1.3.1) over any section of the x− t plane must be zero.

∫
B

(u,t +f(u),x )dxdt = 0 (1.3.2)

Equation (1.3.2) is converted to a boundary integral by applying Green’s theorem.

The boundary of the region B in the x − t plane is denoted b.

∮
b

udx − f(u)dt = 0 (1.3.3)
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The reason for calling f the flux function and Eq. (1.3.1) a conservation equation is

apparent when a rectangular region, [x�, xr]× [ta, tb], in the x− t plane is considered. Let

U be the integral of u in the interval [x�, xr] and apply Eq. (1.3.3).

U(tb) − U(ta) =
∫ xr

x�

u(tb)dx −
∫ xr

x�

u(ta)dx

=
∫ tb

ta

f(u(xr))dt −
∫ tb

ta

f(u(x�))dt

(1.3.4)

The jump conditions are derived by considering an arbitrary region B that is cut by a

line s into two regions B1 and B2, see Fig. 1. The corresponding boundaries are the union

of b1 with s and b2 with s. The integrals over the two separate regions must each be zero,

as is the integral over the original region B. Note that in applying Eq. (1.3.3) to region

B2, the curve s is traversed in the direction opposite to the one used for region B1. For

clarity, the curve s is subscripted by a 1 or 2 to indicate the direction.

∫
B

=
∮

b1

+
∮

b2

= 0

=
∫

B1

+
∫

B2

=
∮

b1

+
∮

s1

+
∮

b2

+
∮

s2

= (
∮

b1

+
∮

b2

) + (
∮

s1

+
∮

s2

)

=
∮

s1

(udx − f(u)dt) +
∮

s2

(udx − f(u)dt)

(1.3.5)

The jump condition can be written concisely by introducing some extra notation. The

values of u and f in B1 and B2 are denoted by subscripting them with a 1 or 2, and the

direction taken along s2 is considered to be positive. The jumps, [u] and [f(u)], are defined

as the differences u2 − u1 and f2 − f1.

∮
s

[u]dx − [f ]dt = 0 (1.3.6)

The region B was chosen arbitrarily, therefore the integrand in Eq. (1.3.6) must be

zero at every point on every curve s. The slope, dx/dt, of the curve at a point is S.

S[u] − [f ] = 0 (1.3.7)
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Except at shocks and contact discontinuities, the solution is continuous and Eq. (1.3.7) is

trivially zero.

To apply Eqn. (1.3.7), the conservation equations for a continuum must be written

in the spatial, or Eulerian, conservation form since the integrals in the derivation are

performed on a fixed space-time domain. The density, velocity, pressure, and total energy

per unit volume are ρ, u, P , and E respectively.

ρ,t + (ρu),x = 0

ρu,t + (ρu2 + P ),x = 0

E ,t + (Eu + Pu),x = 0

(1.3.8)

Substituting Eqn. (1.3.8) into Eqn. (1.3.7) gives the standard jump conditions.

S[ρ] = [ρu]

S[ρu] = [ρu2 + P ]

S[E ] = [Eu + Pu]

(1.3.9)

Shocks have discontinuities in all solution variables, while contact discontinuities have

continuous pressures and normal velocities. It is well known that in linear hyperbolic

equations that the solutions are discontinuous only across characteristics. Shocks are not,

however, characteristics [5]. If the jump in the solution variables is known across the

discontinuity, then Eqn. (1.3.8) can be used to calculate the velocity of the jump. For the

special case of the contact discontinuity, the contact surface velocity will equal the particle

velocity, u.

The equation of state for an ideal gas, Eqn. (1.3.11) was used by Hugoniot in 1889

to obtain an analytical solution for the pressure jump across a shock, Eqn. (1.3.12). The

speed of sound in the ideal gas is a, and it equals
√

γ(γ − 1)e, where e is the internal

energy per unit mass.

P = (γ − 1)ρe (1.3.11)

P2 − P1 =
γ + 1

4
ρ1(�u)2 + ρ1|�u|

√(
γ + 1

4

)2

(�u)2 + a2
1 (1.3.12)

For a linearly elastic fluid, Eqn. (1.3.13), it is also possible to find an analytical solution

for the pressure jump across a shock, Eqn. (1.3.14). The bulk modulus is K, the initial

density is ρ0, and the speed of sound is
√

K/ρ.
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P = K

(
ρ

ρ0
− 1
)

(1.3.13)

P2 − P1 = 1
2ρ1(�u)2 + ρ1�u

√(�u

2

)2

+ a2
1 (1.3.14)

The form of these classical solutions motivated the quadratic plus linear form that is

currently used in most shock viscosities.
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Chapter 2

LAGRANGIAN COMPUTATIONAL METHODS

2.1 AN OVERVIEW

A Lagrangian calculation embeds a computational mesh in the material domain and

solves for the position of the mesh at discrete points in time. Since the mesh is embedded

in the material, the motion of the material is inferred from the motion of the mesh. Both

the Lagrangian finite element and finite difference methods are described in this section.

Some of the finite difference methods are intended to be part of an Eulerian calculation

and cannot be run separately for than one time step for multidimensional problems due

to the geometrical simplifications they use.

All the methods that are currently popular for solving transient hydrodynamics prob-

lems are explicit. The solution is advanced from time tn to time tn+1 without any itera-

tions, and the difference between them is the time step, �tn+1/2. To minimize the storage

required, the solution is stored for only one time tn within the program. At the completion

of a time step, the solution at the beginning of the time step is overwritten by the solution

at the end of the step.

Centering in time. The central difference method is used in most hydrocodes to advance

the position of the mesh in time. It is based on the second order accurate central difference

approximation, which is readily derived from a Taylor series expansion. A superscript n

indicates that the function is evaluated at tn.

fn = fn+1/2 − f,
n+1/2
t

(�tn+1/2

2

)
+ 1

2f,
n+1/2
tt

(�tn+1/2

2

)2

. . .

fn+1 = fn+1/2 + f,
n+1/2
t

(�tn+1/2

2

)
+ 1

2f,
n+1/2
tt

(�tn+1/2

2

)2

. . .

(2.1.1)
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Subtracting the second equation from the first in Eq. (2.1.1) gives an explicit second

order accurate integration rule.

fn+1 = fn + f,
n+1/2
t �tn+1/2 + O((�tn+1/2)3

)
(2.1.2)

Letting f be the displacement x, it is clear that the velocity must be staggered in time

with respect to the displacement.

xn+1 = xn + un+1/2�tn+1/2 (2.1.3)

Applying Eq. (2.1.2) again gives the integration rule for the velocity.

un+1/2 = un−1/2 + u̇n�tn

= un−1/2 + (Fn/M)�tn
(2.1.2)

Since the central difference method is explicit, it has a finite stable time step size. For

most problems, the stepsize is given by the Courant limit, which is the smallest amount

of time that is necessary for a sound wave to cross an element in the mesh. This number

is a function of both the element geometry and speed of sound within the material. For

problems involving hypervelocity impact, the impact velocity may exceed the sound speed

and smaller time steps must be used. The time step size may also be limited by the contact

algorithm, the magnitude of the shock viscosity, or an explosive burn.

A few codes, such as BBC [146], KRAKEN [102], and MESA [101], use a Runge-Kutta

algorithm so that all the solution variables are centered at tn, which is particularly attrac-

tive for Eulerian calculations. This scheme was first proposed by Truilio and Trigger [165]

in 1961. The solution is advanced to tn+1/2 by a half step with forward Euler, and the

derivative is evaluated at the half step using the approximate solution. This time-centered

derivative is used to advance the solution from n to n + 1

fn+1/2 = fn + 1
2fn,t �t

fn+1 = fn + fn+1/2,t �t
(2.1.3)

Equation (2.1.3) advances the velocity from tn to tn+1 while the displacements are

advanced to tn+1 using the trapezoidal rule.
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un+1/2 = un + 1
2 (Fn/M)�t

un+1 = un + (Fn+1/2/M)�t

xn+1 = xn + 1
2 (un+1 + un)�t

(2.1.4)

The acceleration at tn is a function of the stress, including both the deviatoric part

from the strength of the material and the pressure from the equation of state. The pressure

is a function of the internal energy and the density, which requires evaluation of the internal

energy at tn. The density at tn is known since mass is conserved and the geometry, defined

by xn, is known. The constitutive equations for the strength of the material are expressed

as differential equations which must also be integrated in time.

σn+1 = σn + σ̇n+1/2�tn+1/2 (2.1.5)

To evaluate the stress rate at tn+1/2, the strain rate must be known at tn+1/2. The

strain rate is the symmetric part of the velocity gradient, ∂u/∂x. Although the velocity

is known at tn+1/2, the geometry is known only at tn and tn+1 for the central difference

method. A second order approximation to the midpoint geometry is given by the arithmetic

average.

xn+1/2 = 1
2

(
xn + xn+1

)
(2.1.6)

While the information is available to integrate the constitutive equations with second

order accuracy, the actual integration methods for most plasticity models are only first

order. The most popular integration technique is the radial return algorithm developed by

Maenchen and Sack [6], Wilkins [7], and Krieg and Key [8]. It is asymptotically exact as the

strain increment over a time step approaches zero or infinity. The radial return algorithm is

very accurate despite its theoretical first order accuracy, and it is computationally efficient

and extremely robust.

2.2 THE MESH DEFINITIONS

The mesh is the discrete description of the continuous spatial domain. Three different

types of meshes are considered, and they can be used with either a finite element or finite

difference formulation.
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The first mesh type is the logically regular mesh, and it is illustrated in Fig. 2. Two

intersecting sets of lines, called k and 
 lines, define a set of quadrilaterals. The sets of

lines, which are generally not orthogonal, are numbered independently. Their intersections

are the nodes, which are labelled by their ordered pair of intersecting lines, (k, 
). The

quadrilateral regions bounded by the four nodes (k, 
), (k+1, 
), (k+1, 
+1), and (k, 
+1)

are called “zones” or “cells.” They are labelled by the average logical coordinates of

the nodes, (k + 1/2, 
 + 1/2). The quadrilateral elements can be subdivided into two or

four triangles, but most hydrocodes work with quadrilateral zones. The displacements,

velocities, and accelerations are evaluated at the nodes, while the remaining variables are

evaluated at the centroids of the zones.

The second type of mesh is also defined by sets of intersecting k and 
 lines. It

differs from the preceding mesh in that the velocities are evaluated at the midpoints of

the zone edges, and that only the velocity component normal to thae edge appears in

the calculation. This type of mesh is frequently found in Eulerian hydrocodes because of

its simplicity and its ability to resolve shear flows in only two elements (adjacent rows of

elements can move in opposite directions). It does, however, have two serious drawbacks.

The first is the mesh lines must be orthogonal. Most Eulerian hydrocodes are restricted

to rectangular zones, although some codes allow the use of meshes based on orthogonal

curvilinear coordinate systems. Since the mesh lines need to be orthogonal, these codes

cannot be run in a Lagrangian mode for more than one time step unless the flow is only

along one coordinate direction. The second is the difficulty associated with calculating the

shear strain rate within a zone. Every Eulerian code that uses a mesh with edge-centered

velocities seems to have its own unique way of evaluating the shear strain rate.

The last type of mesh is an unstructured mesh. The primitive object in this case is the

“element” or zone, which is defined by a set of nodes. The elements are used to cover the

spatial domain in a nonoverlapping manner, see Fig. 3. Elements can have both vertex and

edge nodes. In constructing the mesh, a node must be either a vertex or edge node for all

the elements connected to it. The nodes are numbered in an arbitrary manner since they

are not defined in terms of intersecting mesh lines. Only elements that are defined solely

by vertex nodes are discussed in this paper. The other elements are more complicated and

have smaller stable time steps than the simplest elements, making them too expensive for

hydrodynamic calculations on today’s computers.

Unstructured meshes are most frequently used in finite element programs. Although
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the finite difference theory for an unstructured mesh is well known [9], [7], it is rarely

used because of the complexity of vectorizing it on a supercomputer while using the finite

difference formalism. Most of the finite difference programs that do use an unstructured

mesh are “free-Lagrangian” codes [10] that dynamically change the mesh connectivity

during the calculation.

2.3 A SUMMARY OF A LAGRANGIAN TIME STEP

The general flow of the calculations in a typical Lagrangian code is given below. This

summary is somewhat premature in the sense that some of the terms used in it have not

yet been defined, but it is presented at this stage to give some perspective before plunging

into a detailed description of the individual steps.

1. Knowing the stress, pressure, hourglass forces, and shock viscosity at tn in each

zone or element, the forces at the nodes are calculated. The accelerations of the nodes are

calculated by dividing the nodal forces by the nodal masses.

2. The acceleration is integrated to give the velocity at tn+1/2.

3. The velocity is integrated to give the displacement at tn+1.

4. The constitutive model for the strength of the material is integrated from tn to

tn+1 now that the motion of the material is known.

5. The artificial shock viscosity and hourglass viscosity are calculated from un+1/2.

6. The internal energy is updated based on the work done between tn and tn+1.

7. Based on the density and energy at tn+1, the pressure is calculated from the

equation of state.

8. A new time step size is calculated based on the speed of sound through each of the

elements and their geometry.

9. Advance the time and return to step 1.

For formulations that use a Runge-Kutta method, steps 1 and 2 are replaced by

step 1a, use forward Euler integration to advance the solution temporarily to tn+1/2, and

calculate the acceleration at tn+1/2 and step 2a, advance the velocity to tn+1. Step 5 is

also merged into step 1a for the Runge-Kutta method. The only Lagrangian method that

is a substantial departure from the general flow given above is Godunov’s method [11],

which is discussed in a separate section. The major difference between most finite element

and finite difference formulations is how the accelerations are calculated while the methods

used in finite element and finite difference methods to update the stress, shock viscosity,
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and energy calculations are virtually identical. These topics are presented in their own

sections and are completely independent of the finite element and finite difference sections.

2.4 THE FINITE ELEMENT METHOD

The publication of finite element textbooks has become something of a small industry.

Most of the textbooks are restricted to small deformations and linear elasticity. Among

the best books are the recent one by Hughes [12] and the latest edition of Zienkiewicz’s and

Taylor’s textbook [13]. While Bathe’s book [14] covers large deformations and plasticity,

its emphasis is on implicit methods for structural analysis. Cook’s introductory text [15]

is popular one for teaching undergraduates. To see how mathematicians view the finite

element method, the book by Johnson [16] is recommended.

2.4.1 Calculating the forces at the nodes. Before introducing the specialized notation

of the finite element method, the force calculations are derived in a fairly general manner

from the weak form of the momentum equation. The displacements, xαi, and velocities uαi,

are known at the nodes, where α is the node number and i is the direction. It is assumed

that the value of the displacements, velocities, and accelerations can be interpolated from

their nodal values at any point in any element, where Nα(x) is the interpolation function

associated with node α.

xi(x) = Nα(x)xαi

ui(x) = Nα(x)uαi

u̇i(x) = Nα(x)u̇αi

(2.4.1.1)

In a similar manner, the variation in displacement can be interpolated.

δxi(x) = Nα(x)δxαi (2.4.1.2)

The gradient of the variation is evaluated by differentiating the interpolation functions.

∂δxi

∂xj
=

∂Nα(x)
∂xj

δxαi (2.4.1.3)

Substituting the above equations into the weak form of the momentum equation,

Eq. (1.1.2.3), gives the following discrete form in Cartesian coordinates.
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[ ∫
Ω

ρNβu̇βiNαdΩ +
∫

Ω

σij
∂Nα(x)

∂xj
dΩ−

∫
Ω

ρfiNαdΩ −
∫

Γτ

τiNαdΓ −
n∑

k=1

f∗
i (Xk, t)Nα(Xk)

]
δxαi = 0

(2.4.1.4)

Since the virtual displacements at the nodes, δxαi, are arbitrary, the individual terms

enclosed by the square brackets must individually be zero. The accelerations of the nodes

are calculated by solving the set of linear equations generated by a slight rearrangement

of Eq. (2.4.1.4).

[ ∫
Ω

ρNβNαdΩ
]{

u̇βi

}
=
{
−
∫

Ω

σij
∂Nα(x)

∂xj
dΩ+

∫
Ω

ρfiNαdΩ +
∫

Γτ

τiNαdΓ +
n∑

k=1

f∗
i (Xk, t)Nα(Xk)

} (2.4.1.5)

The first term, which is enclosed in square brackets, is the “consistent” mass matrix.

It is consistent in the sense that it is the mass matrix that appears when the finite element

method is applied to all the terms in the momentum equation in a straight forward manner.

The equations are coupled because the consistent mass matrix is not diagonal and solving

this system is unattractive due to the high computational cost. A “lumped” mass matrix,

which is diagonal, is used instead of the consistent mass matrix in all hydrocodes. In its

simplest and most common form, the mass of an element is distributed evenly to all its

nodes. The consistent mass matrix is denoted M c, the lumped mass matrix, M . Both

have four subscripts, αiβj, where αi refers to the ith displacement component of node α,

and βj indicates the jth displacement component of node β. The mass of element A is

MA, an element has nnodes nodes, and it is implied in the summation over the elements

for the lumped mass matrix that the range of the summation is only over the elements

that have node α in their definition.

M c
αiβj =

∫
Ω

ρNβNαdΩ

Mαiβj = δαβδij
1

nnodes

∑
A

MA

(2.4.1.6)

A lumped mass matrix is more than just a computational simplification; it also gives

better answers for impulsive loads. Consider the following one-dimensional problem: a

force of constant positive magnitude is suddenly turned on at t0 at the left end of an
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elastic rod. In the continuum problem a stress wave propagates from the left to the right

with a the speed of sound in the material, a. Material to the right of the point x = at

is undisturbed and the velocity of the material to the left of that point is positive. If

a consistent mass matrix is used in Eq. (2.4.1.5), spurious oscillations will occur ahead

of the stress wave. Only the first node should have a nonzero acceleration at t0, but

because of the inertial coupling between the nodes, every other node starting with the

first will have a positive acceleration and the remainder will have a negative acceleration.

This result is, of course, completely contrary to the physics of the problem. The precise

mathematics describing when and why the consistent mass matrix does not give good

solutions is discussed in Ref. [17].

2.4.2 The plane strain quadrilateral element. At this point it is worthwhile to

introduce a specific element to illustrate the general finite element notation used in the

remainder of the paper. The plane strain quadrilateral is chosen for this purpose because it

is the element most commonly used in finite element hydrocodes and it is equivalent to the

integral difference formulation used by Noh [9] and Wilkins [7]. While a triangular element

is computationally simpler, it is more difficult to understand due to the local coordinate

system that is embedded within the triangular element.

The quadrilateral element has four nodes. In addition to the global numbering of the

nodes, it is convenient to assign them the numbers 1 through 4 in a counter clockwise

manner when considering a single element. A pair of local curvilinear coordinates, ξi, is

introduced to simplify the interpolation functions. These coordinates are referred to as the

“isoparametric” coordinates in the finite element literature. The range of the coordinates

is -1 to +1 as shown in Fig. 3. The conditions on the interpolation functions Nα are that

1) they are continuous within the element, 2) their sum at any point within the element

is 1, and 3) the value of Nα at node β is δαβ . Linear interpolation cannot be used with

a quadrilateral element because there are four known values at the nodes, and only three

are required to define a plane. A set of bilinear interpolation functions that satisfies the

interpolation requirements can be stated in terms of the isoparametric coordinates, where

ξi
α refers to the value of ξi at node α.

Nα(ξ1, ξ2) = 1
4 (1 + ξ1

αξ1)(1 + ξ2
αξ2) (2.4.2.1)

Expanding the sum Nαxα shows that the bilinear interpolation includes all the linear

terms and a single quadratic cross term.
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xi(ξ1, ξ2) = Gi
0 + Gi

1ξ
1 + Gi

2ξ
2 + Gi

3ξ
1ξ2

Gi
0 = 1

4 ( x1i + x2i + x3i + x4i)

Gi
1 = 1

4 (−x1i + x2i + x3i − x4i)

Gi
2 = 1

4 (−x1i − x2i + x3i + x4i)

Gi
3 = 1

4 ( x1i − x2i + x3i − x4i)

(2.4.2.2)

The spatial gradient of a field is calculated using the chain rule. In addition to

evaluating the strain rates, the gradient is necessary for calculating the stress divergence

term in Eq. (2.4.1.5).

∂g

∂xi
=

∂Nα(ξ1, ξ2)
∂ξ1

∂ξ1

∂xi
+

∂Nα(ξ1, ξ2)
∂ξ2

∂ξ2

∂xi
(2.4.2.3)

The derivatives ∂ξi/∂xj are evaluated by inverting the Jacobian matrix ∂xi/∂ξj .

∂ξi

∂xj
=
[

G1
1 + G1

3ξ
2 G1

2 + G1
3ξ

1

G2
1 + G2

3ξ
2 G2

2 + G2
3ξ

1

]
(2.4.2.4)

The integration of the stress divergence over the element in the weak form of the

momentum equation, Eq. (1.1.2.1), is simplified by assuming that the stress is constant

over the element. Implicit structural finite element programs use a bilinear distribution

for the stress which must be numerically integrated with Gauss quadrature [12]. Constant

stress elements are also referred to as 1-point elements because they correspond to using one

Gauss integration point in the evaluation of the integrals. In three dimensions, constant

stress elements and 1-point elements are not exactly the same, but the terms are still

used interchangeably for the most part. The location xo is the average of the four nodal

coordinates, and A is the element area.

Fσ =
∫

Ω

σij
∂Nα(x)

∂xj
dΩ ≈ σij

∂Nα(xo)
∂xj

A (2.4.2.5)

When the inverse is evaluated at the origin of the isoparametric coordinates, the

expressions for the partial derivatives become particularly simple. Of particular importance

is the velocity gradient. The coordinates y and z are used to simplify the notation but the

equation is also valid for cylindrical coordinates.

[
∂ui

∂xj

]
=

1
2A

[
z31ẏ24 − z24ẏ31 y24ẏ31 − y31ẏ24

z31ż24 − z24ż31 y24ż31 − y31ż24

]
(·)αβ ≡ (·)α − (·)β

(2.4.2.6)
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The velocity gradient can be rewritten in terms of a matrix multiplication.

[
∂ui

∂xj

]
= Bijαkuαk (2.4.2.7)

The gradient of the virtual displacement takes the same form. This greatly simplifies

the evaluation of the forces on the nodes.

Fσ
αk = σijBijαkA (2.4.2.8)

The B matrix can be evaluated at any point within an element by starting with the

general definitions of the derivatives and the abstract equation for the nodal forces that

appears in all finite element textbooks is derived by substituting it into the weak form.

The strain rates are also expressed as the product of the B matrix and the velocity field.

{Fσ} =
∫

Ω

[B]t{σ}dΩ

{ε̇} = [B]{u}
(2.4.2.9)

The B matrix for a constant stress element can be written out conveniently by num-

bering σ11, σ22, σ33 and σ12 as σ1, σ2, σ3 and σ4 and the corresponding strain rates ε̇11,

ε̇22, ε̇33, and 2ε̇12 as ε̇1, ε̇2, ε̇3 and 2ε̇4. The velocities are ordered (ẏ1, ż1 . . . ẏ4, ż4).

[B] =
1

2A




z24 0 z31 0 −z24 0 −z31 0
0 −y24 0 −y31 0 y24 0 y31

0 0 0 0 0 0 0 0
−y24 z24 −y31 z31 y24 −z24 y31 −z31


 (2.4.2.10)

After carrying out the matrix multiplication, the force expressions are quite simple.

Fy1 = −Fy3 = 1
2 (z24σyy − y24σyz)

Fy2 = −Fy4 = 1
2 (z31σyy − y31σyz)

Fz1 = −Fz3 = 1
2 (z24σzy − y24σzz)

Fz2 = −Fz4 = 1
2 (z31σzy − y31σzz)

(2.4.2.11)

The body force terms are evaluated by assuming that the body force is constant within

an element.

F b
αi =

∫
Ω

ρfiNαdΩ ≈ 1
4Mαfi(xo) (2.4.2.12)
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Boundary tractions are assumed to vary in a linear manner between two adjacent

boundary nodes α and β separated by a distance L. The total force acting on the boundary

segment between the two nodes is the average of the two values at the nodes. The boundary

integral may be evaluated in a manner consistent with Eq. (2.4.1.2), or one half of the total

force may be distributed to each node. The latter procedure is followed in DYNA2D [82].

{
F τ

αi = ( 1
3ταi + 1

6τβi)L
F τ

βi = ( 1
6ταi + 1

3τβi)L

}
consistent{

F τ
αi = 1

2 (ταi + τβi)L
F τ

βi = 1
2 (ταi + τβi)L

}
lumped

(2.4.2.13)

Concentrated forces are applied directly to the specified nodes.

F c
αi = f∗

αi (2.4.2.14)

2.4.3 The axisymmetric quadrilateral element. The most obvious implementa-

tion of an axisymmetric element is the direct application of the finite element method

to Eq. (1.1.9). One disadvantage of using Eq. (1.1.9) is the resulting finite element formu-

lation does not work well for spherically symmetric problems [18], see Fig. 4. The reason

is the factor of r appearing in the differential volume element 2πrdrdz places too little

weighting (it’s actually zero in the limit) on the nodes along the z axis. Symmetry is

achieved if the differential element is drdz, i.e., if an area weighting is used instead of a

volume weighting in the weak form [18].

The axisymmetric element described in this section is based on area weighting since

it preserves spherical symmetry. There are only two significant differences between the

plane strain element and the axisymmetric element. The first is that the definition of the

B matrix is altered by including the hoop strain rate. The second change is that the mass

matrix is now time dependent.

The hoop strain rate, ε̇θθ, is ṙ/r. In a similar manner, the associated virtual displace-

ment is δr/r. The value of r0 is the arithmetic average of the radii of the four nodes.

[B] =
1

2A




z24 0 z31 0 −z24 0 −z31 0
0 −r24 0 −r31 0 r24 0 r31

A/2ro 0 A/2ro 0 A/2ro 0 A/2ro 0
−r24 z24 −r31 z31 r24 −z24 r31 −z31


 (2.4.3.1)

The strain rate is [B]{ṙ1, ż1 . . . ṙ4, ż4}. Since the formulation is based on an area

weighting as opposed to volume weighting (virtual work principal), the nodal forces are
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[B]tσA plus the additional terms with σrr and σθθ that appear as body force terms in

Eq. (1.1.2.4).

Fr1 = −Fr3 = 1
2 (z24σrr − r24σrz) ± A

4 (σrr − σθθ)/ro

Fr2 = −Fr4 = 1
2 (z31σrr − r31σrz) ± A

4 (σrr − σθθ)/ro

Fz1 = −Fz3 = 1
2 (z24σzr − r24σzz) ± A

4 σrz/ro

Fz2 = −Fz4 = 1
2 (z31σzr − r31σzz) ± A

4 σrz/ro

(2.4.3.2)

The inertial term in the area-weighted weak form is time dependent, but it is, however,

very inexpensive to evaluate. The area of element B is AB .

Mαiβj = δαβδij
1
4

∑
B ρBAB (2.4.3.3)

The expressions for the body forces, boundary tractions, and the concentrated loads

are the same as in the plane case, but the forces are specified per radian.

2.4.4 Assembling the global force vector. The global force vector is created by

summing all the contributions from the elements, the concentrated loads, and the boundary

tractions. The summation procedure is the same for the different types of loading, therefore

only the force contribution from the elements is discussed in detail.

Before the summation begins, the global force vector, F , is initialized to zero. In the

previous sections when the force contributions from a particular element were calculated,

α ranged from 1 to 4 and the numbering was local to the element. The array IX(A,α)

stores the value of the global node number for the local node numbered α in element A.

Assuming that the number of elements is N , the number of nodes for the particular element

type is nN , and the number of space dimensions is ns, the assembly procedure is readily

expressed in terms of three nested DO loops.

DO 30 A = 1,N

DO 20 i = 1, ns

DO 10 α = 1, nN

FIX(A,α)i = FIX(A,α)i − Fσ
αi

10 CONTINUE

20 CONTINUE

30 CONTINUE

(2.4.4.1)
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From the standpoint of vectorization, the procedure defined in Eq. (2.4.4.1) is poor.

More efficient methods are discussed in Ref. [19].

2.4.5 The constant strain triangle. Triangular elements are used in a few finite el-

ement hydrocodes, the most popular one being EPIC [20]. The primary advantage of a

triangular element over a quadrilateral element is robustness, while the major deficiency

is a tendency to give an overly stiff answer. Quadrilaterals can be distorted into “bow

ties” and “boomerangs” (see Fig. 5), configurations that make it impossible to continue

the calculation. As long as the time step is small enough, it is impossible to push a node

on a triangular element through its opposite edge. The reason for this robustness is the

volume approaches zero as the node approaches its opposite edge, leading to an infinite

resisting pressure within the element.

The problem associated with the stiffness of triangular elements is readily illustrated

by considering the simple two element problem in Fig. 6. All the nodes except one are

constrained and the material is incompressible. The incompressibility constraint for ele-

ment 1 limits the motion of the node to the z direction and similarly, element 2 limits

the motion to the y direction. The node therefore cannot move at all, and the block

behaves as a rigid solid. More complicated problems with a larger number of elements

can be constructed [12]. A number of ways to circumvent this problem have been pro-

posed [21], [22]. The simplest is to use four elements for each quadrilateral region [21], but

the computational cost of using four triangular elements in place of a single quadrilateral

is comparatively high.

The simplest way to calculate the nodal forces for a triangular element is to condense

nodes 3 and 4 in a quadrilateral element [12]. The third interpolation function for the

three node element, N�
3 , is the average of the third and fourth interpolation functions for

the quadrilateral element.

N�
1 = N1

N�
2 = N2

N�
3 = 1

2 (N3 + N4)

(2.4.5.1)

The B matrix for the triangle is calculated by averaging the contributions of the third

and fourth nodes in the quadrilateral.
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[B] =


 z23 0 z31 0 −z21 0

0 −r23 0 −r31 0 r21

−r23 z23 r31 z31 r21 −z21


 (2.4.5.2)

The same results are obtained by introducing the triangular coordinates r, s, and t.

N�
1 = r

N�
2 = s

N�
3 = t(r, s) = 1 − r − s

(2.4.5.3)

2.5 FINITE DIFFERENCE METHODS

There is a large body of literature associated with finite difference methods in hy-

drodynamics. The difference methods that have been developed differ too much to give

a complete survey. Only the integral difference technique developed by Noh [9] as imple-

mented in HEMP [7] by Wilkins will be covered in detail. PISCES [2] also uses the integral

difference method for its Lagrangian calculations, but it switches to a Godunov method

for the Eulerian calculations. Many other finite difference codes, including SHALE [23],

SALE [24], SALE3D [25], TENSOR [6], and YAQUI [26], are popular and each has its own

finite difference formulation. A separate section will discuss a finite difference formulation

with edge-centered velocities.

2.5.1 The general integral difference strategy. This difference technique can be used

with either cylindrical or planar coordinates, and it can be extended to three dimensions.

Noh derived the integral difference method by combining Green’s theorem with the mean

value theorem. Green’s theorem gives the relation between the boundary integral and area

integral.

∫
Ω

gydydz =
∮

Γ

gdz∫
Ω

gzdydz = −
∮

Γ

gdy

(2.5.1.1)

A simple example is the calculation of the area of the domain Ω.

A(Ω) =
∮

Γ

ydz = −
∮

Γ

zdy (2.5.1.2)
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The mean value theorem states that the mean value of a function is achieved some-

where in the domain.

g,y =
1
A

∫
Ω

g,y dydz

g,z =
1
A

∫
Ω

g,z dydz

(2.5.1.3)

Combining the previous three equations gives the mean values of the derivatives in

terms of boundary integrals.

g,y =

∮
Γ

gdz∮
Γ

ydz

g,z = −
∮
Γ

gdy∮
Γ

ydz

(2.5.1.4)

The boundary integrals are evaluated by progressing around a closed path defined by

N points (yi, zi, gi). Linear interpolation is used to evaluate g between adjacent point.

Different interpolation functions for g would yield different approximations for the deriva-

tives.

g,y =
∑N

i=1(gi+1 + gi)(zi+1 − zi)∑N
i=1(yi+1 + yi)(zi+1 − zi)

g,z = −
∑N

i=1(gi+1 + gi)(yi+1 − yi)∑N
i=1(yi+1 + yi)(zi+1 − zi)

(2.5.1.5)

2.5.2 The acceleration from the stress. The acceleration from the stress is calculated

by applying Eq. (2.5.1.4) directly to the strong form of the momentum equation. For the

moment, the discussion is restricted to planar coordinates.

u̇i =
1
ρ
σij ,j

ÿ =
1∫

Ω
ρdΩ

{∮
Γ

σyydz −
∮

Γ

σyzdy

}

z̈ =
1∫

Ω
ρdΩ

{∮
Γ

σzydz −
∮

Γ

σzzdy

} (2.5.2.1)

The boundary integrals are evaluated in the same manner as in Eq. (2.5.1.5). Two

of the possible paths for Eq. (2.5.2.1) are illustrated in Fig. 7. Despite the fact that both
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evaluate the stress at only one point within the zone, the accelerations at the nodes are

different.

In plane geometry, the path used in HEMP [7] gives nodal accelerations that are

identical to the constant stress quadrilateral used in DYNA2D [18]. The numbering of the

nodes and zones is shown in Fig. 7.

ÿ =
1
M

N∑
i=1

{
σi

yy(zi+1 − zi) − σi
yz(yi+1 − yi)

}

z̈ =
1
M

N∑
i=1

{
σi

zy(zi+1 − zi) − σi
zz(yi+1 − yi)

}

M = 1
2

N∑
i=1

ρiAi

(2.5.2.2)

The equivalence between the finite element and finite difference formulations is demon-

strated by considering the individual terms in Eq. (2.5.2.2). One half of the mass from

each surrounding zone is attributed to the node in the finite difference formulation while

only one quarter is used in the finite element formulation. Equation (2.5.2.2) is multiplied

by 1
4

∑N
i=1 ρiAi to determine the equivalent nodal force.

Fy = 1
2

{
N∑

i=1

σi
yy(zi+1 − zi) −

N∑
i=1

σi
yz(yi+1 − yi)

}

Fz = 1
2

{
N∑

i=1

σi
zy(zi+1 − zi) −

N∑
i=1

σi
zz(yi+1 − yi)

} (2.5.2.3)

A term by term comparison of Eq. (2.5.2.3) to (2.4.2.11) shows that they are equivalent

(note that the numbering of the nodes differs between the two equations).

2.5.3 The strain rate. Unlike calculating the accelerations, where there are a number of

integral paths, the only path that makes sense for the strain rates is around the perimeter

of the zone. For planar geometry, this gives the same strain rate as the finite element

method, see Eq. (2.4.2.10). The subscript i refers to the node number in Eq. (2.5.3.1), and

the numbering is assumed to be counterclockwise.
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ε̇yy = ẏ,y =
1

2A

N∑
i=1

(ẏi+1 + ẏi)(zi+1 − zi)

ε̇zz = ż,z = − 1
2A

N∑
i=1

(żi+1 + żi)(yi+1 − yi)

2ε̇zy = ż,y + ẏ,z =
1

2A

N∑
i=1

{(żi+1 + żi)(zi+1 − zi) − (ẏi+1 + ẏi)(yi+1 − yi)}

(2.5.3.1)

2.5.4 Axisymmetry. As in the finite element formulation, the equations for the accel-

erations of a node simply add a few terms involving 1/r to the planar equations. The

current version of HEMP uses the area-weighted average of the extra 1/r terms from the

surrounding zones, resulting in a formulation that is identical to the area-weighted ele-

ment in DYNA2D. In the original description of HEMP [7], the arithmetic average of the

extra terms is used instead, leading to spherical symmetry problems similar those in a

volume-weighted finite element formulation.

r̈ =
1
M

N∑
i=1

{
σi

rr(zi+1 − zi) − σi
rz(ri+1 − ri) +

A

2
(σi

rr − σi
θθ

ro
i

)}

z̈ =
1
M

N∑
i=1

{
σi

zr(zi+1 − zi) − σi
zz(ri+1 − ri) +

A

2
(σi

rz

ro
i

)}

M = 1
2

N∑
i=1

ρiAi

(2.5.4.1)

The hoop strain rate is calculated so that the trace of the strain rate tensor equals

the volumetric strain rate.

ε̇θθ =
V̇

V
− ε̇rr − ε̇zz (2.5.4.2)

2.5.5 Spherical symmetry. One of the difficulties that plagued early finite difference and

finite element hydrocodes was the jetting of material along the z axis in spherically conver-

gent calculations. Many different approaches are used in the finite difference community

to eliminate this problem, while the finite element community seems to have adopted the

area-weighted Petrov-Galerkin approach. Margolin, for instance, has derived a difference
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stencil for SHALE [23] that is identical to the one-point finite element and the integral

difference stencil in plane strain and different in axisymmetry. He observes that the center

of mass of the momentum control volume around a node is not coincident with the node,

and he compensates for the difference by altering the nodal accelerations. The basic ax-

isymmetric difference stencil in PISCES is the same as the original one used in HEMP.

Hancock [2] alters the forces acting at the nodes based on an analysis he performed to de-

termine the magnitude of the force contribution which generate the unsymmetric response.

Both methods work well.

2.6 LARGE DEFORMATION STRENGTH CALCULATIONS

The stress tensor can be split into the deviatoric stress, σ′
ij , which is assumed to be

due to the material strength, and the pressure, P , which is calculated from an equation of

state.

σij = σ′
ij − δijP

σ′
ii = 0

1
3σii = −P

(2.6.1)

An increment in the stress during a time step is composed of two parts: the first part

is associated with the deformation of the material and it is described by a constitutive

model, and the second part is associated with the rigid body rotation of the material. For

the most part, constitutive models are defined in terms of differential equations where the

strain rate is the independent variable. During a pure rigid body rotation, the calculated

strain rate must be zero to avoid a change in the stress due to the rigid rotation.

2.6.1 The time-centered strain rate. The strain rate used in hydrocodes is evaluated

at time tn+1/2 not only because the velocity is evaluated at that time, but also to avoid

calculating a nonzero strain rate during a pure rigid body rotation. The following proof

that the time-centered strain rate is zero for rigid rotations is given by Hallquist [27]. Note

that the arguments presented here hold for axisymmetric problems since the strain rate

ε̇θθ is unaffected by rotations in the r − z plane.

The time-centered geometry is defined as the average of the geometries at tn and tn+1.

x
n+1/2
i = 1

2 (xn
i + xn+1

i ) (2.6.1.1)
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The square of the distance separating two point P (xn) and Q(xn + dxn) is calculated

with the familiar Euclidean norm.

dS2 = dxn
i dxn

i (2.6.1.2)

At the time tn+1, a similar expression can be evaluated.

ds2 = dxn+1
i dxn+1

i (2.6.1.3)

The geometry at tn and tn+1 can be related to the geometry at n + 1/2 because of

the continuity of the deformation. The differentials at tn and tn+1 are given in terms of

the differentials at tn+1/2 by Eq. (2.6.1.4).

dxn
i =

∂xn
i

∂x
n+1/2
j

dx
n+1/2
j

dxn+1
i =

∂xn+1
i

∂x
n+1/2
j

dx
n+1/2
j

(2.6.1.4)

Substituting Eq. (2.6.1.4) into (2.6.1.2) and (2.6.1.3) and subtracting gives the change

in the length squared in terms of the centered geometry.

ds2 − dS2 =

(
∂xn+1

i

∂x
n+1/2
j

∂xn+1
i

∂x
n+1/2
k

− ∂xn
i

∂x
n+1/2
j

∂xn
i

∂x
n+1/2
k

)
dx

n+1/2
j dx

n+1/2
k (2.6.1.5)

The term enclosed by the parentheses defines an increment in strain between the two

times.

�εjk = 1
2

(
∂xn+1

i

∂x
n+1/2
j

∂xn+1
i

∂x
n+1/2
k

− ∂xn
i

∂x
n+1/2
j

∂xn
i

∂x
n+1/2
k

)
(2.6.1.6)

By using the central difference integration, the geometry at the two times is related

to the centered geometry by Eq. (2.6.1.4).

xn+1
i = x

n+1/2
i + 1

2�x
n+1/2
i

xn
i = x

n+1/2
i − 1

2�x
n+1/2
i

�x
n+1/2
i = xn+1

i − xn
i = u

n+1/2
i �t

(2.6.1.7)

The centered strain rate is calculated by substituting Eq. (2.6.1.7) into Eq. (2.6.1.6)

and dividing through by the time step, �t.
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ε̇
n+1/2
jk =

�εjk

�t

= 1
2

(
∂u

n+1/2
j

∂x
n+1/2
k

+
∂u

n+1/2
k

∂x
n+1/2
j

) (2.6.1.8)

For a rigid body rotation, the velocity field is given by Eq. (2.6.1.9), where W is a

skew symmetric matrix. If Eq. (2.6.1.9) is substituted into Eq. (2.6.1.8), then the strain

rate will be zero.

ui = Wijxj (2.6.1.9)

It is also true that the strain increment is zero in the time discrete case. Assume that

the rigid body transformation between n and n + 1 is the rotation matrix Q. Note that

the midpoint geometry does not correspond to the rigid body rotation half way between

n and n + 1.

xn+1
i = Qijx

n
j

xn
i = δijx

n
j

x
n+1/2
i = 1

2 (δij + Qij)xn
j �=√Qijx

n
j

(2.6.1.10)

The velocity is defined in terms of the difference between the n and n + 1 geometries.

u
n+1/2
i =

1
�t

(Qij − δij)xn
j (2.6.1.11)

The first derivative term in Eq. (2.6.1.8) is evaluated using the chain rule.

∂u
n+1/2
j

∂x
n+1/2
k

=
∂u

n+1/2
j

∂xn
�

∂xn
�

∂x
n+1/2
k

=
1
�t

(Qj� − δj�)
∂xn

�

∂x
n+1/2
k

(2.6.1.12)

Letting the rotation matrix be defined in the traditional manner, the remaining deriva-

tive is readily evaluated.

Q =
[

cos θ sin θ
− sin θ cos θ

]
{

xn
1

xn
2

}
=

1
D

[
1 + cos θ − sin θ

sin θ 1 + cos θ

]{
x

n+1/2
1

x
n+1/2
2

}
D = 1 + cos θ

(2.6.1.13)
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The first term in the discrete centered strain rate is skew symmetric, just like the matrix

W , therefore the strain rate is again zero.

∂u
n+1/2
j

∂x
n+1/2
k

=
1

D�t

[
cos θ − 1 sin θ
− sin θ cos θ − 1

] [
1 + cos θ − sin θ

sin θ 1 + cos θ

]

=
2

(1 + cos θ)�t

[
0 sin θ

− sin θ 0

] (2.6.1.14)

The diagonal terms of the time-centered strain increment agree closely with the true

strain, ln(Ln+1/Ln). In one dimension, the centered strain increment, �ε, the Green

strain, �E, and the Almansi strain, �e, are given by Eq. (2.6.1.15).

�ε = 1
2

[(
Ln+1

Ln+1/2

)2

−
(

Ln

Ln+1/2

)2
]

�E = 1
2

[(
Ln+1

Ln

)2

− 1

]

�e = 1
2

[
1 −

(
Ln

Ln+1

)2
]

(2.6.1.15)

For an extension,
(

Ln+1

Ln

)
, of 2, the true, centered, Green, and Almansi strains have

values of 0.6931, 0.6667, 1.5000, and 0.3750, respectively.

2.6.2 Stress rates. The material time derivative of the stress is not objective [28], i.e., it

does not transform properly as a tensor under a superposed rigid body motion. Consider,

for instance, a motion that differs from another by only a rigid body transformation.

x∗ = T (t) + Q(t)x (2.6.2.1)

The transformation for the stress tensors in the two coordinate systems is differentiated

with respect to time.

σ∗
ij = Qikσk�Q�j

σ̇∗
ij = Q̇ikσk�Q�j + Qikσ̇k�Q�j + Qikσk�Q̇�j

(2.6.2.2)

Note that the material time derivative of the rotated stress involves the time deriva-

tives of the transformation matrix Q. In order to have a theory that transforms properly

(i.e., “objectively”), the material time derivative is replaced by an objective stress rate
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in the constitutive law for a material. The derivative used within the mathematics com-

munity is the Lie derivative [29] (within the mechanics community, it is referred to as

the Oldroyd derivative [30]), while the three most popular stress rates in the mechanics

literature are the Jaumann rate, σ̇J , the Truesdell rate, σ̇T , and the corotational rate, σ̇c,

which is also known as the Green-Naghdi rate. A constitutive model can be formulated in

terms of any one of these objective rates, and changing from one rate to another requires

that the constitutive model be reformulated. W is the skew symmetric part of the velocity

gradient L, and Ω is ṘRt, where R is from the polar decomposition, F = RU [31]. The

second Piola-Kirchhoff stress, S, is JF−1σF−t, and the rotated Cauchy stress, Σ, is RσRt.

σ̇J
ij = σ̇ij − Wikσkj + σikWkj

σ̇T
ij = σ̇ij − Likσkj + σikLkj + σijtr(D) =

1
J

FikṠk�Fj�

σ̇c
ij = σ̇ij − Ωikσkj + σikΩkj = RikΣ̇k�Rj�

Σij = Rkiσk�R�j

(2.6.2.3)

The Jaumann rate corresponds to the Lie derivative in a Cartesian coordinate system

under the assumption that the flow is purely rotational. Truesdell’s rate is obtained by

differentiating the expression for the Cauchy stress in terms of the second Piola-Kirchhoff

stress, and the Green-Naghdi rate is obtained by differentiating the expression for the

Cauchy stress in terms of the rotated stress.

The choice of an objective rate for a hydrocode is generally based on convenience and

most hydrocodes use the Jaumann rate. It is not popular in implicit programs because

it leads to an unsymmetric stiffness matrix. The major criticism against the use of the

Jaumann rate in explicit codes is the oscillatory solution it generates under pure shear

when kinematic hardening is used in J2 plasticity theory [32]. Kinematic hardening is used

to model the Bauschinger effect [33], which is the reduction in the yield stress associated

with reversed loading. Under monotonic shear loading the shear stress should also increase

monotonically, but at large shear strains (>1), the shear stress oscillates if the Jaumann

rate is used. Neither of the other two stress rates has this problem. The Truesdell rate

is unattractive for plasticity because it implies that the Cauchy stress is an exponential

function of the strain, which is also unacceptable. By the process of elimination, the

Green-Naghdi rate is the best choice in some people’s minds, and at least one hydrocode

PRONTO2D [34] uses it exclusively while other codes, such as DYNA2D [82], use the

Green-Naghdi rate only with the kinematic hardening plasticity model.
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From the computational point of view, the Green-Naghdi rate is not very attractive. It

uses information about the Lagrangian coordinates of the material points, X, through the

deformation gradient. Large deformation problems eventually need to have their solution

mapped from one mesh to another, either periodically through a rezone or continuously,

as in an ALE or Eulerian formulation. Assuming the solution variables are mapped to

a spatial accuracy of O(�xr), their gradients will be one order less accurate, O(�xr−1).

Since at least second order accuracy is desired, the mapping scheme must be at least third

order accurate, a difficult feat. One way to avoid the difficulties associated with mapping

the Lagrangian coordinates is to introduce the deformation gradient as a solution variable

and to map the gradient instead of the Lagrangian coordinates. Both the Jaumann and

Green-Naghdi rate implementations are presented so that computational costs are clear.

The Jaumann rate is quite simple to implement. First, the spin, W , is calculated

using either the finite element or finite difference methods (the two formulations presented

in detail will give identical answers). The strain rate (actually the rate of deformation),

D, and the stress increment, σ̇�t, are evaluated at tn+1/2 in order to integrate the stress

with the second order accurate central difference method. Since the stress increment is a

function of the current stress, the stress at tn+1/2 must be calculated from the stress at tn.

σ
n+1/2
ij = σn

ij − �t
2 Wikσn

kj + �t
2 σn

ikWkj (2.6.2.4)

The increment in the stress is calculated from the constitutive model, where q is a

vector of internal state variables (e.g., internal energy or plastic strain).

�σij = �tσ̇ij(σ,D, q) (2.6.2.5)

σ∗
ij = σ

n+1/2
ij + �σij (2.6.2.6)

The intermediate value of the stress is given the remaining increment of the rotation.

σn+1
ij = σ∗

ij − �t
2 Wikσ∗

kj + �t
2 σ∗

ikWkj (2.6.2.7)

Note that the Jaumann rate uses only the current spatial coordinates and velocities. During

a mapping of the solution from one mesh to another, no additional variables other than

the current spatial solution variables need to be mapped.

One drawback to the half-step rotation form of centering is the stress may not lie

exactly on the yield surface after the second half rotation. The magnitude of the error is
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second order in �t, and Hancock has reported that it can be significant for some prob-

lems [166]. The simplest solution for this problem is to use “sloppy centering,” i.e., by

adding in the full rotational contribution to the stress (�t instead of 1/2�t in Eq. (2.6.2.4))

before �σij is evaluated. A second approach, which is more expensive, is to rotate the

stress with an orthonormal Q. An example of this approach is the implementation of the

Green-Naghdi rate.

The implementation of the Green-Naghdi rate is not quite as standardized as the

Jaumann rate. Probably the simplest implementation is the one used in NIKE2D [27], an

implicit nonlinear finite element program. The gradient of the Lagrangian coordinates is

calculated using Eq. (2.4.2.7) with the Lagrangian coordinates replacing the velocities.

∂Xi

∂xj
= BijαkXαk (2.6.2.8)

The deformation gradient, F , is evaluated by inverting ∂Xi

∂xj
. While the polar decom-

position is fairly complicated in three dimensions, it is very simple in two [37], [38].

Fij = RikUkj

RkiFij = Ukj = Ujk = FjiRik

(2.6.2.9)

The rotation matrix is calculated by substituting its general form into Eq. (2.6.2.9).

let [R] =
[

cos θ sin θ
− sin θ cos θ

]

sin θ =
F12 − F21

F
cos θ =

F11 + F22

F
F =

√
(F12 − F21)2 + (F11 + F22)2

(2.6.2.10)

Three evaluations of the polar decomposition are needed. The geometry at n + 1/2 is

again evaluated as the simple average of the geometry at n and n + 1.
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Σn
ij = Rn

kiσ
n
k�R

n
�j

Σn+1/2
ij = R

n+1/2
ki σn

k�R
n+1/2
�j

d
n+1/2
ij = R

n+1/2
ki D

n+1/2
k� R

n+1/2
�j

�Σij = Σ̇ij(Σn+1/2, dn+1/2)�t

Σn+1
ij = Σn

ij + �Σij

σn+1
ij = Rn+1

ik Σn+1
k� Rn+1

j�

(2.6.2.11)

The deformation gradient is integrated with the central difference algorithm if it is

treated as a solution variable.

Ḟ
n+1/2
ij = D

n+1/2
ik F

n+1/2
kj

Fn+1
ij = Fn

ij + �tḞ
n+1/2
ij

F
n+1/2
ij =

∂ 1
2 (xn+1

i + xn
i )

∂Xj
= 1

2

(
Fn+1

ij + Fn
ij

)
therefore (δik − 1

2�tD
n+1/2
ik )Fn+1

kj = (δi� + 1
2�tD

n+1/2
i� )Fn

k�

(2.6.2.12)

This approach still requires that the polar decomposition be performed on the de-

formation gradient. The polar decomposition is simple in two dimensions, but in three

dimensions, it is computationally expensive.

An alternative formulation used by Flanagan and Taylor in PRONTO2D [34] to di-

rectly integrate R is based on relations derived by Dienes [39] . V , from the left polar

decomposition, F = V R, is assumed to be known. Following Dienes’ work, the vector z is

calculated, where eijk is the permutation operator.

zi = eijkVjmDmk

ωi = eijkWjk − 2 (V − I tr(V ))−1
ij zj

Ωij = 1
2eijkωk

(2.6.2.13)

An incremental rotation matrix is calculated using a centered approximation that was

originally implemented by Hallquist in NIKE2D[27]. A full analysis of this approximation

was given by Hughes and Winget [40].

Qij =
(

I − �t

2
Ω
)−1

ik

(
I +

�t

2
Ω
)

kj

(2.6.2.14)
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The symmetric tensor V is integrated to complete the calculation. At the start of

the analysis, V is the identity matrix. Note that both V and R must be stored for each

element.

V̇ij = LikVkj − VikΩkj

Vij = Vij + �tV̇ij

(2.6.2.15)

In contrast to the time-centered integration in Eq. (2.6.2.11), Flanagan and Taylor

use only Rn+1 to evaluate the stress at tn+1.

dij = Rn+1
ki D

n+1/2
k� Rn+1

�j

�Σij = Σ̇ij(Σ, d)

Σn+1
ij = Σn

ij + �Σij

σn+1
ij = Rn+1

ik Σn+1
k� Rn+1

j�

(2.6.2.16)

One advantage of treating V and R as history variables and remapping them is it

avoids the reduction in the accuracy of R associated with using the remapped Lagrangian

coordinates, X, in the difference formula for the deformation gradient. The rotation tensor

can be remapped using θ, or each component can be remapped independently provided

that R is orthonormalized later. Remapping the two additional tensors, however, does add

significantly to the computational cost.

2.7 ENERGY CALCULATIONS

The pressure, P , is a function of the internal energy per unit mass, e, and density,

ρ, and possibly some set of additional history variables, h. The evolution of the history

variables depends on the particular equation of state. To simplify the discussion, it is

assumed that the pressure is a function only of the internal energy and density in the

remainder of this discussion. From the standpoint of simplifying the calculations, it is

convenient to use the total internal energy of an element, E.

E ≡
∫

Ω

ρedΩ

e =
E

M

(2.7.1)

Not only does the use of the total internal energy simplify the discussion of the energy

calculations, it makes the implementation of equations of state that use the internal energy
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per unit volume or the temperature easier since the only change is to replace Eq. (2.7.1)

with the appropriate equation.

The contributions to the energy equation from the body forces and heat conduction

are ignored for simplicity. Furthermore, the work associated with the strength of the

material, the shock viscosity, q, and the pressure are treated separately. The tensors are

written in terms of their deviatoric, (·)′, and mean components, 1
3 tr(·). All the tensors are

assumed to be symmetric, although the shock viscosity terms may be unsymmetric [41],

[42]. The appropriate changes to the energy calculation for an unsymmetric shock viscosity

are discussed later.

ρė = σij ε̇ij

=
(
σ′

ij − Pδij + q′ij + 1
3 tr(q)δij

) (
ε̇′ij + 1

3 tr(ε̇)
)

=
(
σ′

ij + q′ij
)
ε̇′ij +

(
1
3 tr(q) − P

) V̇

V

(2.7.2)

The stress from the strength of the material is assumed to be purely deviatoric, and

the fact that the trace of the deformation rate is equal to the volumetric strain rate is used

to simplify Eq. (2.7.2).

The pressure is evaluated at time tn, which forces the internal energy to also be

centered at tn. While it is highly desirable for the numerical algorithm to conserve the

total energy of the problem exactly, the goal is elusive because the velocity is centered

at tn+1/2 and the internal energy is centered at tn. The conservation of the total energy

therefore depends not only on the numerical algorithm, but also on the definition chosen

for the total energy.

2.7.1 Forward Euler integration. The first hydrocodes integrated the energy equation

with the forward Euler method, Eq. (2.7.1.1).

�E = �t
[ (

σ′n
ij + q′nij

)
ε̇
′n+1/2
ij V n

]
+
(

1
3 tr(qn) − Pn

)�V

En+1 = En + �E
(2.7.1.1)

This method does not conserve energy exactly and it is only first order accurate.

2.7.2 Central difference rule. Wilkins uses the central difference rule in HEMP [7], and

it is also used in DYNA2D, DYNA3D [18], PRONTO2D [34], and many other Lagrangian

hydrocodes. The integration of the internal energy is performed exactly if the stress, shock

viscosity, and the pressure vary linearly over the time step.
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En+1 = En + �t
[ (

σ
′n+1/2
ij + q

′n+1/2
ij

)
ε̇
′n+1/2
ij V n+1/2

]
+
(

1
3 tr(q+1/2) − Pn+1/2

)
�V n+1/2

σ
′n+1/2
ij = 1

2 (σ′n
ij + σ′n+1

ij )

q
′n+1/2
ij = 1

2 (q′nij + q′n+1
ij )

P
′n+1/2
ij = 1

2 (P ′n
ij + P ′n+1

ij )

(2.7.2.1)

The energy at tn+1 in Eq. (2.7.2.1) is a function of the pressure at tn+1, which makes

the equation implicit in En+1 since the pressure is a function of the energy. The deviatoric

stress and shock viscosity are assumed to be independent of or at least comparatively

insensitive to the value of en+1. An intermediate value of energy, Ẽ, which includes all the

known terms in the right hand side of Eq. (2.7.2.1) allows the discrete energy equation to

be expressed in a simpler form.

En+1 = Ẽ − 1
2Pn+1(En+1/M, ρn+1)�V n+1/2

Ẽ = En + �t
[ (

σ
′n+1/2
ij + q

′n+1/2
ij

)
ε̇
′n+1/2
ij V n+1/2

]
+
(

1
3 tr(qn+1/2) − 1

2Pn
)
�V n+1/2

(2.7.2.2)

Most of the commonly used equations of state, such as the Mie-Grüneisen equation

of state, are linear in the internal energy and can be written as the sum of two functions,

A1 and A2. The equation of state is written in terms of the total internal energy of the

element for generality, and a scale factor of 1/M or 1/V is necessary in A2 to put it terms

of the energy per unit mass or volume.

P (e, ρ) = A1(ρ) + A2(ρ)E (2.7.2.3)

Substituting Eq. (2.7.2.3) into Eq. (2.7.2.2) gives an explicit formula for the energy at

tn+1.

En+1 =
Ẽ

1 + 1
2�V n+1/2A2(ρn+1)

(2.7.2.4)

When the pressure is not a linear function of the internal energy, a simple successive

substitution algorithm is so frequently used to solve the nonlinear equation for the energy

that its origins are difficult to trace. The subscript i refers to the iteration number and

Pn+1
0 is Pn.
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En+1
i+1 = Ẽ − 1

2P (ρ,En+1
i /M)�V (2.7.2.5)

The method is stable as long as the magnitude of the energy increment, |�Ei|, from each

iteration decreases. A Taylor expansion of Eq. (2.7.2.5) gives the necessary condition for

this to happen. This condition is usually met, and only a few iterations are necessary for

convergence.

�Ei = En+1
i − En+1

i−1

≈ − 1
2ρ

∂P

∂e

�V

V
�Ei−1

1 ≥ ∣∣ 1
2ρ

∂P

∂e

�V

V

∣∣
(2.7.2.6)

The central difference energy calculation is not exactly equal to the central difference

approximation of the work done by an element on its nodes. To demonstrate the level of

approximation, only the planar case is considered.

�E = −1
2 (Fn+1

αi + Fn
αi)u

n+1/2
αi �t

= 1
2 (Bn+1

k�αiσ
n+1
k� V n+1 + Bn

k�αiσ
n
k�V

n)un+1/2
αi �t

≈ 1
2B

n+1/2
k�αi V n+1/2(σn+1

k� + σn
k�)u

n+1/2
αi �t

= 1
2 (σn+1

k� + σn
k�)ε̇

n+1/2
k� V n+1/2�t

(2.7.2.7)

The approximation appearing in Eq. (2.7.2.7) is usually a very good one because the time

step limitation prevents the element geometry from changing greatly during any one time

step.

The total energy is conserved according to Eq. (2.7.2.8) if the kinetic energy, Tn, at

tn is defined in a particular (and not necessarily intuitive) manner. This definition of the

kinetic energy dates at least back to the paper [165] by Truillo and Trigger in 1961. One

drawback to this definition is that the kinetic energy can be negative.

�W = 1
2

(
Fn+1

αi + Fn
αi

)
ẋ

n+1/2
αi �t

= 1
2

∑
αi

Mαi

(
u

n+3/2
αi − u

n+1/2
αi

�t
+

u
n+1/2
αi − u

n−1/2
αi

�t

)
u

n+1/2
αi �t

= 1
2

∑
αi

Mαi

(
u

n+3/2
αi u

n+1/2
αi − u

n+1/2
αi u

n−1/2
αi

)
= Tn+1 − Tn

(2.7.2.8)
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Tn = 1
2

∑
αi

Mαiu
n+1/2
αi u

n−1/2
αi (2.7.2.9)

A Taylor expansion about tn demonstrates that Eq. (2.7.2.9) is a second order accurate

approximation of the kinetic energy at tn.

u
n−1/2
αi = un

αi − u̇n
αi�t/2 . . .

u
n+1/2
αi = un

αi + u̇n
αi�t/2 . . .

Tn = 1
2

∑
αi

Mαi

{
(un

αi)
2 − (�t)2(u̇n

αi)
2/4 . . .

} (2.7.2.10)

The more intuitive approximation of the kinetic energy, which just averages the ve-

locity at tn−1/2 and tn+1/2 for the velocity at tn is also second order accurate, but it is no

more accurate than the approximation in Eq. (2.7.2.9).

Tn = 1
8

∑
αi

Mαi(u
n−1/2
αi + u

n+1/2
αi )2

= 1
2

∑
αi

Mαi

{
(ẋn)2 + (�t)2ün/4 . . .

} (2.7.2.11)

2.7.3 The operator split. The previous method requires the solution of an equation

that is implicit in the energy. It also requires the shock viscosity at the previous time

step, which is not a problem for Lagrangian calculations. In Eulerian calculations, it is

necessary to account for the transport of all the solution variables between the elements.

The value of the shock viscosity at tn is calculated directly from the velocities at tn−1/2

and it would not need to be mapped if it was only needed for the acceleration calculations.

The energy calculations in Section 2.7.2 require the previous value, making the additional

computational cost of mapping of the shock viscosity necessary.

An additional problem with mapping the viscosities can occur. The viscosity is added

to convert kinetic energy into internal energy within a shock. If the viscosity is remapped

into an adjacent element that is expanding, it will reduce the internal energy of that

element, an undesirable result. An alternative approach is derived by considering the

change in the kinetic energy associated with applying the nodal forces at time tn.

– 42 –



METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES

−�E = �T = 1
2Mαi

[
(un+1/2

αi )2 − (un−1/2
αi )2

]
= 1

2

∑
αi

Mαi(u
n+1/2
αi − u

n−1/2
αi )(un+1/2

αi + ẋ
n−1/2
αi )

= 1
2

∑
αi

Fn
αi�t(un+1/2

αi + u
n−1/2
αi )

= 1
2

∑
αi

−Bn
k�αiσ

n
k�V

n�t(un+1/2
αi + u

n−1/2
αi )

En+1 = En + �E

(2.7.3.1)

By construction, the total energy is conserved if it is defined as the sum of the internal

energy at tn+1 and the kinetic energy at tn+1/2. This procedure can be rewritten to look

more like the differential energy equation provided that the strain rate at the discrete times

is correctly defined.

�E = 1
2 (ε̇n+1/2

k� + ε̇
n−1/2
k� )σn

k�V
n�t

ε̇
(·)
k� ≡ Bn

k�αiu
(·)
αi

(2.7.3.2)

It is desirable to include the work performed by the deviatoric stress and the shock

viscosity into the energy used for the equation of state evaluation. This is achieved via

an operator split: it is assumed that the nodes can be accelerated sequentially. First the

nodes are accelerated by the deviatoric stress and the shock viscosity.

u̇n
αi = −

∑
elements

Bn
k�αi(σ

n
k� + qn

k�)/Mαi (2.7.3.3)

An intermediate value of the velocity is calculated using the partial forces and the full

time step.

ũαi = u
n−1/2
αi + �tu̇n

αi (2.7.3.4)

The energy is updated using Eq. (2.7.3.1) with ũαi replacing u
n+1/2
αi , giving an energy

increment �Eσ. This gives an intermediate value for the energy, Ẽ. It is used to evaluate

the equation of state, and the pressure is used to accelerate the nodes.

˙̃uαi =
∑

elements

Bn
kkαiP/Mαi (2.7.3.5)

The final value for the velocity is evaluated by adding the contribution from the

pressure.
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u
n+1/2
αi = ũαi + �t ˙̃uαi (2.7.3.6)

Using the velocities u
n+1/2
αi and ũαi in Eq. (2.7.3.1), the energy increment �EP is

added to advance Ẽ to En+1.

This procedure is conservative and the final velocity is not altered by the operator

split if the dependence of pressure forces on ũ through Ẽ is ignored. To demonstrate these

results, the forces due to the stress and the viscosity are denoted Fσ and the forces due

to the pressure, FP . The second result is trivially obtained by noting that the explicit

central difference method is linear in the acceleration.

ũαi = u
n−1/2
αi + �tFσ

αi/Mαi no sum on αi

u
n+1/2
αi = ũαi + �tFP

αi/Mαi

= u
n−1/2
αi + �t

(
Fσ

αi + FP
αi

)
/Mαi

(2.7.3.7)

The first result is obtained by adding and subtracting the kinetic energy associated

with the intermediate velocity from the difference in kinetic energy at tn+1/2 and tn−1/2.

�T = 1
2

∑
αi

Mαi

[(
(un+1/2

αi )2 − (ũαi)2
)

+
(
(ũαi)2 − (un−1/2

αi )2
)]

= 1
2�t

∑
αi

[
FP

αi

(
u

n+1/2
αi + ũαi

)
+ Fσ

αi

(
ũαi + u

n−1/2
αi

)]
= −�EP −�Eσ

(2.7.3.8)

2.7.4 Runge-Kutta methods. As discussed in a previous section, some hydrocodes

use a second order accurate Runge-Kutta method to advance the solution in time. In

addition to centering all the solution variables at a common location in time, it has the

additional advantages that no iterations are necessary on the energy equation and the

method conserves energy. While the Runge-Kutta scheme requires that the pressure and

stress be evaluated twice per timestep, the fact that it avoids an iterative solution of the

energy equation may make it more efficient than the central difference method for problems

that have tabular or complicated equations of state.

The energy at tn+1/2 is evaluated by integrating from tn with forward Euler. The

increment in the energy from tn to tn+1 is calculated by using Eq. (2.7.2.1), but the actual

quantities centered at tn+1/2 are used instead of the average of the tn and tn+1 values.
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This seemingly small difference between the Runge-Kutta and central difference method

accounts for the lack of iterations in the Runge-Kutta method, i.e., the coupling between

En+1 and Pn+1 is eliminated.

The energy conservation proof follows the proof in Eq. (2.7.3.1) very closely except for

some slight differences in the velocity and stress centering. Note that the kinetic energy

and the internal energy are centered at the same time, and that the kinetic energy must

always be positive (in contrast to the central difference method).

−�E = �T = 1
2Mαi

[
(un+1

αi )2 − (un
αi)

2
]

= 1
2

∑
αi

Mαi(un+1
αi − un

αi)(u
n+1
αi + un

αi)

= 1
2

∑
αi

F
n+1/2
αi �t(un+1

αi + un
αi)

= 1
2

∑
αi

−B
n+1/2
k�αi σ

n+1/2
k� V n+1/2�t(un+1

αi + un
αi)

En+1 = En + �E

(2.7.4.1)

2.7.5 Energy calculations for axisymmetric problems. The methods presented

above are almost unchanged for axisymmetric problems except for the volume calculations.

When one point integration is used in the finite element method, the area of the element

is approximated as 4J(xo), which is exact for a planar quadrilateral element. For the

axisymmetric case, the approximate volume is 4roJ(ro, zo), which is not exact, and the

error is the largest near the axis. In the finite difference method, the volume is usually

evaluated exactly by dividing the quadrilateral into triangles defined by the nodes 1-2-3

and 1-3-4. The volume for one radian of θ for a quadrilateral is given by adding the

two triangular volumes. It is common practice to also use Eq. (2.7.5.1) in finite element

programs.

V = 1
3 (r1 + r2 + r3)A123 + 1

3 (r1 + r3 + r4)A134

Aijk = 1
2 (rjizki − rkizji)

(2.7.5.1)

The proofs of energy conservation in the previous sections relied on a constant mass

matrix, but the mass matrix is time dependent when area-weighted finite element or finite

difference methods are used to solve axisymmetric problems. This subtlety has been stud-

ied in detail by Burton [166], who has developed methods that are energy conservative by

adding momentum flux terms into the energy updates. For most applications, the energy

error is small, but Crowley demonstrated that it can be quite large in a blast wave problem.
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2.8 THE SHOCK VISCOSITY IN ONE DIMENSION

Researchers have realized ever since shock calculations were first attempted [43] that

special computational methods are necessary to handle the jump discontinuities associated

with shocks. A standard approach in hydrodynamic calculations is the introduction of a

viscous term [43] into the equations. Within the context of strong shocks in an ideal gas,

the viscosity can be related to the thermodynamic irreversibility of the shock [44]. In the

acoustic limit there is no entropy increase, and the role of the viscosity is to damp out

the postshock “ringing” that occurs in the discrete solution. It can be shown that the

weak form of a hyperbolic system of equations can admit more than one solution [167]. If

the system is modified to include viscous terms, the physically meaningful solution to the

original problem is the limiting solution as the viscous terms approach zero and satisfy and

entropy condition [168]. By adding a viscosity, even in accoustic problems, the numerical

solution of the weak form also converges to the physically meaningful solution.

Although the addition of a shock viscosity has proven to be a simple and robust

approach to solving shock problems, the approach is not without its drawbacks. Shocks

are typically spread over four to six elements, and the density of the mesh must be fine

enough so that the six element shock width is small in comparison to the dimensions of

the problem. Adaptive methods have been developed so that a fine mesh is used only

within the shock. In explicit calculations, the time step size is limited by the size of the

smallest element, consequently, the elements within the shock control the time step for

adaptive methods. The efficiency of the method is heavily dependent on the coarseness

of the mesh outside the shock and the speed with which the mesh can be changed. On

supercomputers, continuously re-blocking the elements for vectorization adds an additional

burden on adaptive methods.

Shock viscosities introduce errors and problems of their own. In strong shocks, “wall

heating” and “shockless heating” occur [45], leading to errors in the energy behind, and

even in front of, the shock. Errors in the energy lead to errors in the density and the shock

speed.

Instabilities in the solution can be created, especially when the elements are distorted

or have large aspect ratios [41]. Shock viscosities that produce thinner shocks or have

less heating error than the standard formulations generally worsen the instabilities. While

distorted elements and elements with large aspect ratios are undesirable for other reasons,

they are common in problems involving large deformations.
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2.8.1 The Von Neumann and Richtmyer Viscosity. The paper by Von Neumann and

Richtmyer [43] was concerned only with one-dimensional planar shocks. They wanted a

numerical method that would automatically treat shocks without the need for introducing

an internal boundary condition that moved with the shock. Quoting their paper, their

approach “utilizes the well-known effect on shocks of dissipative mechanisms, such as

viscosity and heat conduction. When viscosity is taken into account, for example, the

shocks are seen to be smeared out . . . Our idea is to introduce (artificial) dissipative

terms . . . to give the shocks a thickness comparable . . . to the spacing of the points of the

network.” They introduced a pressure-like term, designated q, that is added consistently

to the pressure, P , in all of the governing equations.

ρ
∂u

∂t
= −∂(P + q)

∂x
∂ε

∂t
= −(P + q)

∂u

∂x

(2.8.1.1)

The particular form they chose is quadratic in the strain rate. The dimensionless

constant, c, is close to unity, and the mesh spacing is denoted �x.

q = −ρ(c�x)2
∂u

∂x

∣∣∣∣∂u

∂x

∣∣∣∣ (2.8.1.2)

Using the standard approximation for the strain rate in a two node element, the

viscosity can be written in terms of the velocity jump across the element.

∂u

∂x
=

�u

�x
(2.8.1.3)

q = −ρc2�u |�u| (2.8.1.4)

The viscosity term is positive for shocks and negative for rarefactions. Rarefactions

in gases usually do not need the viscosity for a smooth solution. It is common practice

today to turn on the q only in compression for a gas, and set it to zero everywhere else.

For acoustic shocks in solids, the q is sometimes left on all the time (for both compression

and expansion) to add extra damping. This practice is followed throughout the remainder

of this paper except when otherwise specified.

Von Neumann and Richtmyer solved the governing equations with the viscosity in-

cluded for a steady shock in an ideal gas. The length scale introduced by the mesh spacing,
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�x, appears in their solution. Using the analytical solution, they were able to prove for

ideal gases that their viscosity eliminated all discontinuities, and that the shock profile

was sinusoidal. They also demonstrated that the shock was about six elements wide and

independent of the shock strength. Most of the jump in the solution occurs over three to

four elements in practice. Their analytical solution satisfies the Rankine-Hugoniot equa-

tions when the pre- and postshock conditions are evaluated at ±∞. The viscosity method

is convergent in the sense that the error in satisfying the Rankine-Hugoniot equations can

be held to any desired value with a fine enough mesh.

Treating the viscosity as a pressure term the momentum and energy equations allows

the work done by the viscosity to be identified with the thermodynamic irreversibility of

the shock by comparing the energy equation to the first law [44].

dε = −(P + q)dV

Tds = dε + PdV

→ Tds = −qdV

(2.8.1.5)

2.8.2 Artificial Heat Conduction. As noted by Von Neumann and Richtmyer, heat

conduction also plays a role in smearing out shocks. Noh [45] advocates adding an artifi-

cial heat conduction term to the energy equation. He convincingly demonstrates that the

artificial heat conduction eliminates most of the heating errors that occur with all viscosi-

ties. Before the internal energy of an element is updated at the end of the time step, an

intermediate value of the internal energy is used to calculate the thermal diffusion in the

shock. This procedure requires the intermediate energy for all the elements in the shock

front.

Implementing artificial heat conduction in a finite difference code is not difficult, but

it is a problem in a finite element code due to the lack of a logically regular mesh. When

a given element is being updated, there is no guarantee that all the intermediate energies

of the surrounding elements have been calculated. Two passes could be made over all the

elements, but that would be prohibitively expensive. In finite difference programs, it is

possible to order the calculations over strips along a logical mesh direction in such a way

as to guarantee that all of the necessary energies have been calculated.

2.8.3 The HEMP Artificial Viscosity. HEMP [46] uses a combination of linear and

quadratic viscosities, see Landshoff [47], with a method for calculating the shock direction

developed by Richards and Wilkins [48]. Landshoff noticed that the quadratic viscosity
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works reasonably well, but small oscillations still occur after the shock and that while linear

viscosities were used in some papers, they were overly diffusive. He used a linear combi-

nation of the two viscosities that was better than either of them separately. Wilkins [46]

credits Kuropatenko [49] with giving a physical basis for the combination of linear and

quadratic viscosities. Kuropatenko noted the similarity between the analytical solutions

for the pressure jump across an ideal gas and an elastic solid. For shocks where the velocity

jump is much greater than the speed of sound, the pressure jump is quadratic.

P2 − P1 =
γ + 1

2
ρ1(�u)2 for an ideal gas

P2 − P1 = ρ1(�u)2 for an elastic fluid
(2.8.3.1)

The viscosity, q, is defined to be the pressure jump across the shock, P2 − P1. Com-

paring analytical solutions to Eqn. (2.8.3.1), the theoretical values for c0 are (γ + 1)/2 for

an ideal gas and 1.0 for an elastic fluid.

A linear viscosity is obtained by considering the limits of the analytical solutions when

the velocity jump is much smaller than the sound speed.

q = P2 − P1 = ρ1a1|�u| for both materials (2.8.3.2)

Combining Eq. (2.8.3.1) and Eq. (2.8.3.2) into a single term, and allowing two material

dependent coefficients, gives the quadratic plus linear viscosity that is in common use

today. The particular form chosen represents a doubly asymptotic expansion of the shock

Hugoniot. In the remainder of this paper, this form will be referred to as the standard

one-dimensional viscosity.

q = c0ρ(�u)2 + cLaρ|�u| (2.8.3.3)

Typical values used in calculations for c0 and cL are 1.5 and 0.06 respectively. Note

that the linear term is small in comparison to its theoretical value. The reason for a small

value of cL is discussed in the next section.

2.8.4 The Shock Viscosity as an Approximate Riemann Solver. Christensen closes

the loop by interpreting the artificial viscosity as an approximate Riemann solver [50].

The derivation presented here has been superseded by a more sophisticated one that gives

sharper results [51], and it will be published in a forthcoming paper by Christensen. Three

assumptions are made here, two of which are found in Dukowicz’s work: 1) a rarefaction
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can be approximated by the shock Hugoniot, referred to as the “two-shock approximation,”

and 2) the shock velocity, Us, is a linear function of the particle velocity, Up. The second

assumption is an accurate approximation for a wide variety of materials. The states to

the right and left of the Riemann problem are denoted by subscripts + and −, the values

at the contact discontinuity by a superscript ∗, and the characteristic velocity is C. Using

the two shock approximation, the solution to the Riemann problem satisfies Eq. (2.8.4.1).

(u∗ − u±) ± P ∗ − P±
(ρC)±

= 0 (2.8.4.1)

Letting C− and C+ be equal (this third assumption makes this a symmetric rather

than an upwind approximation), the contact pressure can be calculated.

P ∗ =
ρ−P+ + ρ+P−

ρ− + ρ+
+

ρ+ρ−
ρ− + ρ+

C(u+ − u−) (2.8.4.2)

Assuming that the linear Us − Up relationship holds, then the characteristic velocity

is a linear function of the velocity jump, and the contact pressure is a quadratic function

of the velocity jump.

C = a + A|u+ − u−| (2.8.4.3)

P ∗ =
ρ−P+ + ρ+P−

ρ− + ρ+
+

ρ+ρ−
ρ− + ρ+

(
a|u+ − u−| + A(u+ − u−)2

)
(2.8.4.4)

The terms involving the densities can be thought of as averages.

P̄ =
ρ−P+ + ρ+P−

ρ− + ρ+

ρ̄ =
ρ+ρ−

ρ− + ρ+

(2.8.4.5)

Identifying terms between Eqn. (2.8.4.5) and standard formulation, P ∗ − P̄ is the

shock viscosity, P̄ is the element average pressure, and ρ̄ is the element density.

2.8.5 The Christensen flux-limited viscosity. The one-dimensional flux-limited vis-

cosity developed by Christensen [50] was originally developed for an Eulerian hydrocode

using a Lagrangian-Eulerian operator split on a rectangular mesh with edge-centered ve-

locities. The one-dimensional viscosity is applied in the y and z directions independently.

In the viscosity literature, such an approach is referred to as a “split viscosity” in reference

to the spatial operator split.
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The major difference between the standard viscosity and the new viscosity is the

approximation of the jump in the velocity at the element centroid. The standard approxi-

mation is just the difference between the two nodal velocities defining element i; see Fig. 8

for a graphical interpretation.

�u = ui+1 − ui (2.8.5.1)

The jump in the velocity can be written in terms of the strain rate, a form which

proves convenient in two and three dimensions. In one dimension, �X is the length of

the element, while in two or three dimensions it represents a characteristic length of the

element.

�u = �X
∂u

∂x
(2.8.5.2)

When the standard approximation is used, the typical values for c0 and cL for an

ideal gas with a γ of 5/3 are 1.5 and .06, respectively. The theoretical values, based

on Kuropatenko’s q are 1.3 and 1.0, respectively. If the theoretical value of cL is used

in a calculation, the shock is smeared out over more elements than is necessary. This

shortcoming can be traced back to the poor quality of the approximation in Eq. (2.8.5.1).

A better approximation to the velocity jump can be developed by using a Taylor

expansion of the velocities at the nodes and keeping only the first order terms; see Fig. 8.

The vertical bar with the subscript, |i, indicates that the derivative is evaluated at node i.

�u = (ui+1 − �X

2
∂u

∂x

∣∣∣
i+1

) − (ui +
�X

2
∂u

∂x

∣∣∣
i
) (2.8.5.3)

The difficulty with using Eq. (2.8.5.3) is in evaluating the spatial derivative of the

velocity at the nodes, ∂u/∂x|i. The lower order elements typically used in explicit cal-

culations are only C0 continuous and special approximations of the derivative must be

used. Christensen adopted the methodology developed by van Leer [52] for higher order,

monotonic advection methods. The term “flux-limited” which Christensen gave his new

viscosity is derived from the flux limiting procedure that van Leer created in order to

impose monotonicity on his advection algorithms.

Van Leer [52] developed a general class of higher order advection methods, and with

them, a general class of derivative approximations. Only the particular second order ap-

proximation used in the viscosity will be discussed. Christensen uses a more sophisticated
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third order approximation, but it is appropriate only for meshes that are logically regular,

i.e., two-dimensional meshes with a regular checkerboard pattern. In one dimension, three

consecutive nodes are considered: i−1, i, and i+1. Two first order slope approximations,

SL and SR, are available at node i by using backward and forward differencing.

SL =
J(ui − ui−1)

xi − xi−1

SR =
J(ui+1 − ui)

xi+1 − xi

(2.8.5.4)

A second order approximation, SC , of the slope may be developed by passing a

parabola through the three points and evaluating the slope at node i.

SC =
(xi+1−xi

xi−xi−1
)(ui − ui−1) + (xi−xi−1

xi+1−xi
)(ui+1 − ui)

xi+1 − xi−1
(2.8.5.5)

Monotonicity determines which of the three slopes is used at a given node. Defining

umax and umin as the maximum and minimum of the velocities at nodes i − 1, i, and

i + 1, the final slope approximation, Si, is determined by demanding that range of Taylor

expansion of u about node i lie between umax and umin on the domain {x∗|(xi−1−xi)/J ≤
x∗ − xi ≤ (xi+1 − xi)/J}. The value of J for advection is 2.0. A more diffusive result

is obtained if J is set to 1.0, which corresponds to limiting the second order derivative

approximation by the left and right first order approximations. A value of 0.0 for J

reduces the formulation to the standard formulation, i.e., Si is zero.

umin ≤ ui + Six
∗ ≤ umax ∀ x∗ (2.8.5.6)

Since the expansion is linear, only the endpoints of the domain need to be tested

to see if a particular value of Si satisfies Eq. (2.8.5.6). A particular choice that satisfies

Eq. (2.8.5.6), which is used here, is given by Eq. (2.8.5.7).

Si = 1
2 (sgn(SL) + sgn(SR))min(|SL|, |SC |, |SR|) (2.8.5.7)

The behavior of this slope approximation is the crucial ingredient in the success of

the new viscosity. When the solution is smooth, the slope is the second order approxima-

tion and the predicted jump is small. For a perfectly linear velocity profile, the predicted

velocity jump is zero, in contrast to the jump of ui+1 − ui predicted by the standard ap-

proximation. The amount of dissipation introduced by the viscosity in a region undergoing
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a smooth compression is small. Near a sharp discontinuity, the limiting procedure comes

into play, and the slopes on either side of the discontinuity approach zero. The result is a

large jump in the velocity across the element, and a correspondingly large value for q.

Since Eq. (2.8.5.7) reduces the unwanted dissipation in the smooth part of the solution,

the theoretical values for c0 and cL, determined by the Rankine-Hugoniot relations, can

be used for strong shocks. For ideal gases, these values are 1
2 (γ + 1) and 1 for c0 and cL

respectively. Weak shocks in elastic materials still require some reduction in the viscosity

coefficients for optimum results. Another possibility is to use a still higher order expansion

of the velocity field.

Noh proposed three test problems involving an ideal gas (γ = 5/3) in his article on

shock errors [45]. The initial state of the gas is the same in all three problems: the internal

energy is 0.0, the density is 1.0, and the gas has a uniform velocity of -1.0 in the radial

direction. The only difference between the problems is their geometry. The first problem

is planar (n = 1), the second is cylindrical (n = 2), and the third is spherical (n = 3).

A shock wave starts at the origin and propagates with a velocity of 1/3 to the right, the

internal energy behind the shock is 1/2, and the density behind the shock is 4n. Ahead

of the shocks, there is isentropic heating associated with the geometrical convergence in

the cylindrical and spherical problems, see Fig. 9. Only the first and third problems will

be used in this paper. The first problem is useful for determining the shock width and

sharpness, and the third problem illustrates problems associated with shockless heating.

The density is used to compare the accuracy of the different viscosity formulations.

In the remainder of this section on viscosities, the coefficients c0 and cL for the stan-

dard formulation are 1.5 and 0.06. For the Christensen viscosity, they are the theoretical

values, 1.3 and 1.0, from Hugoniot’s ideal gas solution.

A comparison of the standard viscosity and the flux-limited viscosity for the planar

shock problem is shown in Fig. 10. Both give accurate answers for the density behind the

shock, but it is clear that the new viscosity gives a much sharper shock. For the spherical

shock problem, shown in Fig. 11, the results are much the same. Overheating is evident

by the low density after the shock in Fig. 11 when the standard formulation is used and

the viscosity is treated as a pressure in the energy equation.

2.9 TWO-DIMENSIONAL SHOCK VISCOSITIES

2.9.1 The Standard Extension. The simplest extension of the viscosity from one
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dimension to two is to consider the viscosity as a pressure term. To implement the viscosity

in two dimensions, it is necessary to calculate a velocity jump across the shock in the

element. This task is simplified by calculating the jump as the product of a characteristic

element length and a strain rate normal to the shock front, where the normal direction is

xs.

�u = �X
∂u

∂xs
(2.9.1.1)

The simplest approximations, which are used in what will be referred to as the stan-

dard formulation in two dimensions, are given in Eq (2.9.1.2).

�X =
√

A

∂u

∂xs
= tr(ε̇)

(2.9.1.2)

The viscosity term is treated as a pressure and the work is calculated in the same

manner as for pressures. This results in shock overheating because the energy calculation

includes the irreversible viscous work due to the nonzero hoop strain rate in axisymmet-

ric problems despite the fact that the axisymmetric assumption prevents shocks in that

direction.

2.9.2 The HEMP Viscosity. Wilkins and Sharp were aware of the problems associated

with Eq. (2.9.1.2) and sought to remedy them by introducing more sophisticated approxi-

mations [46]. With reference to Fig. 12, the direction of the shock, �n, is calculated using

the nodal accelerations from the last time step. In cylindrical coordinates, the coordinates

y and z are replaced with r and z, but the equations below remain otherwise unchanged.

ÿ = ÿ1 + ÿ2 + ÿ3 + ÿ4

z̈ = z̈1 + z̈2 + z̈3 + z̈4

n1 = cosα =
ÿ√

ÿ2 + z̈2

n2 = sinα =
z̈√

ÿ2 + z̈2

(2.9.2.1)

The strain rate in the shock direction is �nt[ε̇]�n.

∂u

∂ys
= ε̇yycos2α + ε̇zzsin2α + 2ε̇yzcosαsinα (2.9.2.2)

– 54 –



METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES

A characteristic length, �X, is calculated by dividing the element area by the average

thickness of the element in the direction normal to the shock front, where the di are defined

in Fig. 12.

�X =
2A

d1 + d2 + d3 + d4
(2.9.2.3)

This viscosity works well when the aspect ratio of the element is near one. There is

less overheating with this viscosity with the standard extension because the viscosity is

not turned on in elements that are undergoing an isentropic compression due to spherical

or cylindrical convergence. When the element aspect ratio is large, small changes in the

direction of the shock result in large changes in �X, and the viscosity is unstable.

2.9.3 Tensor viscosities. To overcome the limitations associated with a scalar or bulk

shock viscosities, tensor viscosities have been developed that incorporate the direction of

the shock in their formulation. To simplify the discussion, two sets of basis vectors are

introduced. The first set is the standard Euclidean vectors Ei. The second set is local to

the element or zone. Corresponding to the ξ1 or the k lines is the basis vector e1, for ξ2 or

the 
 lines, it is e2. To be consistent with the tensor notation in this section, the Cartesian

coordinates xi are written with superscripts, xi. In all other sections, the coordinates will

retain their subscripts to avoid any confusion with exponentials.

e1(k + 1/2, 
) = (xi
(k+1,�) − xi

(k,�))Ei

e2(k, 
 + 1/2) = (xi
(k,�+1) − xi

(k,�))Ei

e1(k + 1/2, 
 + 1/2) = 1
2 (e1(k + 1/2, 
) + e1(k + 1/2, 
 + 1))

e2(k + 1/2, 
 + 1/2) = 1
2 (e2(k, 
 + 1/2) + e2(k + 1, 
 + 1/2))

(2.9.3.1)

More compactly, the relationship between ei and Ej is defined by a set of displacement

dependent coefficients Xj
i .

ei = Xj
i Ej (2.9.3.2)

The formulation of a particular tensor viscosity is considered to have three parts: 1) the

calculation of a velocity jump vector across the shock, 2) the construction of an appropriate

Hugoniot function, W (��u), and 3) the assembly of the first two parts into a tensor form.

In some cases, W (��u) is constructed to satisfy some set of desirable characteristics and it

is not related to the Hugoniot function as it was discussed in previous sections.
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For a mesh with edge-centered velocities, the one-dimensional tensor viscosity can

be extended to two dimensions by evaluating the one-dimensional viscosity independently

in the x1 and x2 directions. Noting that the Ei are orthogonal, the tensor viscosity in

Eq. (2.9.3.3) is diagonal.

QijEi ⊗ Ej =
2∑

k=1

q(�uk)Ek ⊗ Ek (2.9.3.3)

Three different tensor shock viscosities appear in the literature for TENSOR. The first

viscosity [6] separates the response into volumetric and deviatoric contributions. The vol-

umetric part is very similar to the simple two-dimensional extension discussed previously,

denoted here as qs2, while the deviatoric is a linear function of the deviatoric strain rate,

ε̇′ij , the density, and the characteristic element length, �X.

QijEi ⊗ Ej = qs2Ek ⊗ Ek + Cρ�Xε̇′ijEi ⊗ Ej (2.9.3.4)

The second viscosity [54] is similar, but the magnitude of the velocity jump is defined

as
√

(�u1)2 + (�u2)2, and (�ui)2 is calculated directly as the square of the velocity jump

in the direction normal to ei.

The most recent viscosity in TENSOR [55] was motivated by the desire to include di-

rectional properties into the viscosity, to handle multiple shocks, and to make the viscosity

invariant under rigid body rotation. For axisymmetric problems there is no shock in the θ

direction and no terms are included in that direction so as to avoid shock overheating in

spherically convergent problems. Exclusive of the calculation of the strain rates, there is

no difference between the planar and axisymmetric shock viscosities.

Directionality is included in this formulation by working in the coordinate system

associated with the directions of the principal strain rates, ˙̂εi, denoted here as êi. A

characteristic length, �X̂i, is calculated for each principal direction. The jump in the

two principal directions, �ûi, includes a function that is intended to discriminate between

shocks and steady flow situations. The coefficient, Cf , is set to a value near 1.0.

�ûi = f(˙̂εi)˙̂εi�X̂i no sum on i

f(˙̂εi) =
2

1 + |(˙̂ε1 − ˙̂ε2)/Cf
∂V
∂t |

(2.9.4.5)

The one-dimensional standard formulation, qs1(�u), is applied independently to the

two principal directions, resulting in a split viscosity. Shear viscosity terms appear when
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this split viscosity is rotated into the global coordinate system.

QijEi ⊗ Ej =
2∑

k=1

qs1(�uk)êk ⊗ êk (2.9.4.6)

In his paper [56], Schulz presents arguments in favor of a tensor viscosity, and derives

an edge-centered tensor viscosity. While the edge viscosity developed by Schulz can be

transformed into the global coordinate system, it is calculated in the mesh curvilinear

coordinates. After performing “a fair amount of manipulation,” the contributions of the

viscosity tensor divergence can be written in terms of the curvilinear coordinates, and it is

computationally never necessary to work with the viscosity tensor in the global coordinates.

In Schulz’s paper, Rk, R�, R̄�, and −R̄k correspond to e1, e2, e1 and e2 in this paper, and

qA and qB correspond to q1 and q2.

In the curvilinear coordinate system of the mesh, the Schulz viscosity is a split formu-

lation. The jacobian, J , by virtue of Schulz’s choice of coordinates, is equal to e1e
1 and

e2e
2.

QijEi ⊗ Ej =
1
J

2∑
k=1

qkek ⊗ ek

qk = 2ρ

(
∂uk

∂ξk

)
−
·
∣∣∣∣∣ ∂∂ξk

(
∂uk

∂ξk

)
−

∣∣∣∣∣
(

∂uk

∂ξk

)
−

= min
(

0,
∂uk

∂ξk

)
∂uk

∂ξk
≡ ∂�u

∂ξk
· ek

|ek|

(2.9.4.7)

The central difference approximation of ∂�u/∂ξk is simply ��u for the pair of nodes

defining the edge, and ∂uk/∂ξk is the physical component of ��u parallel to the edge.

A length scale enters the viscosity through the fact that ek is not a unit vector, but

has a magnitude equal to the length of the appropriate element edge. By grouping the

appropriate terms into the Hugoniot, the edge viscosity can be written in terms of the

Hugoniot, the velocity jumps along the element edges and the curvilinear basis vectors.
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QijEi ⊗ Ej =
1
J

2∑
k=1

W (�u)�ukek ⊗ ek

|ek|

W (�u) = 2ρ

∣∣∣∣∣ ∂∂ξk

(
∂uk

∂ξk

)
−

∣∣∣∣∣
(2.9.4.8)

Schulz departed from the standard Hugoniot approximation to eliminate the shockless

heating error. A uniform expansion or contraction is considered to be reversible, and the

viscosity should not be turned on. In such a situation the velocity is proportional to the

displacement in cartesian coordinates, resulting in the second derivative of the velocity

with respect to the displacement being zero. When a uniform mesh is used, the second

derivative of the velocity with respect to the logical mesh coordinates is also zero, and the

Hugoniot in Eq. (2.9.4.8) is zero. For a nonuniform mesh, the Hugoniot will not be zero.

This situation is discussed by Schulz.

To summarize, the Schulz viscosity is a split viscosity formulation in the logical mesh

coordinates. The Hugoniot is defined in such a way as to eliminate shockless heating. Shear

viscosities appear when the viscosity is transformed into the global cartesian coordinate

system. In general, the viscosity tensor is not symmetric.

Margolin introduced a zone-centered viscosity based on the Schulz edge-centered vis-

cosity. In order to improve the performance of the viscosity with elements having a large

aspect ratio, he scales W .

QijEi ⊗ Ej = ρW (�u)
∂ui

∂xk
Xk

mXj
mEi ⊗ Ej (2.9.4.9)

W (�u) = max

[
c1a + c2

∣∣ ∂ui

∂xk Xk
1

∣∣
|e1| ,

c1a + c2

∣∣ ∂ui

∂xk Xk
2

∣∣
|e2|

]
(2.9.4.10)

Margolin tested both the nonsymmetric form and a symmetric form obtained by aver-

aging the off diagonal terms. He found that the nonsymmetric form gave better solutions,

but that special care had to be taken with the boundary conditions. The symmetric form

was less sensitive to the boundary conditions, but it introduced spurious motion perpen-

dicular to the shock through its shear terms.

A two-dimensional implementation of the Christensen viscosity was developed by Ben-

son [42]. The velocity jumps are calculated in a one-dimensional manner along the element

directions. Finite difference notation is used here for clarity since the finite element no-

tation does not provide a convenient means of describing quantities centered along the
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element edges. The derivatives are evaluated using the monotonic algorithm of van Leer

in the same manner as the Christensen viscosity.

�u1 =
(

u1 − �ξ1

2
∂u1

∂ξ1

) ∣∣∣
(k+1,�+1/2)

−
(

u1 +
�ξ1

2
∂u1

∂ξ1

) ∣∣∣
(k,�+1/2)

�u2 =
(

u2 − �ξ2

2
∂u2

∂ξ2

) ∣∣∣
(k+1/2,�+1)

−
(

u2 +
�ξ2

2
∂u2

∂ξ2

) ∣∣∣
(k+1/2,�)

(2.9.4.11)

The two-dimensional velocity jump is readily expressed in the Cartesian coordinate

system.

��u = (�u1x1,ξ1 +�u2x1,ξ2 )E1

+ (�u1x2,ξ1 +�u2x2,ξ2 )E2

(2.9.4.12)

For clarity, the components of the jump in the cartesian coordinate system will be

�u1
E and �u2

E .

The shock directionality is introduced in the same manner as in the TENSOR viscosity.

After calculating the shock direction from the strain rates, two one-dimensional shock

viscosities are calculated, where quantities in the principal directions are given a hat: (̂·).

Q̂11 = −c0ρ(�û1)2 − cLaρ|�û1|
Q̂22 = −c0ρ(�û2)2 − cLaρ|�û2|
Q̂12 = Q̂21 = 0

(2.9.4.13)

Benson demonstrated that shear viscosity terms must be introduced into constant

stress quadrilateral elements to eliminate spurious element distortion after the shock [42].

The particular form of the shear viscosity that was chosen in his formulation is based on a

simple linear differential equation which has a solution that damps out the spurious shear

strain rates.

∂

∂t

(
∂ûi

∂x̂j

)
+ λ

∂ûi

∂x̂j
= 0 λ > 0 (2.9.4.14)

The final expressions for the shear viscosity terms are unsymmetric.

Q̂12 = α
(x̂1

13x̂
2
13 + x̂1

24x̂
2
24)Q̂

11 + ρ(2A2λ − Ȧ)[x̂1
13û

1
24 − x̂1

24û
1
13]

(x̂1
13)2 + (x̂1

24)2
(2.9.4.15)
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Q̂21 = α
(x̂1

13x̂
2
13 + x̂1

24x̂
2
24)Q̂

22 + ρ(2A2λ − Ȧ)[x̂2
24û

2
13 − x̂2

13û
2
24]

(x̂2
13)2 + (x̂2

24)2
(2.9.4.16)

The energy calculation is modified slightly because of the lack of symmetry associated

with the tensor viscosity. Instead of using the strain rate, the velocity gradient, which is

unsymmetric like the viscosity, is used in the energy equation.

ĖQ = Qij ∂ui

∂xj
V (2.9.4.17)

No changes are necessary for using this viscosity formulation in axisymmetric prob-

lems. The governing equations in axisymmetry have the additional terms (σrr − σθθ)/r

in the r equation and σrz/r in the z equation. These additional terms only contribute

a rigid body acceleration to the entire element when the area-weighted Petrov-Galerkin

finite element method is used. A consistent use of the tensor viscosity would suggest

that similar viscous terms should be added for axisymmetric problems. The purpose of

adding the viscosity is to resist the compression of the element and to add the proper

amount of thermodynamic irreversibility. Adding the axisymmetric viscous terms to the

equations would not achieve either end, but they would result in large, spurious rigid

body accelerations in the region of a shock. Neglecting to add them does not affect the

internal energy calculation because the strain rates are independent of the rigid body

motion.

2.10 HOURGLASS CONTROL

One consequence of using constant stress quadrilateral elements is the appearance of

zero energy modes. These modes are also called “hourglass” and “keystone” modes after

their shapes. The modes are not resisted by the stresses within the element, and they

can grow without bound. Unless some mechanism is included to control them, they will

ultimately turn the elements inside out.

The existence and nature of the hourglass modes can be deduced from very primitive

considerations. A single element has eight degrees of freedom, two for each node. The

three rigid body modes, two translational and one rotational, must not be resisted by

the stresses. This leaves five independent modes of deformation to be resisted, but in

two dimensions there are only three stresses (σθθ does not resist the hourglass modes in
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axisymmetry) to resist them. Two of those modes, the hourglass modes, are therefore not

resisted by the element.

Consider an initially square element, and move the lower two nodes towards each other

by an amount δ, and the upper two nodes δ outwards. The two material lines associated

with ξi through the element centroid remain undistorted and the strain at the centroid

is zero. No resisting stress will be developed in response to this distortion. This mode

of distortion is the x1 hourglass mode, and the x2 mode is simply the x1 mode rotated

through a quarter turn. Note that the centroid of the element is the only location within

the element where the strain is zero. For the x1 mode, the only strain component is ε11 and

it is a linear function of x2. In simple beam bending theory [57], the strain has the same

linear distribution through the thickness. The hourglass modes therefore can be thought of

as bending modes for the case of rectangular elements. Since bending is often an important

part of the solution, we want to control the unbounded growth of the hourglass modes,

but not to suppress them so much that the structural response is overly stiff.

The existence of hourglass modes has been known since the earliest two-dimensional

finite difference calculations. The usual approach to controlling hourglass modes is to add

viscous terms to the momentum equations that oppose the modes. Despite the large body

of literature on the subject, the actual form of the hourglass viscosity is not critical for

most problems. One exception is the method by Flanagan and Belytschko [58], which uses

a stiffness instead of a viscosity. Belytschko [59] has shown that the proper choice for

an hourglass stiffness results in superconvergent behavior for small strain, linearly elastic

problems. While the stiffness form works better than the viscosity for many structural

problems [58], its usefulness is limited in axisymmetric hydrodynamics problems [34]. In

the hydrocode literature other formulations have been presented by many others, including

Wilkins [7], Hallquist [18], Margolin [60], and Maenchen and Sack [6].

The hourglass control has two parts: 1) defining the mode shapes and 2) defining the

resisting force. Neither part is uniquely defined in the literature, and depending on the

problems, different forms are appropriate.

2.10.1 Defining the hourglass modes. The hourglass velocity is the velocity field

minus the velocity field associated with the rigid body and straining modes [6], [7]. Since

there are eight degrees of freedom in a quadrilateral element, the velocity field can be

expressed in terms of eight modes. The choice of the eight modes is not unique so long as

they are linearly independent. From inspection, one choice is the two translational modes,
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the rigid rotation mode, the pure shear mode, the two stretching modes in the y and z

directions, and the two hourglass modes. The shear and rotation modes include both y

and z velocity components, while the other modes include only one velocity component

(aside from the hourglass modes, which are to be determined). To simplify the analysis,

the rigid rotation and the pure shear modes are replaced by the y and z shear modes. The

pure shear mode is one half of the z and y shear modes, while the rigid rotation is half the

difference between the two.

Letting the translational, shear, and stretching modes in the ith direction be denoted

as T i, τ i, and σi respectively, their shapes can be described by vectors using the same

ordering as the velocity components for Eq. (2.4.2.10).

T y = 1
4 [ 1 0 1 0 1 0 1 0 ]

T z = 1
4 [ 0 1 0 1 0 1 0 1 ]

τy = 1
2A [−y24 0 −y31 0 y24 0 y31 0 ]

τz = 1
2A [ 0 z24 0 z31 0 −z24 0 −z31 ]

σy = 1
2A [ z24 0 z31 0 −z24 0 −z31 0 ]

σz = 1
2A [ 0 −y24 0 −y31 0 y24 0 y31 ]

(2.10.1.1)

These modes are used to calculate the magnitude of the deformation modes and do

not constitute velocity profiles. For instance, the velocity profile for shear in the y direction

is proportional to z, but the τy mode defined above clearly does not have this form (e.g.,

nodes 1 and 3 have the same magnitudes). The dot product of the nodal velocities with

τy gives the magnitude of the shear component in the y direction in the specified bilinear

velocity field.

Perhaps the best way to think of these modes is as covectors. Their dot product with

the nodal velocities gives the magnitude of the contribution of their associated deformation

pattern to the velocity field. By construction, the resulting velocity field is linear.

{uαi}linear = (T y ·u)Ty +(T z ·u)Tz +(τy ·u)τy +(τz ·u)τz +(σy ·u)σy +(σz ·u)σz (2.10.1.2)

The associated vectors are fairly simple. The centroid location is (yo, zo), and it is

calculated by taking the dot product of the nodal coordinates with T y/4 and T z/4.
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Ty = [ 1 0 1 0 1 0 1 0 ]

Tz = [ 0 1 0 1 0 1 0 1 ]

τy = [ z1 − zo 0 z2 − zo 0 z3 − zo 0 z4 − zo 0 ]

τz = [ 0 y1 − yo 0 y2 − yo 0 y3 − yo 0 y1 − yo ]

σy = [ y1 − yo 0 y2 − yo 0 y3 − yo 0 y4 − yo 0 ]

σz = [ 0 z1 − zo 0 z2 − zo 0 z3 − zo 0 z1 − zo ]

(2.10.1.3)

Six of the eight basis vectors and covectors are known and it remains to complete the

spaces by adding an additional pair of vectors and covectors. Note that neither the set of

vectors or covectors are mutually orthogonal. The definitions of the remaining vectors are

not unique.

By inspection, two hourglass vectors, Γi, are found to be orthogonal to the six covec-

tors. Any velocity vector that is a multiple of these vectors will produce a zero strain rate.

The spaces are completed by calculating Γi.

Γy = [ +1 0 −1 0 +1 0 −1 0 ]

Γz = [ 0 +1 0 −1 0 +1 0 −1 ]
(2.10.1.4)

Flanagan and Belytschko chose the Γi to complete the space because the Γi represent

the difference between the interpolated bilinear velocity field and the linear velocity field

defined by the six vectors. The covectors are calculated by Gram-Schmidt orthogonaliza-

tion using the Γi as the initial approximation to Γi. By noting that the Γi are already

orthogonal to rigid body modes, only the orthogonalization with respect to the straining

modes needs to be performed. Since the two directions are considered independently, there

are only four nonzero coefficients in each Γi. The two are related by a simple interchange

between their y and z components, and therefore only one of the actual orthogonalization

operations needs to be performed.

Γy = Γy − (τy · Γy)τy − (σy · Γy)σy

Γz = Γz − (τz · Γz)τz − (σz · Γz)σz
(2.10.1.5)

The orthogonalization can also be written in terms of the B matrix and the nodal

coordinates [58]. An explicit expression for the hourglass covectors is given by Flanagan

and Belytschko [58] and Taylor and Flanagan [34]. Since the mode in the y direction is a

– 63 –



METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES

function of only the y velocities, and the z mode, the z velocities, only the four nonzero

components are given.

Γ =
1
A




y2(z3 − z4) + y3(z4 − z2) + y4(z2 − z3)
y3(z1 − z4) + y4(z3 − z1) + y1(z4 − z3)
y4(z1 − z2) + y1(z2 − z4) + y2(z4 − z1)
y1(z3 − z2) + y2(z1 − z3) + y3(z2 − z1)


 (2.10.1.6)

Kosloff and Frazier [61] chose to make the Γi orthogonal with respect to the rigid

body and straining vectors. Again considering each coordinate direction independently,

this gives three orthogonality conditions on a vector with four nonzero components, ai.

Kosloff and Frazier arbitrarily choose the last component, a4, to be 1.0, solve the resulting

three equations, and normalize the final vector.

a1 + a2 + a3 = −1

a1y1 + a2y2 + a3y3 = −y4

a1x1 + a2x2 + a3x3 = −x4

(2.10.1.7)

a′
i =

2ai√
a2
1 + a2

2 + a2
3 + a2

4

(2.10.1.8)

In both cases, when the elements are rectangular, the vector and covectors are equal

to within a scale factor. In the finite difference community [2], [7], [60], and DYNA2D [18],

the hourglass vectors and covectors are taken to be the Γi defined in Eq. (2.10.2.4).

2.10.2 Defining the resisting forces. As in the definition of the modes, there are a

variety of ways to remove the hourglass modes. Viscous or elastic forces can be added to

the momentum equation [2], [6], [7], [18], [34] or the mode shapes can be used as stencils

to filter out the hourglass velocities [60].

The simplest approach, and the one that is the most popular in Lagrangian hy-

drocodes, is to add viscous damping to the momentum equation. The magnitude of the

hourglass velocity, qi, is calculated by dotting the velocities with the Γi.

qi = Γi
αkuαk (2.10.2.1)

Defining an hourglass force, Qi, that is conjugate to the the hourglass velocity results

in an expression for the nodal hourglass forces. Kosloff and Frazier [61] are concerned

only with small deformation elasticity, and instead of using the velocity, they use the

displacements.
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Ẇ i
hg = Qiqi = F i

αkuαk no sum on i

= QiΓi
αkuαk

F i
αk = QiΓi

αk

(2.10.2.2)

The remaining difficulty is to define the magnitude of the conjugate hourglass force.

Kosloff and Frazier [61] choose a stiffness that will recover the fully integrated element

stiffness for small deformation elasticity. The stiffness coefficient E is Young’s modulus for

plane stress and 4µ(λ + µ)/(λ + 2µ) for plane strain.

Qi =
E

12
Aqi (2.10.2.3)

Flanagan and Belytschko [58] define damping and stiffness rates. The stiffness form

is the hourglass analog of a hypoelastic material. The element thickness is t, and the

damping and stiffness parameters are ε and κ respectively.

Qi = εt

√
ρ(λ + 2µ)B : B

2
q̇i damping

Q̇i = κt
λ + 2µ

2A
B : Bq̇i stiffness rate

(2.10.2.4)

The viscous coefficients used in DYNA2D [18] and PISCES [2] are similar. Note that

the values of ε in the two forms are simply coefficients and do not have the same values.

Qi = 1
4ε
√

Aρq̇i DYNA2D

Qi =
(

ερA

�t

)
q̇i PISCES

(2.10.2.5)

Margolin filters the velocity element by element [60]. Rather than subtracting all the

hourglassing velocity, only a fraction, β, of it is removed each time step. This number

can be thought of as the ratio of the time step size to a relaxation time. Each node on

a logically regular mesh is filtered four times, once for each surrounding element, and

therefore β must be less than 1
4 to prevent overcorrecting the modes.

u = u − β[(Γy · u)Γy + (Γz · u)Γz] (2.10.2.6)

2.10.3 Nonlinear hourglass controls. The hourglass controls discussed in the previ-

ous sections use a constant set of coefficients that are heuristic functions of the elastic

properties of the material. These methods were designed to suppress the hourglass modes
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without degrading the accuracy of the element. Belytschko and Bindeman [169] have re-

cently proposed a nonlinear assumed strain stabilization algorithm for plane strain with

the coefficients based on the tangent moduli at the current stress state.

Working in the corotational frame, they construct an assumed strain by using an aug-

mented B matrix, B̂, which can be shown to satisfy the orthogonality conditions required

by the Hu-Washizu principle [57],[170]. The constitutive model is evaluated using the usual

strain rate, Bu, and the hourglass stress rates are C[B̂ − B]u, where C is the matrix of

the current material moduli. By taking advantage of the orthogonality properties of the

derivatives of the bilinear term in the shape functions, the calculation of the hourglass force

rates can be simplified to the product of a stabilization matrix and the nodal velocities.

2.10.4 Comparing the hourglass controls. The differences between the choices of

hourglass base vectors do not seem to be critical based on experiences with DYNA2D [18].

For linearly elastic problems, however, it is possible to choose the hourglass stiffness with

the Flanagan and Belytschko vectors so that the fully integrated stiffness is exactly re-

covered [59]. In most cases, both the damping and stiffness hourglass forces work equally

well, but it is possible to construct problems where either fail [58], [34]. The stiffness form

apparently doesn’t work well for axisymmetric problems, and Flanagan and Taylor [34]

state that the instability is due to nonstrain terms in the Petrov-Galerkin formulation.

The new formulation by Belytschko and Bindeman performs only moderately better than

the formulation by Flanagan and Belytschko for elastic-plastic problems, but it is vastly

superior for linear problems [169].

2.11 RECTANGULAR MESH FORMULATIONS WITH EDGE-CENTERED

VELOCITIES

In the interests of efficiency, many Eulerian hydrocodes use a mesh of rectangular ele-

ments. The velocity is centered on the cell edges, and only the normal velocity component

is known. This choice gives better results than node-centered velocities for some problems

where the pressure is much larger than the deviatoric stress because it can optimally re-

solve a shear flow [50]. Rows of adjacent cells can move in opposite directions without

any coupling because of the velocity centering. The expressions for the shear strain rates,

however, are not as obvious for edge-centered velocities as for node centered velocities.

Finite difference notation is used in this section because it is the most natural notation

for describing how different quantities are centered. The additional assumption is made
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that the mesh is rectangular and aligned with the coordinate axis. Formulations for general

orthogonal coordinate systems have been proposed, but the necessary introduction of the

metric tensor complicates the formulations without giving any deeper insight into the

difference scheme.

Most of the algorithms associated with the rectangular mesh are identical to the

general ones described above. From the conjugate relationship between the forces and the

velocities, and the stresses and the strain rates, it should only be necessary to characterize

the B matrix to completely define the edge-centered algorithm, but as will be shown, the

forces and the velocities are not exactly conjugate in many finite difference algorithms.

This means that there is an error in the work terms, but it is usually small in comparison

to the other errors in the energy calculations.

2.11.1 The volume calculation. The initial volume of a cell is simply calculated from

the coordinates of the edges.

V n(i + 1
2 , j + 1

2 ) = (y(i + 1) − y(i))(z(j + 1) − z(j)) planar

= (r2(i + 1) − r2(i))(z(j + 1) − z(j)) axisymmetric
(2.11.1.1)

Since logical segments of the mesh lines move independently, the mesh lines are not

continuous after a time step and the volumes of the cells are not defined unambiguously.

The simplest and almost universally used method to calculate the final volume is to add

the differential volume changes associated with the motion of the edges. For clarity, the

logical coordinates of the mesh are enclosed in parentheses and separated by commas. The

commas within the parentheses do not indicate partial differentiation.

V n+1
(i+1/2,j+1/2) = V n

(i+1/2,j+1/2) planar

+�t
[
(yn

(i+1,j+1/2) − yn
(i,j+1/2))(ż

n+1/2
(i+1/2,j+1) − ż

n+1/2
(i+1/2,j))

+(ẏn+1/2
(i+1,j+1/2) − ẏ

n+1/2
(i,j+1/2))(z

n
(i+1/2,j+1) − zn

(i+1/2,j))
]

V n+1
(i+1/2,j+1/2) = V n

(i+1/2,j+1/2) axisymmetric

+�t
[
((rn

(i+1,j+1/2))
2 − (rn

(i,j+1/2))
2)(żn+1/2

(i+1/2,j+1) − ż
n+1/2
(i+1/2,j))

+2(ṙn+1/2
(i+1,j+1/2)r(i+1) − ṙ

n+1/2
(i,j+1/2)r(i))(zn

(i+1/2,j+1) − zn
(i+1/2,j))

]
r(i) = 1

2 (rn
(i,j+1/2) + rn+1

(i,j+1/2)) = rn
(i,j+1/2) + 1

2�tṙ
n+1/2
(i,j+1/2)

(2.11.1.2)

2.11.2 Defining the normal and hoop strain rates. The calculation of ε̇yy(i+1/2,j+1/2)

(or ε̇rr(i+1/2,j+1/2)) and ε̇zz(i+1/2,j+1/2) is straight forward.
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ε̇
n+1/2
yy(i+1/2,j+h2) =

ẏ
n+1/2
(i+1,j+1/2) − ẏ

n+1/2
(i,j+1/2)

y
n+1/2
(i+1,j+1/2) − y

n+1/2
(i,j+1/2)

ε̇
n+1/2
zz(i+1/2,j+h2) =

ż
n+1/2
(i+1,j+1/2) − ż

n+1/2
(i,j+1/2)

z
n+1/2
(i+1,j+1/2) − z

n+1/2
(i,j+1/2)

(2.11.2.1)

The hoop strain rate is calculated by subtracting the strain rates in the r and z

directions from the volumetric strain rate. Away from the z axis, the hoop strain rate

simplifies to 1
2 (ṙn+1/2

(i+1,j+1/2)+ṙ
n+1/2
(i,j+1/2))/r̃(i+1/2,j+1/2), the direct analog to the finite element

expression in Eq. (2.4.2.1).

ε̇
n+1/2
θθ(i+1/2,j+1/2) =

V̇
n+1/2
(i+1/2,j+1/2)

V
n+1/2
(i+1/2,j+1/2)

− ε̇
n+1/2
rr(i+1/2,j+1/2) − ε̇

n+1/2
zz(i+1/2,j+1/2)

=
C(i+1,j+1/2)ṙ

n+1/2
(i+1,j+1/2) + C(i,j+1/2)ṙ

n+1/2
(i,j+1/2)

r̃(i+1/2,j+1/2)

r̃(i+1/2,j+1/2) = 1
2 (r(i+1,j+1/2) + r(i,j+1/2))

C(i+1,j+1/2) =


r(i+1,j+1/2) − r̃(i+1/2,j+1/2)

r
n+1/2
(i+1,j+1/2) − r

n+1/2
(i,j+1/2)




C(i,j+1/2) =


 r̃(i+1/2,j+1/2) − r(i,j+1/2)

r
n+1/2
(i+1,j+1/2) − r

n+1/2
(i,j+1/2)




(2.11.2.2)

2.11.3 The shear strain rates. The calculation of the shear strain rates in a formulation

with edge-centered velocities is complicated by the fact that some of the materials in the

problem may not have any strength. In order to illustrate these difficulties, the algorithm

used in CSQ [62] is presented in detail. While each edge-centered finite difference code

has its own unique formulaton, the CSQ algorithm is fairly representative, and most of the

differences between different codes are associated with the treatment of materials that lack

shear strength. To simplify the presentation, only the calculation of ∂ẏ/∂z is discussed.

The calculation of ∂ż/∂y proceeds in the same manner, and the shear strain rate is the

average of the two terms.

Since the edges defining zone (i+1/2, j +1/2) only have information on the velocities

normal to the edges, the shear strain rates must include velocity information from other

edges. To demonstrate the problems associated with naively differencing the velocity field,
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the problem illustrated in Fig. 13 is considered. The central difference approximation for

∂ż/∂y in zone (i + 1/2, j + 1/2) is readily expressed in terms of the velocities at edges

(i, j + 1/2), (i + 1, j + 1/2), (i, j + 3/2), and (i + 1, j + 3/2).

∂ż

∂y
=

ż(i,j+3/2) + ż(i+1,j+3/2) − ż(i,j−1/2) − ż(i+1,j−1/2)

2(y(i+1/2,j+3/2) − y(i+1/2,j−1/2))
(2.11.3.1)

Suppose that the material in row j + 1/2 is steel while the material above and below

the row is air. As illustrated in Fig. 14, there is nothing physically wrong with the air

above and below the steel moving in opposite directions, but Eq. (2.11.3.1) calculates a

large, nonphysical strain rate in the steel. Clearly the formulation must take into account

in a dynamic manner the strength associated with the materials immediately adjacent to

the zone under consideration. The basic strategy is to interpolate values of ż for edges

(i+1/2, j +1) and (i+1/2, j) from the edges used in Eq. (2.11.3.1) in such a manner that

only the materials that have shear strength contribute to the shear strain rate.

If the material in zone (i+1/2, j+3/2) can support shear, then the tangential velocity

is given by Eq. (2.11.3.2a), otherwise it is approximated by Eq. (2.11.3.2b).

ż(i+1/2,j+1) = 1
4 (ż(i,j+3/2) + ż(i+1,j+3/2) + ż(i,j+1/2) + ż(i+1,j+1/2)) (2.11.3.2a)

ż(i+1/2,j+1) = 1
2 (ż(i,j+1/2) + ż(i+1,j+1/2)) (2.11.3.2b)

The velocity at edge (i+1/2, j) is interpolated in a similar manner. A zone can support

a shear stress if any of the materials in it has shear strength. An alternative approach

taken in some codes is to use a mass weighting for the velocities based on the generally

true observation that dense materials have more shear strength than light materials. The

derivative ∂ż/∂y is evaluated by differencing the tangential velocities at the upper and

lower zone edges.

∂ż

∂y
=

ż(i+1/2,j+1) − ż(i+1/2,j)

y(i+1/2,j+1) − y(i+1/2,j)
(2.11.3.3)

An alternative approach to defining the shear strain rate is calculate the components

of the B matrix from the equations that specify how the edges are accelerated. As an

example, an alternative shear strain rate for CTH [63], can be derived from its momentum

equation in the y direction. To simplify the derivation, the logic associated with shear

strengths of the adjacent zones is omitted. The acceleration calculations are considered in

greater detail in the next section.
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ẏ
n+1/2
(i,j+1/2) =ẏ

n−1/2
(i,j+1/2)+

�t
{
V n

(i+1/2,j+1/2) + V n
(i−1/2,j+1/2)

}
{

2
σn

yy(i+1/2,j+1/2) − σn
yy(i−1/2,j+1/2)

yn
(i+1,j+1/2) − yn

(i,j+1/2)

+

σn
yz(i,j+1) − σn

yz(i,j)

zn
(i,j+1) − zn

(i,j)

}
/

{
Mn

(i+1/2,j+1/2) + Mn
(i−1/2,j+1/2)

}

(2.11.3.4)

The average shear stresses are positioned at the corners, and an additional relation is

needed between the cell-centered stresses and the corner stresses.

σn
yz(i,j) = 1

4

{
σn

yz(i−1/2,j−1/2) + σn
yz(i−1/2,j+1/2)

+σn
yz(i+1/2,j−1/2) + σn

yz(i+1/2,j+1/2)

} (2.11.3.5)

The force due to the shear stresses acting at edge (i, j +1/2) is derived by multiplying

through Eq. (2.11.3.4) by the mass of the edge, and it is simplified by restricting the

equation to planar geometry.

F y
(i,j+1/2) = 1

8 (yn
(i+1,j+1/2) − yn

(i−1,j+1/2))(σ
n
yz(i−1/2,j+3/2) + σn

yz(i+1/2,j+3/2)

−σn
yz(i−1/2,j−1/2) − σn

yz(i+1/2,j−3/2))
(2.11.3.6)

The general force relation associated with the shear stresses can be used to define the

corresponding B matrix terms.

F y
(i,j+1/2) = −

∑
k,�

B(k,�,i,j+1/2)σ
n
yz(k�)V(k,�) (2.11.3.7)

The derivative ∂ẏ/∂z is calculated from Eq. (2.11.3.8) and the necessary entries can be

calculated from Eq. (2.11.3.6) and Eq. (2.11.3.7) by permuting the indicies.

∂ż

∂y
=
∑
k,�

B(i+1/2,j+1/2,k,�)ż(k,�) (2.11.3.8)

If all the surrounding zones can carry shear stresses, then the finite difference ex-

pression currently used in CTH for the strain rate is given by Eq. (2.11.3.9a) while the

expression derived by virtual work principals is given by Eq. (2.11.3.9b).
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∂ż

∂y
=

ż(i,j+3/2) + ż(i+1,j+3/2) − ż(i,j−1/2) − ż(i+1,j−1/2)

2(y(i+1/2,j+1) − y(i+1/2,j))
(2.11.3.9a)

∂ż

∂y
=
{

(zn
(i+2,j+1/2) − zn

(i,j+1/2))(ż
n+1/2
(i+1,j+3/2) − ż

n+1/2
(i+1,j−1/2))

+ (zn
(i+1,j+1/2) − zn

(i−1,j+1/2))(ż
n+1/2
(i,j+3/2) − ż

n+1/2
(i,j−1/2))

}/
{

8(zn
(i+1/2,j+1) − zn

(i+1/2,j))(y
n
(i+1,j+1/2) − yn

(i,j+1/2))
}

(2.11.3.9b)

2.11.4 Accelerating the edges. The acceleration for edge (i, j + 1/2) caused by σyy

and σyz is given by Eq. (2.11.3.4), and a similar relation holds for edge (i + 1/2, j) and

the stresses σzz and σyz. To complete the description of the edge accelerations, the case

where not all the surrounding zones can support a shear stress must be considered. The

algorithm discussed here is used in CSQ [62] and it is representative of the algorithms used

in most Eulerian finite difference codes.

The shear stresses are distributed to the zone edges based on the ability of the sur-

rounding zones to support shear stresses. The shear stress on edge (i+1/2, j+1) is nonzero

only if both zones (i+1/2, j +1/2) and (i+1/2, j +3/2) can support a shear stress, where

the volume fraction of zone (i + 1/2, j + 1/2) that can support shear stresses is denoted

Φn
(i+1/2,j+1/2).

σn
yz(i+1/2,j+1) = 1

2min
(
Φn

(i+1/2,j+1/2),Φ
n
(i+1/2,j+3/2)

)
(
σn

yz(i+1/2,j+1/2) + σn
yz(i+1/2,j+3/2)

) (2.11.4.1)

A similar expression is used to evaluate the shear stresses on the other three edges. The

acceleration contributed by the shear stresses to the zone center is calculated by a simple

central difference.

ÿn
(i+1/2,j+1/2) =

�xn
(i+1/2,j+1/2)

Mn
(i+1/2,j+1/2)

(σn
yz(i+1/2,j+1) − σn

yz(i+1/2,j)) (2.11.4.2)

The cell-centered shear contributions to the accelerations are distributed to the zone

edges in a simple manner.

ÿn
(i,j+1/2) = 1

2 (ÿn
(i+1/2,j+1/2) + ÿn

(i−1/2,j+1/2)) (2.11.4.3)
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2.12 CONTACT ALGORITHMS

Contact algorithms are used to prevent surfaces from interpenetrating in Lagrangian

calculations. Eulerian codes do not have contact algorithms since contact is implicitly

handled by the treatment of the mixed zones (zones with more than one material). While

there is an extensive body of literature on contact algorithms [66], most of it is devoted

to static problems. The literature devoted to hydrodynamic contact algorithms is rather

small, and much of it dates back to the early finite difference work.

The contacting surfaces are often referred to a “slide lines” even in three dimensions.

One surface is designated the master surface and the other, the slave. The corresponding

nodes on the surfaces are also designated master and slave nodes. This nomenclature

assumes that there are two distinct surfaces. Special contact algorithms are necessary if

a surface is to be allowed to come into contact with itself [64] because the two surface

algorithms for determining the contact points will not work with a single surface. By

convention, the numbering of the surface nodes is counterclockwise around the boundary

so that the outward normal is always to the right as the boundary is traversed.

Contact algorithms can be categorized based on 1) the contact search, 2) the contact

and release conditions, and 3) the contact forces. The contact search is the dominant cost

for many contact algorithms. In two dimensions the search is fairly simple, but it can

become quite complicated in three dimensions [64]. In most cases, two surfaces are not

allowed to support a tensile force between them. Not all contact algorithms calculate the

interface forces directly, making it necessary to establish a set of conditions to determine

when the surfaces are in contact. Two general approaches to the contact forces are found

in the literature. The first calculates an interface force between the surfaces and applies it

as a force boundary condition to the master surface. Typical examples of this approach are

the Lagrange multiplier method [65] and the penalty method [66]. The second approach

merges the slave and master surfaces by mapping the masses and stresses from the slave

onto the master surface. Most of the finite difference hydrocodes, including HEMP [7] and

TENSOR [6], use this approach.

2.12.1 Interface geometry. The most convenient way to describe a contact algorithm is

in terms of a local coordinate system defined by the normal and tangential directions of the

master segment. In the next few sections the normal direction is z in the local coordinate

system, and the tangential direction is y. The relationship between the local and global

coordinate systems is defined by the angle θ(�,�+1), where 
 and 
 + 1 are the two nodes
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defining the master segment.

{
y
z

}
global

=
[

cos θ(�,�+1) − sin θ(�,�+1)

sin θ(�,�+1) cos θ(�,�+1)

]{
y
z

}
local

θ(�,�+1) = tan−1

(
zg(�) − zg(�+1)

yg(�) − yg(�+1)

) (2.12.1.1)

The normal and tangential directions at a node 
 are defined in a similar manner. The

angle of the local coordinate system at a node is defined by using the two nodes adjacent

to it.

θ(�−1,�+1) = tan−1

(
zg(�−1) − zg(�+1)

yg(�−1) − yg(�+1)

)
(2.12.1.2)

All displacements, velocities, accelerations, and forces used in equations defining the

various contact algorithms are written in terms of the local coordinate system of the

master segment unless otherwise specified. In addition to simplifying the explanations,

it is usually more computationally efficient to work in the local coordinate system. The

equations defining the algorithms therefore are more representative of the FORTRAN

expressions in actual codes than the more complicated equations necessary to express the

algorithms in the global coordinate system.

2.12.2 Interface force methods. The simplest geometry of interest is a single slave node

in contact with a master segment defined by two master nodes, see Fig. 15. While the

geometry is drawn so that the master segment is horizontal, no generality is lost because

a local coordinate system can always be constructed. Concentrated forces are defined

which act on the slave and the two master nodes. For the moment only the normal forces

associated with enforcing the contact condition are considered.

The contact tractions acting along the contact surfaces are equal and opposite for the

master and slave surfaces, and their resulting contribution to the momentum equations is

zero. The linear and angular momentum equations give two relations between the three

nodal forces for the discrete case.

Fm
1 = −(1 − ξ)F s

Fm
2 = −ξF s

ξ =
ys − ym

1

ym
2 − ym

1

(2.12.2.1)
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The only remaining task is the calculation of F s. The methods most commonly used

are the penalty method [66], Lagrange multipliers [65], imposing a displacement constraint

at the next time level (a form of explicit Lagrange multipliers) [34], [67], and imposing a

velocity constraint [22].

The penalty method is the simplest conceptually. Rather than impose the contact

constraint exactly, a resisting force proportional to the amount of error in the constraint

is applied to the slave node.

F s = −kzs (2.12.2.2)

As the value of the surface stiffness, k, increases, the closer the penalty method comes

to enforcing the contact constraint exactly. A large value of k reduces the stable time step

size. One choice for the stiffness that has worked well in DYNA2D [18] is dependent on

the mesh size and stiffness of the master side, where f is a scale factor (which defaults to

0.1), Ki is the bulk modulus of the ith master segment, Ai is the area of the element that

has the master segment as a boundary, and Vi is the element volume.

ki =
fKiA

2
i

Vi
(2.12.2.3)

Belytschko and Neal [69] limit the value of f on the basis of a one-dimensional stability

analysis. Their numerical experiments indicate that instabilities can still occur unless the

time step size is reduced if f is near its limiting value.

f ≤ 2C(1 − C)
(1 − 2C)

C =
1
c2

where c is the Courant number
(2.12.2.4)

In addition to limiting f , they limit the maximum penalty force. Their analysis con-

siders only two nodes interacting, which is sufficient for their pinball algorithm. The pinball

algorithm, which is discussed later, replaces the line segment topology of the contact sur-

faces with sets of spheres embedded in the elements. Their contact calculations, therefore,

consider the forces between the pairs of contacting spheres, where F s is the force acting

between the pinballs, M i are the element masses of the master and slave elements, and ui

are the velocities of the pinballs.

F s ≤ MsMm|um − us|
�t(Ms + Mm)

(2.12.2.5)
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The penalty method applies concentrated forces at the nodes instead of a distributed

force along the contact surfaces. This can lead to a degree of mesh sensitivity that is

reduced by using the algorithm proposed by Simo [70]. Instead of evaluating the penalty

forces only at the nodes, he integrates the penalty force with Gaussian quadrature on an

average surface defined by the master and slave surfaces.

In hypervelocity impact calculations, where hypervelocity refers to impact velocities

on the order of the wave speed in the material, the time step must be reduced to a small

fraction (∼.1) of the Courant limit regardless of the contact algorithm. A scale factor in

Eq. (2.12.2.3) on the order of 10 ∼ 100 can be used without further reductions in the time

step size. The penalty algorithm is routinely used by Hallquist [71] and Belytschko [69],

[72] in hypervelocity penetration calculations.

The Lagrange multiplier method adds additional constraint equations that must be

solved simultaneously with the equations of motion. As the master and slave move relative

to each other, both the structure and number of equations change. The displacement

constraint for the three node model problem is given by Eq. (2.12.2.6).

φ = ys − [(1 − ξ)ym
1 + ξym

2 ] = 0 (2.12.2.6)

The force acting on the node k is λ∂φ/∂yk, where k is one of the two master nodes

or the slave node. A comparison of the constraint forces with Eq. (2.12.2.1) demonstrates

that the Lagrange multiplier method satisfies the conditions imposed by the conservation of

momentum. Note that if λ is negative, the nodes are in tension and the contact constraint

must be turned off.

F s = λ

Fm
1 = −(1 − ξ)λ

Fm
1 = −ξλ

(2.12.2.7)

Hydrocodes use a diagonal mass matrix to avoid the cost of solving a linear equation

set, and no production hydrocode directly solves the coupled set of equations. Carpenter,

Taylor, and Katona [171] use Gauss-Seidel to solve the equations in their research code

and Belytschko [73] is currently experimenting with iterative methods.

In EPIC [22], Johnson requires that the final velocity of the contact point on the

master surface equal the final velocity of the slave node. Although he works in terms of

momentum increments, his formulation is readily recast in terms of interface forces. John-
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son’s velocity increments, �u, correspond to the �tF/M terms in the following equations.

The velocities already include the velocity increment over the time step from all the other

force contributions.

żs + �t
F s

Ms
− (1 − ξ)[żm

1 + �t
Fm

1

Mm
1

] − ξ[żm
2 + �t

Fm
1

Mm
2

] = 0 (2.12.2.8)

The slave node force, which again represents a tensile force if it is negative, is solved

for by substituting Eq. (2.12.2.1) into Eq. (2.12.2.8).

F s = − żs − (1 − ξ)żm
1 − ξżm

2
�t
Ms + (1 − ξ)2 �t

Mm
1

+ ξ2 �t
Mm

2

(2.12.2.9)

This approach does not enforce the displacement constraint directly. If the slave

node is not exactly on the master surface at the beginning of the time step, forcing the

slave node and the contact point to have the same velocity is not sufficient to bring the

slave node to the master surface within the next time step. As with virtually all explicit

contact algorithms, the displacement constraint is not satisfied exactly. This algorithm is

frequently used for penetration problems with the eroding slideline option [22] in EPIC,

where small errors in the displacement constraints are less important than stability.

Several researchers have proposed methods that may be classed as explicit Lagrange

multiplier algorithms since the Lagrange multiplier at tn is calculated in an explicit manner

such that the contact constraints are satisfied at tn+1. It appears that the first publication

of this idea in a general multidimensional setting was in 1987 by Flanagan and Taylor [34].

Zhong [67] published a collection of papers for his thesis in 1988, which contains similar

ideas, but he differs in the manner in which he solves the system of equations generated by

the contact constraints. More recently, Carpenter, Taylor, and Katona [171] have proposed

a Gauss-Seidel strategy for solving the equations that converges in only a few iterations.

The explanation of the method in the PRONTO manual [34] does not do justice to

their algorithm since they motivate the development of their method by an example of

a single node hitting a rigid wall. Instead, a significantly more complicated problem is

considered to motivate their algorithm.

Before proceeding, a discussion of the time centering of their contact forces and dis-

placement constraints is in order. The contact algorithm is called after all other force con-

tributions have been accounted for and the preliminary accelerations have been calculated.

The contact algorithm adjusts the accelerations (forces) at tn so that the displacement con-

straints are satisfied at time tn+1. This separation of the contact force calculation from the
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other forces is similar to the operator split used to sequentially update the accelerations

with the contributions from the viscosity and the pressure.

Consider a one-dimensional problem with N slave nodes with varying masses Ms
i and

velocities us
i striking a single master surface with a mass Mm and a velocity um. These

velocities are evaluated at tn+1/2 and include the effects of all the forces at tn other than

the contact forces. At tn the slave nodes, with coordinates xs
i , are either in perfect contact

or outside of the master surface, and at tn+1, all the nodes will penetrate the surface unless

the contact forces are applied. The conditions for the slave nodes being exactly coincident

with the master surface at tn+1 are given by N displacement constraints.

xs
i + �t(us

i + �t
F s

i

Ms
i

) − xm −�t(um + �t
Fm

Mm
) = 0 (2.12.2.10)

Note that the time step sizes �tn and �tn+1/2 are set to a common value of �t,

a condition that is generally not true. This is an unnecessary approximation introduced

by Flanagan and Taylor, but it probably does not introduce a significant amount of error

into the solution. The predicted displacements at tn+1, x̂, are introduced to simplify the

notation.

x̂s
i + (�t)2

F s
i

Ms
i

− x̂m − (�t)2
Fm

Mm
= 0

x̂s
i = xs

i + �tus
i

x̂m = xm + �tum

(2.12.2.11)

The momentum equation provides the necessary N + 1 equation.

∑
i

F s
i + Fm = 0 (2.12.2.12)

The resulting set of equations is diagonal with a border on the right and lower edges.

It is readily solved explicitly because of its simple structure. To keep the terms similar to

the equations in the PRONTO manual, the displacement constraints have been divided by

(�t)2. The coefficient matrix is A, the right hand side is b, and the force vector is ordered

{F s, Fm}.
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A(i,i) =
1

Ms
i

A(i,N+1) = − 1
Mm

A(N+1,i) = 1

A(N+1,N+1) = −1

b(i) = − (x̂s
i − x̂m)
(�t)2

b(N+1) = 0

(2.12.2.13)

The partitioned solution gives the master force in terms of the sum of a set of forces,

fs
i , that would exactly bring the nodes to rest against a rigid barrier.

fs
i = Ms

i

(x̂s
i − x̂m)
(�t)2

Fm = Mm

( ∑
i fs

i

Mm +
∑

i Ms
i

) (2.12.2.14)

The solution for F s
i is obtained by substituting Eq. (2.12.2.14) into the original equa-

tions. Flanagan and Taylor express the solution in terms of accelerations.

u̇m =
Fm

Mm
=

∑
i fs

i

Mm +
∑

i Ms
i

u̇s
i =

F s
i

Ms
i

= u̇m − fs
i

Ms
i

(2.12.2.15)

When the master surface is defined by two nodes, the same problem structure occurs,

but the coefficient matrix has nonzero edges two columns and two rows wide. To decouple

the system, fs
i is divided between the two master nodes according to Eq. (2.12.2.1), and

the two master nodes are treated independently. The contributions of the slave masses are

also divided according to the same rule. This decoupling procedure is applied to all pairs

of slave nodes and master segments, and the master node accelerations are calculated

according to Eq. (2.12.2.15). The slave node accelerations are calculated by using the

second equation in Eq. (2.12.2.15), where u̇m is the acceleration of the contact point on

the master surface. In two dimensions, the same procedure is followed for each coordinate

direction where the global force components are calculated from Eq. (2.12.1.1).

Zhong [67], [74] has independently developed and implemented into DYNA3D a con-

tact algorithm that is very similar to the Flanagan-Taylor algorithm. He distinguishes
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between the time step sizes �tn and �tn+1/2. Instead of distributing fs to the master

nodes by using the interpolation functions, he constructs a defense node with a mass Md

and solves the two node contact problem.

Md =
∑

i

Ni(ξ)∑
j N2

j (ξ)
Mm

i

N1(ξ) = 1 − ξ

N2(ξ) = ξ

(2.12.2.16)

The interface force, F s, is calculated between the slave node (“hitting node” in his

papers) and the defense node. Flanagan and Taylor account for the forces associated with

several slave nodes contributing contact forces to a particular master node by distributing

and then summing the current forces contributions from the slave nodes to each master

node. In contrast, Zhong uses the accumulated slave forces from the previous step and

calculates an incremental change to the slave contact forces. The slave contact forces are

then distributed to the master nodes by mass weighting.

Fm
i = − Ni(ξ)∑

j N2
j (ξ)

Mm
i

M
F s = − Ni(ξ)Mm

i∑
j Nj(ξ)Mm

j

F s (2.12.2.17)

According to Hallquist [71], Zhong is using his algorithm in an iterative manner to

enforce the contact constraints to required degree of accuracy. The magnitude of the

contact force is proportional to the degree of error in the contact inequality and it is

calculated completely independently of the other forces. After the first pass of the contact

algorithm, the geometry is updated based on the contact forces. If the updated geometry

at n+1 is again treated as the x̂ geometry and the contact calculation is repeated (holding

time constant), then the second pass should reduce the contact error at n + 1 even more.

In this manner, the Zhong algorithm is used as a fixed point algorithm where the number

of iterations is determined by the norm of the contact error. While there is no formal proof

for its convergence, its successful application to a broad range of problems argues that it

is convergent.

Carpenter, Taylor, and Katona [171] have proposed a Gauss-Seidel algorithm for solv-

ing the system of equations generated by the explicit Lagrange multiplier method. Their

scheme effectively decouples the contact constraints from each other so that during a

Gauss-Seidel sweep, the contact segments can be processed independently. They have

demonstrated that while their Gauss-Seidel algorithm coverges linearly, only a few sweeps

– 79 –



METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES

are needed in practice to acheive a good solution.

2.12.3 The finite difference hydrodynamic contact algorithms. The finite differ-

ence hydrodynamics community is generally concerned more with the accurate propagation

of stress waves across a contact interface than enforcing the contact constraints exactly.

The philosophical differences between the hydrodynamic algorithms and the ones in the

previous section are somewhat similar to the differences between the mixed and displace-

ment based finite element formulations. As a consequence, hydrodynamic algorithms differ

considerably from the algorithms used in structural analysis. Instead of calculating an in-

terface force, the master and slave surfaces are merged locally in the contacting regions by

mapping the stress and mass of the slave surface onto the master surface. After updating

the motion of the master surface, the slave surface is projected onto it. Note that the

master surface acceleration is governed by the surrounding stresses rather than the con-

straint forces as in the previous section. A detailed review of the hydrodynamic methods

is presented in Ref. [75]. This section only summarizes the major ideas in the previous

review.

The first step is the evaluation of the pressure contributed by the slave elements on

the boundary of the master segments. Wilkins assumes in HEMP [7] a constant pressure

distribution along the master segment and interpolates the value of the pressure at the

midpoint of the master segment from the two slave elements that are closest to the segment

midpoint, see Fig. 16.

p(�+1/2) = (1 − ξ)p(k−1/2) + ξp(k+1/2)

ξ =
L′

L

(2.12.3.1)

The pressures in Eq. (2.12.3.1) are the normal stress components using the normal

defined by the master segment. Note that this expression for the pressure does not include

any contribution from the hoop stress.

p = −(σyysin2θ(�,�+1) + σzzcos2θ(�,�+1) − σyzsin2θ(�,�+1)) (2.12.3.2)

Bertholf and Benzley create a new mesh for TOODY on the slave side such that the

new slave nodes are exactly opposite the master nodes [76]. TOODY and TENSOR [6]

appear to be the first attempts to use an adaptive mesh for large deformation contact

problems. The TENSOR algorithm also creates a new mesh in the same manner. Since the

new mesh is used only for the contact algorithm, none of the diffusion problems associated
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with the continuous advection of material through a mesh are encountered. Referring to

Fig. 17, the solution variables, φ, for the new element opposite the master segment (
, 
+1)

are the length-weighted averages of the original slave elements.

φ =
∑

(ỹ(k) − ỹ(k+1))φ(k+1/2)/y(�+1) − y(�)

ỹ(k) = min
(
max(y(k), y(�+1)), y(�)

) (2.12.3.3)

The same interpolation procedure is used in DYNA2D [75], but the normal pressure

is calculated from the force contributions of the slave elements. Only the nodal force

contributions from element (k+1/2) are used for p(k+1/2); the nodal forces in Eq. (2.12.3.4)

are not from the assembled force vector.

p(k+1/2) = (Fσ
(k) + Fσ

(k+1))/L(k,k+1) (2.12.3.4)

The mass distribution from the slave surface to the master surface is the second step

in the hydrodynamic algorithms. Wilkins originally assumed a constant mass distribution,

a simplification he acknowledged is not generally valid, and introduced an amplification

factor, Z, that is used to scale the master node masses.

Z =
∑master

i=1 Mm
i +

∑slave
i=1 Ms

i∑master
i=1 Mm

i

(2.12.3.5)

Since the TOODY and TENSOR algorithms construct new slave meshes that are

contiguous with the master meshes, the master nodes are treated as interior nodes and the

standard mass lumping scheme is used for the master node masses.

The mass is distributed from the slave surface to the master surface in DYNA2D by

using the TOODY algorithm for distributing the pressures, but with respect to a staggered

mesh. The local coordinate system is defined by the slave nodes k and k+1, and the length

of the slave segment is L(k+1/2).

�Mm
� =

∑
(ỹ(k) − ỹ(k+1))Ms

(k+1/2)/L(k+1/2)

ỹ(k) = min
(
max(y(k), y(�+1/2)), y(�−1/2)

)
Ms

(k+1/2) = 1
2ρ(k+1/2)A(k+1/2)

(2.12.3.6)

The master surface is accelerated during the third step. HEMP treats the master sur-

face as a free boundary with an applied pressure. In contrast, the TOODY algorithm treats

the master nodes as interior nodes surrounded by the master surface elements and the new
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mesh created from the slave elements. Both the TENSOR and DYNA2D algorithms add

an additional interface force term based on the Coriolis acceleration. The Coriolis terms

are derived from requiring that the time derivative of the the normal velocity difference

across the contact surface be zero, where the velocity żs∗
� is the velocity of the slave node

in the new mesh across from master node 
.

d

dt
(żs∗

� − żm
� ) = 0 (2.12.3.7)

The difference in the accelerations of master node 
 and the new node 
∗ is the

Coriolis term, ac, arising from the differentiation in Eq. (2.12.3.7) of the transformation

matrix defined in Eq. (2.12.1.1).

z̈s∗
� − z̈m

� = ac = 2ω(ẏs∗
� − ẏm

� )

ω =
ż(�−1) − ż(�+1)

z(�−1) − z(�+1)

(2.12.3.8)

The stress divergence term for the new node, F s∗
� , is the force on node 
 determined

from the pressure boundary condition defined by Eq. (2.12.3.4). The mass associated with

node 
∗ is �Mm
� , defined in Eq. (2.12.3.6). An interface force, �f�, is calculated to enforce

Eq. (2.12.3.8).

F s∗
� + �f�

�Mm
�

− Fm
� −�f�

Mm
�

= ac

�f� =
�Mm

� Fm
� + F s∗

� Mm
� + Mm

� �Mm
� ac

�Mm
� + Mm

�

(2.12.3.9)

The interface force �f� is subtracted from the master surface nodes, and the master surface

is accelerated using the original master surface masses.

The final acceleration of the master surface is the sum of the original tangential com-

ponent of the acceleration and the normal acceleration calculated by the contact algorithm.

During the calculation of the normal and tangential components of the acceleration, the

normal at the master node 
 is θ(l−1,l+1). The velocity and displacement of the master

surface are calculated using the updated acceleration.

Slave node normal velocities and displacements are usually interpolated from the mas-

ter surface while the tangential components are calculated from the slave node tangential

accelerations. HEMP projects the slave nodes onto the master surface along the logically

perpendicular mesh line (i.e., if the contact surface is a k line, the slave node (k, 
) is

projected onto the master surface along the direction defined by (k, 
) and (k, 
+1)). The
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velocity of the slave nodes is simply determined by differencing the coordinates at the n

and n + 1 time steps. In TOODY, the slave nodes are moved tangentially according to

their velocities and then projected normally onto the master surface. As with HEMP,

the final slave velocities are calculated by differencing. The TENSOR procedure is identi-

cal to the TOODY procedure except the normal velocity is interpolated from the master

surface. DYNA2D uses the most complicated update for the slave node velocities. The

tangential component of the velocities are calculated from the slave node accelerations,

and the normal acceleration is calculated using Eq. (2.12.3.8) complete with the Coriolis

term. The normal velocities are integrated using the normal accelerations and combined

in the familiar manner with the tangential velocities. Instead of projecting the slave nodes

to the master surface, an additional increment of one percent of the velocity needed to

close the gap in one time step is added to the normal velocity component.

Hallquist et al. [75] demonstrated that some care must be used in the choice of a normal

direction for the slave nodes. When the normal direction is chosen to be the normal of the

master segment, hourglassing and spurious shearing results. Better solutions are obtained

when the normal direction of slave node k is defined by θ(k−1,k+1), see Fig. 19. Similar

results were found with a single surface contact algorithm by Benson and Hallquist [64]

which uses the penalty formulation.

The last method to be discussed here calculates the interface forces based on Go-

dunov’s method and is implemented in CAVEAT [3], a Godunov ALE code. Since the Go-

dunov methodology, which advances the solution by solving a series of Riemann problems,

is discussed in detail later, only the general strategy of the contact method is presented in

this section. The Riemann problem, mentioned in Section 1.3, is a generalization of the

shocktube problem. The velocity, density, and energy are discontinuous across an inter-

face, which in this case is the contact point between the master and slave surfaces. An

exact or approximate Riemann solver calculates the pressure and the normal velocity at

the contact discontinuity.

The CAVEAT algorithm [172] solves the Riemann problem for the contact pressure

and velocity between each pair of overlapping master and slave segments along the slide

line. The contributions from each overlapping pair are summed appropriately for each

contact segment to obtain the pressure and normal velocity, and there an optional spatial

smoothing available. Once the pressure and velocity are available on the contact boundary,

the boundary zones in the same manner as the interior zones, see section 2.14. This method
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should be, by construction, nearly optimal for transmitting shocks across contact interfaces

since it is based on solving the Riemann problem.

2.12.4 Contact and release conditions. The simplest contact and release conditions

are those used in the penalty method: the penalty force is turned on whenever the contact

inequality constraint is violated. This is also the condition used in the Flanagan-Taylor

algorithm, but with the x̂ coordinates defining the contact geometry. The description of

the TENSOR contact algorithm [6] is for a slip line (the nodes are always in contact, but

relative slip is allowed) and the contact condition is trivial. Lagrange multiplier algorithms

turn on the contact when the contact inequality is violated and turn it off when the

Lagrange multiplier indicates a tensile force between the surfaces. In DYNA2D, and in

most of the hydrocode algorithms, the surfaces are released when the relative acceleration

between the slave node and the master segment indicates separation.

DYNA2D checks all the slave nodes not in contact with the master surface and reduces

the time step if it necessary so that no slave node penetrates during the next time step.

When a slave node impacts a master segment, momentum conservation is used to calculate

the normal post-impact velocity, ż+, of the master surface, where �Mm
�i is the mass

contribution from slave node i to master node 
.

ż+
� =

Mmżm
� +

∑�Mm
�i żs

i

Mm +
∑�Mm

�i

(2.12.4.1)

Hughes, et al. [77] also change the velocity at impact, but they use the velocity of

a contact discontinuity. One of the assumptions of their work is the slave nodes directly

strike a master node, therefore they do not address the issue of distributing the velocity

change associated with the impact to two master nodes defining a master segment. The

wave velocity in the master surface is cm and in the slave surface, cs. Release conditions

based on a local wave analysis are also employed. Although their contact algorithm is not

implemented in a hydrocode, their use of a wave analysis in a contact algorithm is unique

outside of the CAVEAT work.

ż+
� =

ρmcmżm
� + ρscsżs

k

ρmcm + ρscs
(2.12.4.2)

Multiplying the numerator and denominator by �t gives a characteristic depth into the

master and slave surfaces. Since the Courant number limits the time step size, the char-

acteristic depth is less than the full depth of the element. Comparing Eq. (2.12.4.1) to
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(2.12.4.2), the characteristic depth associated with the momentum balance performed in

DYNA2D is one half the element depth.

2.12.5 Symmetry. Symmetry is highly desirable in a contact algorithm primarily for geo-

metrical robustness. Problems involving corner contact generally benefit from a symmetric

treatment, and symmetric problems may become unsymmetric if the contact algorithm is

not symmetric. There are no hard and fast rules for choosing which surface is the master

and which is the slave. A particular surface may be chosen as the master surface if it is:

1) the denser material, 2) the stronger material, 3) the side with the coarsest mesh, and

4) the material which will move the least. In many problems none of these rules leads to

an unquestionable choice for the master surface. For example, in a problem with variable

zoning, the appropriate side for the master surface may change along the contact region.

The penalty method is usually implemented in a completely symmetric manner by

simply making two passes over the contact surfaces during a time step, with the second

pass reversing the definitions of the master and slave surfaces. Even though this doubles

the cost of the contact algorithm, a symmetric treatment has been found valuable enough

that it is used in both the DYNA2D and DYNA3D penalty algorithms without any option

for a nonsymmetric treatment.

Flanagan and Taylor [34] partition the time step with a factor β, which has a value

between zero and one. During the first β fraction of the time step, the contact forces are

calculated using the master and slave surfaces as they are designated in the input data. At

tn + β�t, the definitions of the contact surfaces reversed, the new geometry is calculated,

and new contact forces are calculated with the new geometry. No discussion was presented

on the merits for different choices of β, nor was there any discussion of whether or not they

encountered aliasing errors associated with using the original choice of the master surface

at the beginning of each step.

The TENSOR algorithm comes the closest to being perfectly symmetric of all the

finite difference hydrodynamic algorithms. After two passes are made with the surface

definitions reversed on the second pass, the two surfaces are accelerated independently.

The final projection to enforce the contact condition is, however nonsymmetric, since the

original slave surface is always projected onto the master surface.

2.12.6 Friction. Only the simplest models for friction are presented here, and the inter-

ested reader is referred to the work by Kikuchi and Oden [66], and Zhong [67] for more

complicated formulations. Although friction laws in continuum mechanics are generally
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expressed in terms of a normal pressure and a resisting traction stress, the friction laws for

the contact algorithms are expressed in terms of concentrated forces. The classic Coulomb

friction model states that the relative slip between to surfaces is zero if the tangential force

is below µsF
s, where µs is the coefficient of static friction. If the tangential force is greater

than µsF
s, relative slip occurs and the magnitude of the force of friction opposing it is

µdF
s, where µd is the dynamic coefficient of friction.

The two major difficulties in an explicit implementation of friction are first, determin-

ing if a node is sticking or slipping, and second, calculating the tangential force for the

sticking condition. Implicit formulations sometimes experience difficulties in converging

because of the extremely nonlinear nature of the stick-slip condition.

PRONTO calculates the sticking force and the sliding force, and chooses the minimum

of the two [34]. The relative tangential velocity is calculated as the difference between the

slave node velocity and the velocity of its contact point on the master surface.

�ẏ = ẏs − [(1 − ξ)ẏm
1 + ξẏm

2 ] (2.12.6.1)

The sticking force is the tangential force applied to the master surface necessary to elimi-

nate the relative velocity in a single time step.

F s
s = −Ms�ẏ

�t
(2.12.6.2)

The coefficient of dynamic friction is the same one used in HONDO II [78].

µd = µ∞ + (µ0 − µ∞)e−γ�ẏ (2.12.6.3)

The minimum of the sticking force and the frictional force is chosen, where F s
t denotes the

final tangential frictional force.

F s
t =

F s
s

|F s
s |

min(µdF
s, |F s

s |) (2.12.6.4)

The nodes can oscillate if the force of friction is simply ±µF s because the on-off nature

of the classic law does not permit intermediate values that can just cancel small motion. A

method for smoothing the discontinuous nature of the friction force, therefore, is necessary.

The sticking force calculated by Eq. (2.12.6.2) is a viscous force with a damping coefficient

Ms/�t that acts to damp any possible oscillations.
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A different method, developed by Hallquist, that is analogous to an elastic-plastic

constitutive law, is used in DYNA2D and DYNA3D [64]. The relative slip between the

master and slave surfaces is calculated by keeping track of the isoparametric coordinates

and master segment number for every slave node that is in contact with the master surface.

�ys =
(
ys(ξn+1) − ys(ξn)

)
(2.12.6.5)

This increment in displacement is treated as a measure of “strain” and the radial

return algorithm is used to return the tangential force to the “yield surface.” The elastic

modulus, ki, is the same as the master surface stiffness used for the normal force calculation

in the penalty method.

F s
y = µd|F s|

F trial
t = F s

t (n) − ki�ys

F s
t (n + 1) =

{
F trial

t if |F trial
t | ≤ F s

y

sign(F trial
t )F s

y if |F trial
t | > F s

y

} (2.12.6.6)

As a slave node moves across a master segment, the friction force builds to a maximum

determined by the normal force. If the slave node suddenly stops, the tangential force does

not drop to zero, but remains at the value it had during the last time step. The node must

move a small increment in the opposite direction to its previous motion or leave the master

surface to reduce the force of friction to zero. As Zhong points out [67], this model can be

viewed as implementing the sticking case with the penalty method over a radius of µdF
s/ki

with a penalty stiffness of ki. The relative slip is the violation of the sticking constraint in

the same manner as the surface penetration is a violation of the contact inequality. This

algorithm requires slightly more storage than the PRONTO algorithm because the friction

force, the isoparametric coordinate, and the master segment are stored. When there is no

friction, only the nearest master node to a slave node is stored.

2.12.7 Simplifications and approximations. To reduce the computational cost of

contact problems, researchers have simplified the problem geometry [69], [75] and the

contact force calculations [75].

Belytschko and Neal [69] replace the contact surfaces with spheres centered in the

elements in their pin-ball algorithm. The penetration for two spheres is the sum of the radii

minus the distance between the centers, and the unit normal is along the line connecting the

centers. Belytschko and Neal take advantage of the simplified geometry not only to reduce
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the cost of the force calculations, but also to simplify the vectorization of their contact

search (Hallquist has also completely vectorized the search strategies within DYNA2D and

DYNA3D [71]).

The force calculations in the DYNA2D hydrodynamic contact algorithm [75] can be

simplified by approximating the normal force and slave mass distributions. The mass

density, m∗
k, at each slave node is its nodal mass divided by half the distance between its

two adjacent nodes, and the force density, f∗
k , is approximated in the same manner from

the nodal forces. The mass density and stress density for a slave segment is the average of

the values at its nodes. The mass and normal force is then mapped onto the master surface

in the manner described in the previous sections. These simplifications significantly reduce

the cost of the calculation without adversely affecting the accuracy.

If two surfaces are tied together, additional simplifications are possible. The contact

point of the slave node on the master surface is fixed in terms of its isoparametric coordi-

nates. The mass and force at the slave node are distributed to the master segment nodes in

the same manner as in Eq. (2.12.2.1). This simplification works best when the slave mesh

is an integer multiple of the master mesh, and hourglassing problems can occur if this is

not the case. This simplification can not be used in a contact-impact algorithm because it

invariably excites the hourglass modes. Even the hydrodynamic contact algorithms that

allow sliding but prohibit separation can not be simplified beyond the level discussed in

the previous paragraph without hourglassing problems.

2.12.8 Eroding surface contact algorithms. Penetration calculations are difficult

to perform with a Lagrangian code because it does not permit the mesh to tear. To

overcome this difficulty, and to model the effects of erosion in a hypervelocity impact,

Johnson [22] developed an eroding slideline capability for EPIC. When elements satisfy

a material dependent erosion criteria (which may be based on plastic strain, maximum

principal stress, element distortion, etc) they are deleted from the mesh and their vertices

are free to move as point masses. After an element is deleted, its contact segments are

deleted from the slidelines and the new free surfaces, which were generated by the element’s

deletion, are added to the slideline definitions. Both the target and the penetrator can

erode, and their erosion criteria are usually different. Experiments have demonstrated that

this method provides a reasonably accurate prediction of the hole size in the target, and

the final velocity and mass of the penetrator [80]. The contact forces are calculated by

using Eq. (2.12.2.9).
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Belytschko and coworkers have worked on improving the efficiency of Johnson’s erod-

ing slideline. They determine the eroded surface from all the nodes with nonzero normal

vectors [72]. After zeroing out an accumulation array, they loop through all the elements

and calculate their contribution to the normal of their nodes. If a node is in the interior

of the mesh, then the sum of all the element contributions is zero, while the sum for the

exterior nodes is nonzero. The calculation of the element contributions to the normals

vectorizes easily, increasing the algorithm’s efficiency. The efficiency of the contact search

is increased by using a two-dimensional hash code to determine which master segments

are close a particular slave node. The most recent development is the “pin ball” contact

algorithm [69] discussed in the previous section.

2.12.9 Single surface contact algorithms. When the deformations are very large, a

surface may buckle and come into contact with itself. The standard search algorithms

will not work in this case, and a special single surface contact algorithm [64] developed

by Benson and Hallquist can be used. A list of the three closest nodes to each node is

generated by using a three-dimensional nested bucket sort every ten time steps. The nodes

that share a common element with a node are automatically eliminated from the list. Each

node has a list of contact segments with that node as part of their definition. The list of

candidate contact segments for a node is the list of all the contact segments associated

with the three closest nodes, and the actual contact segment is determined by using the

efficient local search developed for the regular two surface contact algorithm [75].

Zhong [67] has recently developed a heirarchical search method for single surface

contact that he claims is significantly faster than the nested bucket sort. Hallquist [71]

has, however, recently rewritten and vectorized the single surface contact algorithm code

and improved its efficiency by a factor of two to five. Since these contact algorithms are

complicated, there is till room for improving their speed and robustness. It impossible to

predict at this time which algorithm will turn out to be superior in the long run.

2.13 TIME STEP CONTROL

The time step size for the central difference integration method is determined by

stability considerations. In hydrodynamic problems, the typical stable time step sizes are

so small that accuracy is not a consideration. For a one-dimensional problem the stable

time step is limited by the Courant condition, where �x is the length of the smallest

element, and a is the speed of sound.
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�t ≤ �x

a
(2.13.1)

An alternative analysis [12] expresses the same result in a different form, where ω is

the highest natural frequency in the system.

ω�t ≤ 2 (2.13.2)

The introduction of a shock viscosity requires that the Courant condition be modified.

A detailed analysis [81] for one dimension was performed by Hicks for WONDY in 1978.

Associated with the viscosity is a damping coefficient, c. The definition given here for c

assumes the standard quadratic form for the shock viscosity is being used.

�t ≤ �x

c +
√

c2 + a2

c =
{

cLa + co|�u| if �u < 0
cLa if �u ≥ 0

} (2.13.3)

The time step for each element is evaluated according to Eq. (2.13.3), and the stable

time step for the system is the minimum value over all the elements. The time step is often

multiplied by safety factor (<1) to ensure its stability. For instance, the default safety

factor in DYNA2D is 0.67 [82], in SHALE [23], 0.25, in TENSOR [6], 0.5, in HEMP [7],

.333, and in DYNA3D [83], 0.90 (0.67 if there are explosive materials). In hypervelocity

impact problems, the maximum of the sound speed and the material velocity replaces the

sound speed in Eq. (2.13.3) in SHALE, while MESA [101] uses the sum of the absolute

value of the material velocity and the sound speed.

The value of the sound speed appearing in Eq. (2.13.3) is usually based on the elastic

value of the shear modulus and a contribution from the equation of state.

a =

√
4G

3ρ0
+

∂P

∂ρ

∣∣∣
E

+
pV 2

ρ0

∂P

∂E

∣∣∣
ρ

(2.13.4)

In PRONTO [34], Flanagan and Taylor dynamically calculate hypoelastic material

constants based on the material response. This strategy gives them a larger time step in

elements that are deforming plastically since the plastic moduli are smaller than the elastic

values.
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3K̂ = 3λ̂ + 2µ̂ =
�σkk

�tε̇mm

2µ̂ =
σ′

ij ε̇
′
ij

�tε̇′k�ε̇
′
k�

a2 =
λ̂ + 2µ̂

ρ
=

3K̂ + 4µ̂

3ρ

(2.13.5)

The increments in the strain, ε̇ij�t, must be large enough for the difference expressions

in Eq. (2.13.5) to be accurate. When the volumetric or deviatoric strain increments are

too small, or the calculated dilitational modulus is negative, different strategies may be

used, but in most cases they resort to an initial estimate of λ + 2µ.

In two dimensions, the form of the stability condition remains the same but the char-

acteristic length of the element, �x, is not uniquely defined. Hallquist uses the element

area divided by the longest diagonal in DYNA2D, Margolin uses the characteristic length

defined by Wilkins for the Wilkins shock viscosity [46] in SHALE [23], and Flanagan and

Taylor divide the element area by
√

(d2
13 + d2

24)/2, where dij is the distance between nodes

i and j. For rectangular elements the two diagonals are of equal length, resulting in

DYNA2D and PRONTO calculating the same characteristic length. The PRONTO char-

acteristic length is based on the bounds of the element eigenvalues and, therefore, is always

conservative. Flanagan and Taylor rely on the conservative nature of the characteristic

length to compensate for any possible overestimation of the time step that occurs due to

the material sound speed estimate in Eq. (2.13.5). Margolin’s characteristic length incor-

porates both the element geometry and the shock direction. In problems where the element

aspect ratios are large, the characteristic length may vary greatly with small changes in

the shock direction. The large swings in the characteristic length have been a problem

with the Wilkins viscosity, and are a potential problem in calculating the time step size in

Lagrangian codes. Since SHALE is an ALE (Arbitrary Lagrangian Eulerian) code, it can

dynamically reduce the aspect ratio of a problem element by moving the mesh.

2.14 GODUNOV METHODS

Godunov methods are an interesting alternative to the standard finite element and

finite difference methods for problems that are dominated by shocks. Most Godunov

methods are designed to solve the Euler equations, i.e., they neglect the strength of the

material (in fact, most specialize their work to ideal gas problems and emphasize aerody-
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namic applications). Only three groups have attempted to include strength [2], [3], [84],

and their work is emphasized at the expense of neglecting the many other researchers who

are concentrating on the Euler equations.

Godunov [11] was interested in eliminating the oscillations that occur near shocks

in numerical solutions. The method he proposed is only first order accurate, but later

researchers, e.g, [52], [86], have created higher order accurate algorithms based on his

ideas. His method can be used in both a Lagrangian and Eulerian context, but in this

section only the Lagrangian approach is considered.

2.14.1 Godunov methods in one dimension. To introduce the Godunov method, the

discussion is restricted to the Euler equations in one planar dimension with a unit cross

sectional area, and heat conduction and the body forces are neglected. The computational

mesh for the Godunov method is similar to the ones used in the standard finite element

and finite difference methods except that the velocities are centered in the elements with

the density and the internal energy, and the nodes are used only to define the boundaries of

the elements. In the literature on the Godunov method, the element centers are frequently

given integer numbers, but the numbering scheme used in this section remains consistent

with the previous sections and integers denote nodes.

The motion of the nodes in the Godunov method is determined by solving the Riemann

problem at each node every time step. At node i, the initial left and right states of the

Riemann problem are given by the values of the velocity, density, and energy in elements

i − 1/2 and i + 1/2. The solution of the Riemann problem is obtained numerically using

either an exact, iterative method or one of a number of approximate methods [2], [87]. The

solution consists of three waves: the inner wave is the contact discontinuity, and node i

moves with it, and the outer two waves are shock waves or rarefaction fans moving through

the adjacent elements i − 1/2 and i + 1/2. The velocity of each node is set equal to its

associated contact discontinuity velocity, u∗
i , and integrated to obtain the displacement

of the node at tn+1. In addition to the contact velocity, the pressure at the contact

discontinuity, P ∗
i , is calculated, and it is used with the velocity to update the internal

energy and the element velocity. Note that the solution for the contact discontinuity is

centered at time n + 1/2. The work calculation uses the total energy, T + E, where T and

E are the kinetic and internal energy of the element respectively.
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un+1
i+1/2 = un

i+1/2 +
�t

Mi+1/2

(
P ∗

i−1/2 − P ∗
i+1/2

)
xn+1

i = xn
i + �tu∗

i+1/2

Tn+1
i+1/2 + En+1

i+1/2 = Tn
i+1/2 + En

i+1/2 + P ∗
i−1/2u

∗
i−1/2 − P ∗

i+1/2u
∗
i+1/2

ρn+1
i+1/2 =

Mi+1/2

xn+1
i+1 − xn+1

i

(2.14.1.1)

The time step is limited so that waves with positive velocities from any node i do not

interact with waves with negative velocities from node i + 1.

The original Godunov scheme is first order accurate even when the Riemann problem

is solved exactly. Higher order methods are obtained by improving the approximation of

the left and right states in the Riemann problem, e.g., [52], [86], [88]. The original Godunov

scheme represents the solution as a piecewise constant function. A more accurate method

is obtained if the solution is represented as a piecewise linear [52] or parabolic function [86];

see Fig. 20.

The numerical values of the solution variables associated with the elements represent

element averages instead of amplitude of the piecewise constant function. Letting qn
i+1/2

be the numerical value of one of the solution variables in element i + 1/2, and qi+1/2(x)

be the piecewise representation of q in element i + 1/2, two constraints must be imposed

on qi+1/2(x) to avoid spurious oscillations in the solution: First, the interpolation is con-

servative in the sense that the integral of the distribution must equal the element average.

Second, the interpolation of q is monotonic. The values for qmin and qmax are usually taken

to be the minimum and maximum values of the element averages of elements i−3/2, i+1/2,

and i + 3/2.

∫ xn
i+1

xn
i

qi+1/2(x)dx = qn
i+1/2(x

n
i+1 − xn

i )

qmin ≤ qi+1/2(x) ≤ qmax ∀x ∈ [xn
i , xn

i+1]

(2.14.1.2)

The interpolation functions are nonlinear functions of the element averages, and there-

fore the higher order Godunov methods are nonlinear even for linear problems. A detailed

discussion of how these functions are created is deferred until discussion on advection in

the next chapter, but it should be noted that most of the nonlinearity in the algorithms

is associated with imposing the monotonicity constraint. The basic strategy for the case
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of a linear interpolation function involves two steps: the first step is to calculate a second

order approximation of the slope, and the second is the imposition of the monotonicity

constraint by scaling the magnitude of the slopes in different zones on a selective basis.

2.14.2 Introducing strength into Godunov methods. The application of Godunov

methods to materials with strength is relatively recent, and therefore the approaches are

much less standardized than for the Euler equations. Hancock in PISCES [2] and Dukow-

icz et al. in the original version of CAVEAT [87] split the stress into the pressure and

the deviatoric contributions. They use a second order Godunov method for the pressure,

and a finite difference formulation for the deviatoric part of the stress. While their ap-

proaches are conceptually similar, there are numerous differences in the implementation.

As an alternative to the differencing scheme for the strength, CAVEAT can solve two

independent Riemann problems for the normal and transverse stresses and velocities on

the edge of a cell [173]. Trangenstein and Colella [84] developed a second order Godunov

method by constructing an approximate Riemann solver for a hypoelastic material. In

contrast to most, they use a total Lagrangian formulation. The algorithm they describe

in the literature [84], [89] is one-dimensional, but a two-dimensional version does exist

based a two-dimensional method for general systems of hyperbolic equations developed by

Colella [90].

The algorithm developed by Trangenstein and Colella consists of eight steps:

1. A characteristic analysis and time step estimation.

2. A monotonized slope computation.

3. The tracing of the characteristics.

4. The flux calculation.

5. Conservative differencing.

6. A rotational update.

7. Stress and strain rate calculations.

8. The stress update.

At the beginning of the time step, the cell-centered values of the velocities, stress, rotation,

and deformation gradient are known.

A characteristic analysis is performed on the quasilinear forms of the mass, momen-

tum, and energy equations. The primitive variables in the analysis are the velocity, internal

energy, and the stress. Deflation is used to reduce the characteristic analysis to finding the

eigenvalues and eigenvectors of the acoustic tensor. The acoustic tensor must be derived
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for each material model, although Trangenstein and Colella have simplified the task by

deriving its general form for the general class of hypoelastic plasticity models with yield

surfaces. After the eigenvalue problem is solved for the acoustic tensor, the characteristic

directions, X, and speeds, Λ, are calculated for the full system of equations. The time step

is based on the fastest elastic wavespeed.

The second step requires the calculation of the spatial derivatives of the primitive

variables. Trangenstein and Colella calculate the derivatives in terms of the characteristic

directions. Monotonicity is enforced by using the flux-limiting procedure developed by

van Leer [52], which is discussed in detail later. The enforcement of the monotonicity

condition introduces the numerical equivalent of the shock viscosity used in the standard

finite difference formulations. By evaluating the derivatives in the directions of the charac-

teristics, the viscosity is added only to those waves that have spurious oscillations, which

minimizes the smearing of shock waves and contact discontinuities. A central difference

approximation, Eq. (2.14.2.1), is used for the second order derivative in the van Leer algo-

rithm. The vector of primitive variables are φj+1/2, where subscript denotes the cell. In a

similar manner, [Xj+1/2] is the matrix of eigenvectors for the j + 1/2th zone, and cj+1/2

is the vector of central differences in the characteristic directions.

cj+1/2 = [Xj+1/2]−1(φj+3/2 − φj−1/2)/(2�x) (2.14.2.1)

Trangenstein and Colella have found it necessary to selectively introduce extra vis-

cosity into the solution by reducing the derivatives to zero in a zone when the loading

conditions (with respect to the yield surface) in the adjacent zones are not the same.

The left and right states at each node for the Riemann problem are calculated by

using the slopes from Eq. (2.14.2.1), the characteristic directions and the speeds.

φ
n+1/2
j+1 = φn

j+1/2 + 1
2

∂φ

∂x
�x + 1

2

∂φ

∂t
�t

= φn
j+1/2 + 1

2 [Xj+1/2]{I�x − Λ�t}cj+1/2

(2.14.2.2)

Upwinding is achieved by using only the characteristics with a negative velocity to

construct the state at the left edge of each element (the right state for each node, ΦR
j ),

and similarly, the characteristics with a positive velocity, the state at the right edge, ΦL
j+1.

An approximate Riemann solver, which is sufficient for weak waves, is used to calcu-

late the stationary state. For strong shocks their approximate Riemann solver produces

oscillations and a more viscous scheme must be used. First, the jump across the node is
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expressed in terms of the upwind eigenvectors of each zone, [X̃j+1/2], resulting in a set of

linear equations for the vector {a+, a−}.

[X̃j+1/2]a+ + [X̃j−1/2]a− = ΦR
j − ΦL

j (2.14.2.3)

The stationary state can be expressed in terms of either the left or right values, and

the average is used for the numerical flux.

fφ
j = 1

2 (fL
j + fR

j )

fL
j = ΦL

j + [X̃j−1/2]a−

fR
j = ΦR

j − [X̃j+1/2]a+

(2.14.2.4)

The fluxes in Eq. (2.14.2.4) are used to update the solution variables in a conservative

manner.

The spin and deformation rate are calculated at tn+1/2 and the Hughes-Winget for-

mula [40] is used to integrate the rotation matrix. After the stress is updated to tn+1/2

using an objective stress rate, the constitutive equation is evaluated, and then the stress

is given the additional rotational increment to bring it to tn+1.

Most of the algorithms for integrating constitutive equations are only first order ac-

curate, but they are usually constructed so that they are asymtotically correct for large

increments in the strain. In order to maintain the second order accuracy in time, Trangen-

stein and Colella have developed their own integration algorithms for J2 plasticity [84] and

the cap model for soils [90]. Trangenstein drops from a second order algorithm to a first

order algorithm for the cap model when a shock is detected [90].

2.14.3 Two-dimensional Godunov methods with strength. PISCES [2], a two-

dimensional coupled Eulerian-Lagrangian code, was one of the first production codes to

implement van Leer’s second order accurate Godunov scheme. The Godunov method

is applied only to the pressure terms, and the deviatoric terms are handled by a finite

difference scheme. This separation makes the implementation of new material models in

PISCES as simple as in any finite difference or finite element code while the advantages of

the Godunov method for strong shocks are retained. The Godunov method is used only

in the Lagrangian step in the Eulerian code, while the purely Lagrangian calculations are

performed using a finite difference algorithm similar to the one in HEMP.

CAVEAT [3] is a production ALE code with strength while CAVEAT-GT [91] is

a research-oriented, free-Lagrange code without strength. Both use a Godunov method
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for the pressure terms, and the original strength implementation in CAVEAT, with a

philosophy similar to PISCES, uses a finite difference method for the strength terms.

CAVEAT uses quadrilaterals, while CAVEAT-GT uses triangles. The general flow of all

three programs is similar within the Lagrangian Godunov step:

1. A monotonized slope computation of the solution variables.

2. The “left” and “right” states for the Riemann problem are calculated for

each zone edge.

3. The Riemann problem in the direction normal to the edge is solved using an

approximate Riemann solver for strong shocks.

4. Stress and strain rate calculations at the edges of each zone (original CAVEAT

and PISCES only).

5. The motion of the mesh is calculated.

6. The stress, density, energy, and history variables are updated within each

zone.

The details associated with the strength calculations (step 4) and the mesh motion (step

5) are the major points of difference. The first two steps are similar to steps 2 and 3 of

the previous section, but in contrast to the work of Trangenstein and Colella, the slopes

for the linear distributions are calculated in the spatial coordinate system. An alternative

to step 4 in CAVEAT is the solution of the transerve Riemann problem [173], which is

described below.

One of the underlying assumptions in all Godunov codes is that the shock direction

is normal to the cell edge. Clearly this is not true, but numerical experiments have been

conducted by Dukowicz and Melz at Los Almos [174], and their results indicate that the

numerical solutions are not very sensitive to the mesh orientation relative to the shock.

The Riemann solvers in PISCES [2] and CAVEAT [3] assume that the shock Hugoniot

can be approximated by a quadratic relationship between the pressure and the velocity,

where ∗ indicates the contact discontinuity and s indicates either the left or right state.

The wave velocity is approximated with the same linear relation, Eq. (2.8.4.3), that was

used in the shock viscosity.

Cs = as + As|u∗ − us|
P ∗ − Ps = ρsCs(u∗ − us)

(2.14.3.1)

The isentropic speed of sound is a, and the strong shock parameter, A is the strong

shock limit of (ρ2/ρ1)/(ρ2/ρ1 − 1). The Riemann solver calculates P ∗ and u∗ from the
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intersections of the shock Hugoniots defined by Eq. (2.14.3.1) for the left and right states.

For materials that have a linear relationship between the particle velocity and the shock

speed, the relation given by Eq. (2.14.3.1) is exact. The major difference between the

Riemann solvers in PISCES and CAVEAT (and CAVEAT-GT) is the extension of the

Hugoniot for rarefactions. Considering a rightward wave, Hancock sets AR to zero when

u∗ − uR is negative while Dukowicz continues it with a quadratic, Eq. (2.14.3.2), that

maintains a positive slope. Similar strategies are used for the left state.

P ∗ − PR = ρRAR|u∗ − u∗
min|(u∗ − u∗

min)

u∗
min = uR − ar

2AR

(2.14.3.2)

When the transverse Riemann problem is solved in CAVEAT, the transverse wave

speed, aT , is assumed to be independent of the velocity jump. This assumption reduces

the Riemann problem to two linear equations, where v∗ is the velocity transverse to the

edge, and τ∗ is the shear stress. When this option is chosen, the coefficients for the wave

speed in Eq. (2.14.3.1) are modified appropriately to account for the material strength,

and P in Eq. (2.14.3.2) is replaced by the normal stress, σ.

v∗ =
τR − τL + (ρ∗aT )RvR + (ρ∗aT )LvL

(ρ∗aT )R + (ρ∗aT )L

τ∗ =
(ρ∗aT )R(ρ∗aT )L(vR − vL) + (ρ∗aT )RτL(ρ∗aT )LτR

(ρ∗aT )R + (ρ∗aT )L

(2.14.3.3)

The stress and strain calculations at the zone edges differ significantly in PISCES and

CAVEAT (referring now to the original difference implementation), the major difference

being that PISCES evaluates the stresses at the zone centers in addition to the zone edges.

The strain rates and the spin are evaluated at a zone edge in both codes by differencing

the velocities of the two adjacent zone centers and the two vertices defining the edge. The

deviatoric stresses at the beginning of time step n in PISCES are the density-weighted

average of the left and right values calculated by using the linear van Leer approximations.

While the material properties, ϕ, (e.g., the yield stress) are also density weighted, note

that the density weighting is different from the weighting used for the stresses.

σn
ij =

ρRσn
L,ij + ρLσn

R,ij

ρR + ρL

ϕn
ij =

ρLϕn
L + ρLϕn

L

ρR + ρL

(2.14.3.4)
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Associated with each zone (i + 1/2, j + 1/2) in the original CAVEAT difference for-

mulation are the deviatoric stresses and their history variables centered at the edges

(i + 1, j + 1/2) and (i + 1/2, j + 1). Their values at the beginning of a time step are

simply the values they had at the end of the previous time step (assuming the calcula-

tion is purely Lagrangian). Based on the values of the strain rates, the spin, the deviatoric

stresses, and the history variables, the stresses at the edges are integrated in the same man-

ner as in a standard Lagrangian code. The total stress at an edge is equal to σ′n+1 − P ∗.

The element-centered solution variables are updated using the boundary integral form of

the governing equations, Eq. (1.1.3.1) in a difference form that is directly analagous to

Eq. (2.14.1.1). PISCES uses the contact velocity uniformly in the boundary integrals,

while CAVEAT uses the velocities of the vertices in the energy calculation.

2.14.4 Godunov methods in cylindrical and spherical geometries. The extension

of the Godunov method to two and three-dimensional problems in Cartesian coordinates

is straight forward, but there are two additional issues associated with the cylindrical

and spherical geometries. The first issue, highlighted by Roe [93], is how the Riemann

problem should be solved since the shock is no longer planar and he has proposed a

modified Riemann solver for the cylindrical geometry. Both CAVEAT and PISCES use

the same Riemann solver for both planar and cylindrical geometries on the basis that

for a short period of time, at a particular point in space and time, the behavior of the

contact discontinuity is the same for both geometries. The authors of both codes have

carefully compared the analytical and the numerical solutions of cylindrical test problems

to demonstrate the validity of their approximation.

Hancock initially obtained poor answers when he applied a first order Godunov

method to a cylindrical or spherical problem in one dimension [94]. He tested his Go-

dunov code by coasting a single element towards the centerline and he found that very

large pressures were generated. On examining the results of his calculation, he determined

that the cause of his problem was the manner in which he calculated the velocities at the

edges. For the one element problem, a first order method assigns the average element

velocity to both the left and right edges. These boundary conditions are inconsistent with

the isochoric motion of the exact solution. To overcome this difficulty he interpolated

the velocity within an element on the basis that the fluid motion within the element is

isochoric. Letting α equal 1, 2 or 3 to indicate planar, cylindrical, or spherical geometry

respectively, the velocity interpolation is given by Eq. (2.14.4.1).
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ṙ =
(ri+1/2

r

)α−1

ṙi+1/2 (2.14.4.1)

To put it another way, he assumes that the volume flux, not the velocity, is constant within

the element. For his second order Godunov scheme, he interpolates the volume flux, ṙr,

with a monotonic linear function instead of the velocity.

2.14.5 Updating the vertex velocities. The velocities of the vertices, or nodes, are

needed in Lagrangian calculations to update the location of the mesh, and they may be

used in an ALE or Eulerian calculations to determine the transport volumes between

elements. Since the velocities are not available directly, they must be calculated from the

edge velocities.

The default algorithm in CAVEAT [3] is a least squares fit, which is both simple and

robust. When only the velocity normal to the cell edges is calculated, the error between the

normal velocity and the projection of the vertex velocity is minimized in the least squares

sense. The resulting functional, Eq. (2.14.5.1), gives two linear equations, Eq. (2.14.5.2),

where nα is the normal vector, u∗ is the velocity for edge α, and u is the unknown vertex

velocity. The weighting factor, Wα, is the sum of the material densities on either side of

the edge.

min 1
2

∑
α

Wα(u · nα − u∗
α)2 (2.14.5.1)

∑
α

Wαnαi(ujnαj − u∗
α) = 0 i = 1, 2 (2.14.5.2)

One limitation of this approach is it may generate spurious velocities transverse to the flow

if the mesh is distorted, e.g., the Saltzman shock tube problem. Dukowicz and Melz have

interpreted these velocities in terms of spurious vorticities [174] and Benson, in terms of

spurious shears [42] on a distorted mesh.

When the velocity tangent to the edge is available through solving the transverse

Riemann problem, the contact velocity vector can be rotated into the global coordinate

system and Eq. (2.14.5.1) and Eq. (2.14.5.2) are generalized.

min 1
2

∑
αi

Wα(ui − u∗
αi)

2 (2.14.5.3)
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∑
α

Wα(ui − u∗
αi) = 0 i = 1, 2 (2.14.5.4)

The result in this case is a simple weighted average.

ui =
∑

α Wαu∗
αi∑

α Wα
i = 1, 2 (2.14.5.5)

Dukowicz and Meltz recently developed a new method [174] for calculating the vertex

velocities that eliminates the spurious vorticities by directly integrating the vorticity equa-

tion. In their work, they consider a couple of different ways to use the vorticity equation,

but only the basic strategy is summarized here. The velocity of a vertex is defined in terms

of two potentials, φ and A.

u = ∇φ + ∇× A

∇2φ = ∇ · u
∇2A = −∇× u

(2.14.5.6)

The divergence of the velocity field is known from u∗. While the curl of the velocity

is also known in principle, it is integrated from the vorticity equation, where ω is the

vorticity vector. In two dimensions, ω has only the nonzero component out of the plane.

The numerical integration procedure for Eq. (2.14.5.7) is designed to diffuse the vorticity,

thereby reducing the distortion locally.

dω

dt
+ ω∇ · u = ∇P ×∇1

ρ
(2.14.5.7)

The two Laplace’s equations in Eq. (2.14.5.6) are discretized using a finite difference

stencil and the resulting discrete equations are solved with the conjugate gradient method.

Despite the cost of solving the equations, the method is practical and the quality of the

velocity solution is much better than the least squares fit.

2.15 TVD METHODS

The standard approach to increasing the order of accuracy of the Godunov methods

it to construct higher order, conservative, monotonic interpolation functions to determine

the left and right states. The combination of restrictions associated with choosing a poly-

nomial interpolation function (the invariable choice), and imposing the conservation and
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monotonicity constraints greatly limits the number of free parameters that can be tuned

to optimize the resolution of shock and contact discontinuities. In addition, the solution

of the Riemann problem can be quite difficult for real materials. One approach to circum-

venting these problems is the total variation diminishing (TVD) methods developed for

solving the Euler equations. Their formulation for pure advection is discussed in greater

detail in the next chapter, but the essential idea is fairly simple.

First order methods for the Euler equations tend to be montonic, but diffusive, while

second order methods are accurate at the expense of having oscillations in the solution.

The idea of a TVD limiter, φ, is to introduce into the solution the minimum amount of

damping that is necessary to eliminate the oscillations by using a linear combination of first

and second order methods. On a conceptual level, this idea is illustrated by Eq. (2.15.1),

where S is a state variable and O indicates the order of the method. Note that TVD

methods limit the flux, while Godunov methods limit the data, to enforce monotonicity.

Sn+1 = Sn + φ · O(�x) + (1 − φ) · O(�x2) (2.15.1)

Kashiwa and Lee [175] have replaced the Riemann solution with a TVD scheme in a

version of CAVEAT [138]. Their update of the cell-centered quantities is the same as in

the Godunov method. Since TVD schemes are formulated in terms of limiting fluxes, the

appropriate fluxes for the velocity and the pressure must be defined. Kashiwa and Lee use

the momentum and energy equations.

du

dt
= −1/ρ∇P

dP

dt
= −ρc2∇ · u

(2.15.2)

The first order fluxes are derived from the same assumptions as the Riemann solver

developed by Dukowicz [87], while the second order fluxes are derived by applying the Lax-

Wendroff scheme [176] to Eq. (2.15.2). In contrast to the second order Godunov methods,

the subscripts + and − denote cell-centered values and not the values extrapolated to the

edge of the cell.

u∗ = u∗
0 − φ

[ �x∇P

(ρC)+ + (ρC)−

]
− (1 − φ)

[
�t

∇P

2ρ

]

P ∗ = P ∗
0 − φ

[
(ρC)+(ρC)−�x∇ · u

(ρC)+ + (ρC)−

]
− (1 − φ)

[
�t

ρC2∇ · u
2

] (2.15.3)
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The initial values u∗
0 and P∗0 are calculated by using the leading terms from a method of

characteristic solution.

u∗
0 =

(ρC)−u− + (ρC)+u+

(ρC)+ + (ρC)−

P ∗
0 =

(ρC)−P+ + (ρC)+P−
(ρC)+ + (ρC)−

(2.15.4)

The limiter is based on work by Davis [178], and it is only turned on when the

divergence is negative so the first order terms are a direct analog to a shock viscosity.

φ =
{φ′ if Dii ≤ 0

0 otherwise
}

(2.15.5)

φ′ = 1 − max[0,min(Dii/Djj−, Dii/Djj+ , Dii−/Djj , Dii+/Djj)] (2.15.6)

The Godunov and TVD schemes in CAVEAT have the same shock resolution in one

dimension, but the TVD scheme is better at propagating shocks that are oblique to the

mesh in two dimensions, e.g., spherical blast calculations on a rectangular mesh. The

superior isotropy of the TVD scheme relative to the Godunov scheme is probably due

to using the velocity divergence, which is an isotropic indicator of shocks, instead of the

one-dimensional velocity jumps in the limiter.

2.16 PARTICLE METHODS

Particle methods can be characterized as methods where the solution variables are

attributed to Lagrangian point masses instead of computational cells. There have been

many different variations on this theme, and the interested reader is referred to Ref. [179]

for a collection of excellent papers on recent advances in the area. The advantages of

particle methods are there is no need to track the material interfaces, and the calculation

will continue to run regardless of the amount of turbulence in the solution. The difficul-

ties are ringing of the particles, fluctuations from transporting discrete particles, resolving

thin layers of material, and a lack of translational and rotational invariance [180]. Recent

work has eliminated or reduced these difficulties, but the shock resolution of particle meth-

ods is inferior to the best finite difference and finite element methods. Among the best

formulations today are FLIP (Fluid-Implicit Particle) [181] and SPH (Smooth Particle

Hydrodynamics) [182].
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Some of the particle formulations consist of a standard finite difference Lagrange step

followed by an advection step that uses particles to resolve material interfaces in cells with

more than one material. The discussion of particle advection is deferred to later.

2.17 FREE LAGRANGE AND ADAPTIVE METHODS

Free Lagrange methods overcome the difficulties associated with turbulent flow by

automatically changing the definition of the mesh as it becomes distorted [10], [179]. The

most successful free Lagrange codes, such as CAVEAT-GT [x], use the same finite difference

or finite element Lagrange steps as conventional Lagrangian codes. The main challenge

in these formulations is to create adaptive mesh algorithms that are robust, efficient, and

which produce good meshes. These algorithms fall into two main classes, and both may

exist within a single code [91]: 1) nearly Lagrangian mesh updates, which adjust the mesh

locally, and 2) complete mesh regenerators, which are frequently based on the Vornoi dia-

grahm [10]. While the algorithms are quite simple conceptually, a presentation with enough

detail to appreciate them is beyond the scope of this paper, and the interested reader is

referred to Refs. [10], [91], and [179]. The transport algorithms, which are also used by

Eulerian and ALE codes, are considered in detail later.
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Chapter 3

ALGORITHMS FOR EULERIAN AND

ARBITRARY LAGRANGIAN EULERIAN CALCULATIONS

Hydrocodes are frequently applied to problems that ivolve deformations that are too

severe to be handled by the same Lagrangian mesh during the entire calculation. These

problems involve large stretchs, resulting in large changes in the aspect ratios of elements,

turbulent flow, which may invert elements, and material failure, which results in the gener-

ation of new free surfaces. At some point in the calculation, a new mesh must be generated

and the old solution must be mapped from the old mesh on to the new mesh. The frequency

and the restrictions placed on the generality of the remap strategy define the differences

between Eulerian, arbitrary Lagrangian-Eulerian (ALE), and rezoned meshes. Rezoning

requires the intervention of the user, either through a graphical interface or through a

command file to define the new mesh, and the success of the method depends heavily on

the skill and patience of the user. Problems which involve a change in the topology (e.g., a

penetration calculation) during the calculation are especially difficult for manual rezoning

since a smooth transition from one topology to another may require time step by time step

intervention.

Eulerian methods were at one time regarded as a last resort for solving a problem

because of their poor resolution of material interfaces. This has changed, however, with the

introduction of high resolution interface tracking algorithms. The best interface tracking

algorithms are now also used in the graphics postprocessor. An example of the accuracy of

the interface trackers is shown in Fig. 21, a MESA calculation of the shape of an explosively

formed projectile.

The advection algorithms, which are used to calculate the material transport between

elements, are second order accurate and they are no longer the limiting factor in the ac-
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curacy of Eulerian calculations. Furthermore, Eulerian and ALE calculations do not have

the accuracy losses associated with highly distorted elements that plagues Lagrangian cal-

culations. The cost of the calculations has also been reduced considerably by performing

the Eulerian remap only after several Lagrangian steps instead of every step. For prob-

lems involving large deformations (and consequently, distorted Lagrangian meshes), the

accuracy of an Eulerian calculation is equal to a Lagrangian calculation, and it may be

significantly better for problems that have a changing topology.

The mesh used in Eulerian hydrocodes is fixed in space. In addition to accounting

for the changes in the element solution due to source or Lagrangian terms, Eulerian codes

must account for the transport of material through the mesh. There are two different

schools of thought on how Eulerian codes should be structured: One approach updates

the solution variables in a single step. An early example of this approach is the HELP

code [95], and much of the recent research on solving the Euler equations has emphasized

this approach, e.g., [96], [97], [98]. The other, used by Noh in CEL [9], separates the

Lagrangian and Eulerian terms into two steps. A Lagrangian step is performed first which

allows the mesh to follow the material and distort. The solution on the distorted mesh is

mapped back onto the original Eulerian (spatially fixed) mesh in a separate step that is

referred to as the “remap”, “Eulerian”, or “advection” step. This strategy is often referred

to as an “operator split” because the governing equations are solved by solving a sequence

of problems, each one associated with just one of the differential operators in the original

equations. Chorin et al. [99] discuss the advantages and disadvantages of this strategy in

the context of a wide variety of physical problems.

If the solution is mapped onto a different mesh that moves in a manner that may be

independent of the material motion, the method is referred to as an “arbitrary Lagrangian-

Eulerian” (ALE) method [24]. The algorithms for the remap step for Eulerian and ALE

codes are identical. Eulerian codes are often faster on a cpu per element basis because

their spatially fixed Eulerian mesh. Since the geometry of the Eulerian mesh is fixed, the

geometric calculations associated with it can be performed once and stored. Additional

simplifications are available if the mesh is rectangular. When edge-centered velocities are

used, the Lagrange step is very simple, especially if strength is ignored. In addition, the

remap step is cheaper because only half as many velocity components are remapped in

comparison with formulations using node-centered velocities. This last advantage disap-

pears when the comparison is made with Godunov schemes, which center the velocities in
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the elements.

Virtually all Eulerian hydrocodes, including CEL [98], JOY [100], HULL, PISCES [2],

CSQ [62], CTH [63], MESA [101], and KRAKEN [102] have separate Lagrangian and remap

steps. Most ALE codes, including CALE, CAVEAT [3], DYNA2D [103], HEMP [104],

SALE [24], and SALE3D [25] also perform two steps. HELP, as mentioned before, does

not, nor does the recent ALE research performed by Liu et al. [105]. The primary reason

for the popularity of the operator split is the simplicity in the centering of the solution

variables for obtaining second order accuracy in an explicit calculation. When unsplit

Eulerian algorithms are updating the solution at a particular spatial location, they use

information that is upstream of the flow. The upstream location is dependent on the

direction and magnitude of the flow. For instance, to update the stress, an upstream or

“upwinded” strain rate is used. The flow velocity is, however, dependent on the stress,

resulting in a coupling between the location of the upwinded strain rate and the updated

stress. This coupling makes unsplit Eulerian algorithms appear to be naturally implicit.

Second order accurate methods for the Euler equations have, however, been constructed,

e.g., [96], [97], [106].

Both ALE and Eulerian formulations may have elements containing more than one

material, while virtually all Lagrangian formulations assume that each element is restricted

to a single material. The complexity of handling elements with several materials, or “mixed

elements” (which are not to be confused with elements that are based on mixed variational

principles), adds a significant computational cost. Some ALE codes are restricted to single

materials within an element, and they are referred to as “simplified ALE” codes. The

drawback of a simplified formulation is the range of problems a simplified ALE code may

address is not much greater than a pure Lagrange code since the material boundaries

remain Lagrangian in both cases.

In the remainder of this chapter the operator split formulations are emphasized be-

cause of their popularity. Since the Lagrangian step is discussed in Chapter 2, this chapter

focuses on the transport of material between elements. One dimensional methods are dis-

cussed first, and then their extensions to two dimensions. A separate section discusses the

special difficulties associated with the transport of momentum. Much of the computational

cost in hydrocodes is associated with the treatment of elements containing more than one

material. The algorithms associated with the stress updates and the interface tracking are

discussed. General remapping techniques are considered at the end of the chapter.
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3.1 THE OPERATOR SPLIT

Operator splitting is convenient method for breaking complicated problems into a

series of less complicated problems [107]. The separation of the Lagrangian and Eule-

rian parts of an Eulerian calculation is one application of an operator split. It is also

frequently used to construct multidimensional advection algorithms from one-dimensional

algorithms [98]. Although it is not usually thought of in the operator split context, the

radial return algorithm [6], [7], [8] used in most finite element programs to integrate the

J2 plasticity equations may also be viewed as an operator split [108].

The linear advection equation with a source provides a convenient way to illustrate

how the operator split is used in Eulerian codes.

∂φ

∂t
+ c

∂φ

∂x
= f φ(x, 0) = φ0(x) (3.1.1)

The field variable is φ, c is the constant flow velocity, and f is the source. The operator

split divides Eq. (3.1.1) into two equations that are solved sequentially. The first equation,

the “Lagrangian” equation, contains the source term, and the second one, the “Eulerian”

equation, contains the convective term.

∂φ

∂t
= f

∂φ

∂t
+ c

∂φ

∂x
= 0

(3.1.2)

In an Eulerian hydrocode, the first equation is solved with the same algorithms that

are used in a Lagrangian code. The mesh moves with the material during this step. Codes

that use node-centered velocities can usually be run in a purely Lagrangian mode so that

their Eulerian and Lagrangian solutions can be directly compared. To solve the second

equation, the mesh is moved from its current position to its original spatial position, and the

volume of material transported between adjacent elements is calculated. The transport of

the mass, energy, momentum, stress, and other field quantities is handled by the advection

algorithms.

The computational flow of an Eulerian calculation based on an operator split proceeds

in the following stages:

1. The solution is advanced in time with a Lagrangian step.

2. The remap or Eulerian step maps the solution from the Lagrangian mesh

onto the new mesh in a series of substeps.
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a. A new mesh is generated. The usual strategies are either to relax the

Lagrangian mesh [109] in an ALE calculation, or to use a mesh fixed in

space in an Eulerian calculation.

b. The element-centered solution variables are remapped with the advec-

tion algorithms. If necessary, the stresses are returned to the yield sur-

face [110].

c. The node or edge-centered momenta are remapped. The momentum is

used instead of the velocity to guarantee the conservation of momentum,

and the velocities are calculated by dividing the values of the momentum

at the edges or nodes by the associated masses. The momentum is

advected after the element-centered mass advection because the new

masses are needed to calculate the new velocities from the momentum.

The primary disadvantage of the operator split strategy is the limitation on accuracy.

It is derived from an error analysis [107], which is presented here in a simplified manner.

Consider a set of simultaneous, first order differential equations, with x being a vector of

dependent variables, t the independent variable, and A and B are constant matrices.

ẋ = (A + B)x solution : x(t) = e(A+B)tx(0) (3.1.3)

An operator split sequentially solves the following equations each time step:

ẋ = Ax

ẋ = Bx
(3.1.4)

Considering only a single time step, the operator split solution is given by Eq. (3.1.5).

x(�t) = eB�teA�tx(0) (3.1.5)

A Taylor expansion is used to compare the solution in Eq. (3.1.5) to the exact solution

in Eq. (3.1.3). The identity matrix is denoted 1.

e(A+B)�t = 1 + (A + B)�t + 1
2 (A2 + AB + BA + B2)�t2 . . .

eB�teA�t = 1 + (A + B)�t + 1
2 (A2 + 2BA + B2)�t2 . . .

(3.1.6)

The difference between 2BA and AB + BA in the �t2 term means that the solution

in Eq. (3.1.5) is only first order accurate. In the present context, A is the Lagrangian

differential operator, and B is the Eulerian differential operator, or A and B represent k
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and 
 sweeps of the one-dimensional advection algorithm. In either case, both operators

are nonlinear, and the above arguments are repeated using a linearization of the nonlinear

equations about a particular solution point.

A second order accurate algorithm is generated by reversing the order of the operators

every half time step.

ẋ = Ax 0 ≤ t < �t/2

ẋ = Bx 0 ≤ t < �t/2

ẋ = Bx �t/2 ≤ t < �t

ẋ = Ax �t/2 ≤ t < �t

x = eA�t/2eB�t/2eB�t/2eA�t/2x(0)

(3.1.7)

Two points need to be made. First, although the operator split notation provides a

convenient format for discussing the Lagrangian and Eulerian steps, they don’t represent a

true operator split. There is no time step associated with the Eulerian step – it is simply a

projection of the solution from one mesh onto another. The Eulerian step may be thought

of as a continuous rezoning of the mesh. Time evolves only during the Lagrangian step and

the Lagrangian step is rarely fully second order accurate in time. Most material models are

integrated in time with a first order method such as the radial return algorithm [8]. Second,

the advection algorithms are usually implemented in a second order accurate manner.

The one-dimensional sweeps are spatially second order accurate, and the sequence of the

directional sweeps is reversed after every complete sweep so that Eq. (3.1.7) applies. In

contrast, the constant stress elements in the Lagrangian step are not spatially second order

accurate if the elements are distorted.

3.2 UNSPLIT FINITE ELEMENT METHODS

3.2.1 The weak form of the ALE equations. Several finite element methods have

been developed from the weak form of the ALE equations [35], [36], [105], [183]. These

methods do not use an operator split to separate the Lagrangian and Eulerian terms, nor

do they use it to generate multidimensional advection algorithms from one-dimensional

algorithms. Although unsplit methods have a theoretical accuracy advantage over operator

split methods, the advantage remains largely theoretical.

The mass, momentum, and energy weak forms are given by Eq. (3.2.1), and correspond
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to Eq. (1.2.3).

∫
Ω

∂ρr

∂t
δρdΩ = −

∫
Ω

ρ
∂ui

∂xi
δρdΩ −

∫
Ω

wi
∂ρ

∂xi
δρdΩ (3.2.1a)

∫
Ω

ρ
∂ur

∂t
δuidΩ =

∫
Ω

σij
∂δui

∂xj
+ ρbiδuidΩ

−
∫

Ω

ρwj
∂ui

∂xj
δuidΩ +

∫
Γτ

τiδuidΓ
(3.2.1.b)

∫
Ω

ρ
∂er

∂t
δedΩ =

∫
Ω

(σij
∂ui

∂xj
+ ρbiui)δedΩ

−
∫

Ω

ρwj
∂e

∂xj
δedΩ

(3.2.1.c)

The greatest divergence in the formulations occurs in the advection of the element-

centered variables. For constant stress elements, the spatial gradient of the element-

centered variables is zero on the element interior and undefined at the element boundaries.

The most attractive method for circumventing this difficulty was proposed by Liu, Be-

lytschko, and Chang [184]. Their weak form for the evolution of the element-centered vari-

ables is presented here, where the auxilary variable, yijk, is defined to be the stress-velocity

product, σijwk. Similar auxilary variables are necessary for all the history variables.

The strong form of the stress rate is given by Eq. (3.2.2), where for generality, the

rotational terms and the material tangent matrix are added together and the rate is ex-

pressed as a function of the velocity gradient. Similar equations hold for the evolution of

the other element-centered variables.

∂σr
ij

∂t
= Cijk�

∂uk

∂x�
− wk

∂σij

∂xk
(3.2.2)

Introducing the stress-velocity product results in an equivalent strong form, Eq. (3.2.3.

∂σr
ij

∂t
= Cijk�

∂uk

∂x�
− yijk,k +σij

∂wk

∂xk
(3.2.3)

The weak form of Eq. (3.2.3) is used in conjunction with Eq (3.2.4), which enforces the

definition of yijk in the weak sense.

∫
Ω

∂σr
ij

∂t
δσijdΩ =

∫
Ω

(Cijk�
∂uk

∂x�
− yijk,k +σij

∂wk

∂xk
)δσijdΩ (3.2.4)
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∫
Ω

yijkδyijkdΩ =
∫

Ω

σijwkδyijkdΩ (3.2.5)

In general, the matrices in the discrete equations generated by the weak forms are time

dependent and, like the consistent mass matrix, not diagonal. Special weighting functions,

integration rules, or lumping procedures are necessary to decouple the equations.

3.2.2 Finite element algorithms. The velocities are centered at the nodes, resulting

in a continuous velocity field, while the remaining variables are discontinuous functions

across the element boundaries. Within the finite element literature, most of the advection

algorithms are designed for continuous fields. Some algorithms have been developed for

discontinuous fields [185], [186], [187], but they have not been used in hydrocodes. The

discussion presented here is limited to the streamline upwind Petrov Galerkin (SUPG)

methods developed by Hughes and coworkers since they are the only higher-order accurate

finite element methods that have been applied to problems in solid mechanics, e.g., [184].

Many of the finite element ALE formulations have adopted monotonic, element-centered,

finite difference algorithms for their work, and those algorithms are discussed in a later

section.

The standard Galerkin formulation does not work well for problems dominated by

advection because the stability condition is a function of the element Peclet number. The

Peclet number, α, is defined as h||u||/(2k), where h is the element size, and k is the

cofficient of diffusion. The stability enhancing properties of upwinding are introduced in

the SUPG [111], or “streamline diffusion” methods, by using weighting functions that are

biased towards the upwind direction. These methods are applied to general hyperbolic

systems, including the ALE equations given in the previous section. A typical SUPG

weighting function, δφα, adds additional terms to the interpolation function N where τ is

a flow dependent function.

δφα = Nα + τ
ui

||u||
∂Nα

∂xi
(3.2.2.1)

Additional terms may be incorportated to improve the resolution of shocks [188], which

makes the method nonlinear even for linear problems. For the special case of the scalar ad-

vection equation, the original SUPG formulation is a linear, higher order accurate method,

which means that it will not be monotonic. Mathematical analysis has shown that the os-

cillations are localized [112], [189], but even local violations of monotonicity may not be
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acceptable for problems involving highly nonlinear material models.

Mizukami and Hughes [128] proposed a SUPG method for triangular elements that

incorporates a special set of rules for choosing τ . The boundary of each element is divided

into vertex and edge zones. The weighting functions are the linear interpolation functions

plus constants, Cα. The flow is associated with a particular vertex or edge zone by taking

the dot product of the velocity vector at the element centroid with the gradient of the

interpolation function. The constants, which in most cases have the values 2/3 or −1/3,

depend on which zone is associated with the flow.

δφα = Nα + Cα (3.2.2.2)

One especially interesting aspect of this work is their demonstration that the upwinding

may have to be in a direction other than along the streamline to guarantee a monotonic

solution.

The advection of the element-centered variables is the largest obstacle to attaining sec-

ond order accurate finite element ALE methods. The discontinuous finite element method,

which provides the general theoretical framework for advecting the element-centered vari-

ables, was originally developed for the neutron transport equation [185]. For constant

stress elements, this method is equivalent to the finite difference donor cell algorithm,

which is only first order accurate. Modifications of the SUPG methods have been devel-

oped [184], and they can be adjusted between the second order accurate, but unstable,

central difference algorithm and the first order accurate donor cell algorithm.

To acheive a specified level of accuracy, the discontinuous finite element method re-

quires more degrees of freedom than its node-centered, continuous counterpart. To be able

to represent the same fields as a node-centered formulation, each element must have the

same number of degrees of freedom as it has nodes. For example, a four node quadrilateral

would require four degrees of freedom, while the ratio of nodes to elements on a logically

regular mesh approaches one. To achieve second order accuracy, the discontinuous finite

element formulation must work with four times as much information. This requirement is

supported by the results obtained for a related problem. Most finite difference advection

algorithms are element-centered, and they must be modified to advect the node-centered

velocities. One approach is to construct auxilary element-centered variables, advect them,

and then reconstruct the velocities from the element-centered auxilary variables. It has

been proven (see section 3.5 or [133]) that four auxilary variables must be constructed to
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advect each component of the velocity field without dispersion.

3.3 FINITE DIFFERENCE ADVECTION METHODS IN ONE DIMENSION

The remap step maps the solution from a distorted Lagrangian mesh onto the new

mesh. The underlying assumptions of the remap step are 1) the topology of the mesh

is fixed (a complete rezone, discussed later, does not have this limitation), and 2) the

mesh motion during a step is less than the dimensions of the elements. Within the fluid

community, the second condition is simply stated as saying the Courant number, C, is less

than one.

C ≡ u�t

�x
≤ 1 (3.3.1)

Since the mesh motion does not occur over any physical time scale, �t is arbitrary,

and u�t is the transport volume , f , between adjacent elements. The transport volume

calculation is purely geometrical for ALE formulations and it is not associated with any of

the physics of the problem.

The algorithms for performing the remap step are taken from the computational fluids

dynamics community, and are referred to as “advection” algorithms after the first order,

scalar conservation equation that is frequently used as a model hyperbolic problem.

∂φ

∂t
+ a(x)

∂φ

∂x
(3.3.2)

A good advection algorithm for the remap step is accurate, stable, conservative and

monotonic. Although many of the solution variables, such as the stress and plastic strain,

are not governed by conservation equations like momentum and energy, it is still highly

desirable that the volume integral of all the solution variables remain unchanged by the

remap step. Monotonicity requires that range of the solution variables does not increase

during the remap. This is particularly important with mass and energy, where negative

values would lead to physically unrealistic solutions.

Much of the research on advection algorithms has focused on developing monotonic

algorithms with an accuracy that is at least second order. Not all recent algorithms are

monotonic. For example, within the finite element community, the streamline upwind

Petrov-Galerkin (SUPG) method developed by Hughes and coworkers [111] is not mono-

tonic. Johnson [112] has demonstrated that the oscillations in the SUPG solution are
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localized, and its generalization to systems of conservation equations works very well for

the Euler equations. Mizukami and Hughes [128] later developed a monotonic SUPG

formulation. The essentially non-oscillatory (ENO) [88] algorithms are also not strictly

monotonic, and work well for the Euler equations, but their application to hydrodynamics

problems has resulted in negative densities [113]. Harten’s work on ENO algorithms is dis-

cussed because their potential and the belief that their difficulties will be overcome in the

future. All the higher order methods discussed here were originally developed for solving

the Euler equations, usually as higher order extensions to Godunov’s method. Since the

operator split approach is the dominant one in Eulerian hydrocodes, these methods are im-

plemented only to solve the scalar advection equation. In the interests of simplicity, these

methods, therefore, are discussed only in the context of the scalar advection equation.

3.3.1 The donor cell algorithm. Aside from its first order accuracy, it is everything a

good advection algorithm should be: stable, monotonic, and simple. The value of fφ
j is

dependent on the sign of a at node j, which defines the upstream direction.

φn+1
j+1/2 = φn

j+1/2 +
�t

�x
(fφ

j − fφ
j+1)

fφ
j =

aj

2
(φn

j−1/2 + φn
j+1/2) +

|aj |
2

(φn
j−1/2 − φn

j+1/2)
(3.3.1.1)

The donor cell algorithm is a first order Godunov method applied to the advection equation.

The initial values of φ to the left and the right of node j are φn
j−1/2 and φn

j+1/2, and the

velocity of the contact discontinuity at node j is aj .

3.3.2 The van Leer MUSCL algorithm. Van Leer introduced a family of higher

order Godunov methods by improving the estimates of the initial values of left and right

states for the Riemann problem at the nodes [52]. The particular advection algorithm that

is presented in this section is referred to as the MUSCL (monotone upwind schemes for

conservation laws) algorithm for brevity, although MUSCL really refers to the family of

algorithms that can be applied to systems of equations.

The donor cell algorithm assumes that the distribution of φ is constant over an element.

Van Leer replaces the piecewise constant distribution with a higher order interpolation

function, φn
j+1/2(x), that is subject to an element level conservation constraint. The value

of φ at the element centroid is regarded in this context as the average value of φ over the

element instead of the spatial value at xj+1/2.
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φn
j+1/2�xj+1/2 =

∫ xj+1

xj

φn
j+1/2(x)dx (3.3.2.2)

To determine the range of φ, [φmin
j+1/2, φ

max
j+1/2], for imposing the monotonicity con-

straint, the maximum and minimum values of φn
j−1/2, φn

j+1/2, and φn
j+3/2 are used. Mono-

tonicity can be imposed in either of two ways. The first is to require that the maximum

and minimum values of φn
j+1/2(x) fall within the range determined by the three elements.

The second is to restrict the average value of φ in the transport volumes associated with

element j + 1/2. While the difference may appear subtle, the actual difference between

the two definitions is quite significant even at relatively low Courant numbers. The second

definition allows the magnitude of the φ transported to adjacent elements to be larger

than the first definition. As a consequence, the second definition is better able to tranport

solutions with large discontinuities. The magnitude of φ an algorithm is able to transport

before its monotonicity algorithm restricts it is a measure of its “compressiveness.”

The first step up from a piecewise constant function is a piecewise linear function,

where x is now the volume coordinate, see section 3.4.1. Conservation is guaranteed by

expanding the linear function about the element centroid.

φn
j+1/2(x) = Sn

j+1/2(x − xn
j+1/2) + φn

j+1/2 (3.3.2.3)

Letting sn
j+1/2 be a second order approximation of the slope, the limited value of

the slope, Sn
j+1/2, according to the first limiting approach, is determined by assuming the

maximum permissible values at the element boundaries.

Sn
j+1/2 = 1

2{sgn(sL) + sgn(sR)}min
(
|sL|, |sn

j+1/2|, |sR|
)

sL =
1

2�xj+1/2

(
φn

j+1/2 − φn
j−1/2

)
sR =

1
2�xj+1/2

(
φn

j+3/2 − φn
j+1/2

)
(3.3.2.4)

The second limiter is similar to the first, but it assumes that the maximum permissible

values occur at the centroid of the transport volumes. Note that as stated in Eq. (3.3.2.5),

this limiter still limits the slope at the element boundary even if the element is the down-

stream element at that boundary. A more compressive limiter would not limit the slope

based on the values of φ at the downstream boundaries. For example, if aj is negative,
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only sR would limit the value of sn in Eq. (3.3.2.4). If the element is the downstream

element at both boundaries, then the slope in the element has no effect on the solution.

sL =
φn

j+1/2 − φn
j−1/2

xj+1/2 − (xj + 1
2max(0, aj)�t)

sR =
φn

j+3/2 − φn
j+1/2

(xj+1 − 1
2min(0, aj+1)�t) − xj+1/2

(3.3.2.5)

The flux at node j is evaluated using the upstream approximation of φ.

fφ
j =

aj

2
(φ−

j + φ+
j ) +

|aj |
2

(φ−
j − φ+

j )

φ+
j = Sn

j+1/2(x
c − xn

j+1/2) + φn
j+1/2

φ−
j = Sn

j−1/2(x
c − xn

j−1/2) + φn
j−1/2

xc = xn
j + 1

2�taj

(3.3.2.6)

The method for obtaining the higher order approximation of the slope is not unique.

Perhaps the simplest approach is to fit a parabola through the centroids of the three

adjacent elements and evaluate its slope at xj+1/2. When the value of φ at the element

centroids is assumed to be equal to the element average this algorithm defines a projection.

sn
j+1/2 =

(φn
j+3/2 − φn

j+1/2)�x2
j + (φn

j+1/2 − φn
j−1/2)�x2

j+1

�xj�xj+1(�xj + �xj+1)

�xj = xn
j+1/2 − xn

j−1/2

(3.3.2.7)

Christensen [50] fits a cubic polynomial through the four element centroids surround-

ing node j and interpolates φ(xn
j ). He reports that this approximation gives him close to

third order accuracy.

sn
j+1/2 =

φ(xn
j+1) − φ(xn

j )
�xj+1/2

(3.3.2.8)

Harten proposes a method for calculating the slope in his paper on ENO methods [88],

which is described in a later section.

All these methods rely on reconstructing a distribution of φ from its cell averages

and evaluating its derivative at the element centroid. Van Leer proposed in his paper [52]

and Hancock implemented in PISCES [2] a method that treats the slope as an additional

history variable. In addition to keeping extra storage for the slope, the slope must also be

advected.
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Van Leer extended his ideas to parabolic approximations, and the interested reader

should read Ref. [52].

3.3.3 The Piecewise Parabolic Method. Colella and Woodward developed the piece-

wise parabolic method (PPM) [86] which is similar in flavor to the MUSCL algorithm. The

major difference between the algorithms is the addition of some tests to detect disconti-

nuities in the solution, and the ability to alter the approximation of φ based on the test

results. A parabola is defined within in the element by demanding that the interpolation

be conservative and that it passes through the two values defined at the left and right

element edges, φL,j+1/2 and φR,j+1/2.

φ(x) = φL,j+1/2 + ξ(�φj+1/2 + φ6,j+1/2(1 − ξ))

ξ =
x − xj

�xj+1/2

�φj+1/2 = φR,j+1/2 − φL,j+1/2

φ6,j+1/2 = 6
[
φj+1/2 − 1

2 (φR,j+1/2 + φL,j+1/2)
]

(3.3.3.1)

In regions where the solution is smooth φL,j+1/2 and φR,j−1/2 are equal and the inter-

polation is continuous at the nodes. The monotonicity constraint is enforced by altering

the values of φL,j+1/2 and φR,j+1/2, resulting in discontinuities in φ at the nodes. A

quartic polynomial, H4, is fit through the integral of φ from node j − 2 to node j + 2,

and φ̃j is initially set to dH4/dx|xj . This procedure is very similar to Harten’s method of

generating interpolating functions for his ENO schemes. Colella and Woodward replace

the term associated with the average slope of the parabola in element j +1/2 appearing in

dH4/dx|xj with van Leer’s limited slope approximation to obtain a sharper representation

of discontinuities in the solution.

The first application of the monotonicity constraint is the restriction of φj to the range

defined by the adjacent elements.

φj = max
(
min(φj−1/2, φj+1/2),min(max(φj−1/2, φj+1/2), φ̃j)

)
(3.3.3.2)

The initial values of φL,j+1/2 and φR,j+1/2 are set to φj . If φj+1/2 is a local minimum

or maximum, the interpolation function is reset to a constant, resulting in a donor cell

algorithm just like in the MUSCL scheme. When a new maximum or minimum is created

by the choice of the φL,j+1/2 and φR,j+1/2, one of the values is reset so that monotonicity

is regained and the derivative at the opposite edge of the reset value of φ is equal to zero.
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If an element is determined to be inside a discontinuity, the parabola is replaced by

the linear interpolation developed by van Leer. A discontinuity is considered to occur

when the third derivative of φ is large and the second derivative changes sign within the

element. Furthermore, the first and third derivatives of the solution must have opposite

signs to avoid discontinuities being falsely detected within small plateaus of a generally

monotonic solution.

The amount of material transported between elements is readily calculated by inte-

grating the parabolic distribution over the transported volume.

3.3.4 Total variation diminishing (TVD) schemes. The advection methods pre-

sented in the previous sections are largely geometrical in nature. They are constructed

by introducing a piecewise continuous interpolation function and constraining it to be

conservative and monotonic. One of the reasons that these methods are popular is the dis-

tribution of φ is known pointwise by construction, giving the MUSCL and PPM schemes a

physical interpretation. By the same token, the geometrical approach is somewhat limited

(although the ENO schemes are extremely promising) because polynomials seem to be the

only family of interpolation functions that are convenient.

An alternative approach is to calculate the fluxes with a low order monotonic scheme

and add as much of the fluxes from a higher order scheme as possible without destroying

the monotonicity of the solution. The multiplier that scales the higher order fluxes is non-

linearly dependent on the solution, and it is referred to as the “flux limiter.” This approach

does not require that the entire solution profile be constructed on a pointwise basis, and

is therefore somewhat less restrictive in its range of formulations. Boris and Book [114]

introduced this approach with their flux corrected transport (FCT) algorithm. Many oth-

ers have also taken this approach, including van Leer [115], Roe [116], Chakravarthy and

Osher [117], and Harten [118]. As with the approaches in the previous sections, these

methods are generally discussed in the context of solving systems of hyperbolic conserva-

tion equations. A mathematical framework was established by Harten [118] for proving

when advection algorithms would be oscillation free or TVD (total variation diminishing).

He defined the total variation, TV (φn), of a solution and required that the total variation

decrease with time for an oscillation free solution.

TV (φn+1) ≤ TV (φn)

TV (φn) =
∑

k

|φn
k+1 − φn

k | (3.3.4.1)
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The sufficient conditions derived by Harten [118] for the general three point scheme

defined in Eq. (3.3.4.2) to be TVD are given by Eq. (3.3.4.3).

φn+1
i+1/2 = φn

i+1/2 − Ci(φn
i+1/2 − φn

i−1/2) + Di+1(φn
i+3/2 − φn

i+1/2) (3.3.4.2)

0 ≤ Ci 0 ≤ Di 0 ≤ Ci + Di ≤ 1 (3.3.4.3)

Sweby [119] considers the scalar general conservation law, Eq. (3.3.4.4), and a class of

first order advection algorithms that Osher [120] termed E-schemes because they converge

to the correct, entropy satisfying solution, where hE
j are the numerical fluxes. The simplest

example of an E-scheme is the donor cell algorithm.

∂φ

∂t
+

∂f(φ)
∂x

= 0 (3.3.4.4)

φn+1
k+1/2 = φn

k+1/2 +
�t

�x
(hE

i − hE
i+1) (3.3.4.5)

Using Sweby’s notation, the coefficients C and D for a second order accurate scheme

are expressed as functions of the limiter and the solution.

Ci = ν+
i {1 + α+

i [ϕ(r+
i+1/2)/r+

i+1/2 − ϕ(r+
i−1/2)]}

Di = −ν−
i {1 + α−

i [ϕ(r−i−1/2)/r−i−1/2 − ϕ(r−i+1/2)]}

r+
i+1/2 =

α+
i (�fi)+

α+
i+1(�fi+1)+

α+
i = 1

2 (1 − ν+
i )

r−i+1/2 =
α−

i+1(�fi+1)−

α−
i (�fi)−

α−
i = 1

2 (1 + ν−
i )

(�fi)+ = −(hE
i − f(φi+1/2)) ν+

i =
�t(�fi)+

�x(φi+1/2 − φi−1/2)

(�fi)− = (hE
i − f(φi−1/2)) ν−

i =
�t(�fi)−

�x(φi+1/2 − φi−1/2)

(3.3.4.6)

Sweby established bounds on the limiter ϕ(r), where r is the ratio of two consecutive

differences, which guaranteed second order accuracy, see Fig. 22.

ri+1/2 =
φi+1/2 − φi−1/2

φi+3/2 − φi+1/2
(3.3.4.7)

Although not all flux-limited schemes fall within the bounds of the figure (not all

limiters can be expressed in terms of r only), Sweby was able to show that the schemes
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proposed by van Leer [115], Roe [116], Chakravarthy and Osher [117] fit within his general

framework. There is obviously an infinite number of second order flux-limited schemes that

fall within the bounds defined by Sweby. Chakravarthy and Osher [117] also unified a wide

class of TVD schemes using a somewhat different approach and described the MUSCL

scheme as a TVD scheme that preprocesses or limits the data instead of the fluxes.

3.3.5 Essentially non-oscillatory schemes with subcell resolution. Harten [88] has

developed a class of essentially non-oscillatory (ENO) schemes that generalize Godunov’s

scheme to higher order accuracy. They are an interesting extension of the earlier geomet-

rical approaches taken by van Leer [52] and Colella and Woodward [88]. Like MUSCL

and PPM, a conservative interpolating polynomial, R(x, φ), is generated in a manner that

depends nonlinearly on φ. The ENO schemes are not TVD, but they are very close.

TV
(
R(·;φ)

) ≤ TV (φ) + O(�x1+P ), P > 0 (3.3.5.1)

Harten [88] has recently extended this work to include the ability capture jump dis-

continuities within cells (elements). For a scheme of using an interpolating polynomial of

degree r, it is exact for all initial data of discontinuous piecewise polynomials less than or

equal to r. Although this method is not currently used in any production hydrocodes, it

holds a great deal of promise. Although it looses any accuracy it has above second order

when it is used in conjunction with a spatial operator split in multiple dimensions, many

real problems are dominated by flows primarily in one dimension.

The interpolating polynomial, R, is generated by differentiating a polynomial, H, that

approximates the integral of φ in one space dimension.

Φ(x) =
∫ x

x1

φ(x)dx

Φi = Φ(xi) =
i∑

k=2

(xk − xk−1)φk−1/2

Φ1 = 0

H(xi,Φ) = Φi

R(x, φ) =
d

dx
H(x,Φ)

(3.3.5.2)

The following ENO construction is from Harten [88]. Other researchers have also

developed ENO schemes, and the interested reader is referred to the original paper for
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details. Following Harten’s notation, Hm(x, φ) for element j+1/2 is a piecewise polynomial

function of x of degree m which is defined in terms of the unique polynomial, qj+1/2, that

interpolates Φ on the set of consecutive m + 1 points in Sm(i), where i is the first node in

the domain of interpolation.

Sm(i) ≡ {xi, xi+1, . . . , xi+m} (3.3.5.3)

To ensure that the polynomial passes through φ at nodes j and j + 1, the range of

i(j) is defined to always include the two nodes of the element.

j − m + 1 ≤ i(j) ≤ j (3.3.5.4)

For each element, the allowable range defined by Eq. (3.3.5.4) gives m possible choices

for the interpolating polynomial. The choice of a particular polynomial is based on a

smoothness criteria and Harten provides two candidate criteria based on the estimated

magnitude of the mth derivative. This information is based on a table of Newton’s divided

differences [122]. Letting Dφ[Sk(i)] denote the kth divided difference of the polynomial

interpolating the points Sk(i), the first criteria simply chooses the i(j) in the range defined

by Eq. (3.3.5.4) that has the smallest absolute value of Dφ[Sm(i)].

The second criteria, which is the one recommended by Harten, is hierarchical. Let

ik(j) be the choice for a kth degree polynomial on Sk(ik(j)). For k equal to 1, the necessary

choice for i1(j) is j. To choose ik+1(j), two stencils for consideration are obtained by adding

a point to either end of Sk(ik(j)).

SL
k+1 = Sk+1(ik(j) − 1)

SR
k+1 = Sk+1(ik(j))

(3.3.5.5)

Harten selects the smoother of the two stencils and the final value of i(j) is im(j).

ik+1(j) =
{

ik(j) − 1 if |Dφ[SL
k+1]| < |Dφ[SR

k+1]|
ik(j) otherwise

}
(3.3.5.6)

When a discontinuity is detected within an element j + 1/2, Rj−1/2 interpolates φ

to the left of the discontinuity, and Rj+3/2 is used to the right. The location of the

discontinuity, which is not known at this point and which never needs to be calculated for

our purposes, is designated θ.
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R̂j+1/2(x, φ) =
{

Rj−1/2(x, φ) for xj ≤ x < θ
Rj+3/2(x, φ) for θ < x ≤ xj+1

}
(3.3.5.7)

The location of the discontinuity is determined by demanding that the integral of R̂j+1/2

equal Φj+1−Φj . If some criteria determines that there is a discontinuity in element j+1/2,

there is no guarantee from the construction of R that a θ exists in element j + 1/2 which

will satisfy the conservation constraint. Such a location does exist if the integral of one of

the adjacent R is too large and the other is too small.

[Hj−1/2
m (xj+1) − Φj ][Φj+1 − Hj+3/2

m (xj)] ≤ 0 if xj ≤ θ ≤ xj+1 (3.3.5.8)

The original interpolating function, Rj+1/2, is used if Eq. (3.3.5.8) is not satisfied

despite the results of the discontinuity criteria. If desired, the location of the discontinuity

can be calculated by solving the nonlinear algebraic conservation equation, Eq. (3.3.5.9).

Fj+1/2(θ) = Hj−1/2
m (θ) − Hj+3/2

m (θ) − (Φj+1 − Φj) = 0 (3.3.5.9)

Defining σj+1/2 as some measure of non-smoothness, a discontinuity is assumed to

occur in element j + 1/2 if the interpolation in that element is less smooth than in its two

adjacent elements.

σj+1/2 =
∣∣∣∣ dk

dxk
Rj+1/2

∣∣∣∣ for example

σj+1/2 > max(σj−1/2, σj+3/2) at a discontinuity
(3.3.5.10)

The actual flux calculation does not require the precise location of θ. To demonstrate

, assume that Eq. (3.3.5.8) and (3.3.5.10) are satisfied. By definition, the flux is the time-

averaged integral of φ between xj+1 − a�t and xj+1. The presence of a discontinuity

within the transport volume can be detected by checking for a sign change in Fj+1/2.

Fj+1/2(xj+1 − a�t) · Fj+1/2(xj+1) ≤ 0 if xj+1 − a�t ≤ θ ≤ xj+1 (3.3.5.11)

Assuming that the inequality Eq. (3.3.5.11) is satisfied, i.e., xj+1 − a�t ≤ θ ≤ xj+1,

φ+
j+1 is calculated using Eq. (3.3.5.12a), otherwise Eq. (3.3.5.12b) is used.
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φ+
j+1 =

1
�t

[Φj+1 − Φj − {Hj−1/2
m (xj+1 − a�t) − Φj}] (3.3.5.12a)

φ+
j+1 =

1
�t

[Φj+1 − Hj+3/2
m (xj+1 − a�t)] (3.3.5.12b)

Although the ENO schemes are very attractive, investigators [190], [191] have recently

demonstrated that ENO schemes may be unstable or suffer a loss of convergence even for

smooth functions. The investigators chose test functions that caused ENO to choose a

stencil that was downstream of the flow. The major difficulty appears to be that some of

the difference stencils that ENO is allowed to choose are linearly unstable. When ENO is

restricted to linearly stable stencils, it seems to regain all its good properties.

3.3.6 Other nonoscillatory schemes. Several other advection schemes have been re-

cently proposed that have the nice properties of an ENO scheme, but which appear to

be more efficient and stable. The one discussed here is monotone if all the data used

in the stencil are monotone, but it permits flux values larger than adjacent cell values

when a strict extremum is detected. This method is therefore not sign preserving: near a

strict minimum, the interpolant of a strictly positive, oscillatory, function, such as density,

may go negative. For individual zones that have this problem, a different limiter may be

preferred.

A particularly nice framework for describing the TVD, UNO2 [192], and SONIC [193]

algorithms has been devised by Huynh [193], [194]. It is based on a geometrical interpre-

tation of the limiters, and it is expressed mathematically in terms of the median function,

which can be readily vectorized. The median of an odd number of values is defined as the

one that has the same number of values above and below. For three numbers, it is the one

which lies between the other two. The minmod function is easily expressed in terms of the

median of two numbers and 0, and the median function for three arbitrary numbers can

be expressed in terms of the minmod function.

minmod(x, y) = median(x, y, 0)

median(x, y, z) = x + minmod(y − x, z − x)

= y + minmod(x − y, z − y)

= z + minmod(x − z, y − z)

(3.3.6.1)

The minmod function can be expressed in terms of the three standard FORTRAN intrinsic

functions min, abs, and sign.
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minmod(x, y) = [sign(1
2 , x) + sign(1

2 , y)]min{abs(x), abs(y)} (3.3.6.2)

Huynh has created a family of algorithms that he collectively refers to as SONIC, and

the one that has the best performance overall is SONIC-A [193]. It maintains the peak

values on an advected profile better than MUSCL, while avoiding the diffusivity of UNO2

and the overcompressiveness of the Superbee limiter. Following Huynh [194], the first and

second divided differences are defined in Eq. (3.3.6.3).

sj =
φj+1/2 − φj−1/2

xj+1/2 − xj−1/2

sj+1/2 = minmod(sj , sj+1)

dj+1/2 =
sj+1 − sj

xj+1 − xj

dj = minmod(dj−1/2, dj+1/2)

(3.3.6.3)

Using the nonoscillatory parabolic interpolation ideas from UNO2, the derivatives, p′,

associated with the two monotonic parabolas to the left and right are evaluated at the

element centroid. A limiting value, tj+1/2 is also calculated using the minmod function.

p′j(xj+1/2) = sj + dj(xj+1/2 − xj−1/2)

p′j+1(xj+1/2) = sj+1 + dj+1(xj+1/2 − xj+3/2)

tj+1/2 = minmod(p′j , p
′
j+1)

(3.3.6.4)

A tentative value of the derivative is defined as the arithmetic average of the slopes from

the two parabolas, a limiting slope, tmax, is defined, and the final slope is calculated using

the minmod function. The flux at node j is calculated using the slope from Eq. (3.3.6.5)

in Eq. (3.3.2.6).

S = 1
2 [p′j + p′j+1]

tmax = sgn(tj)max(2|sj |, |tj |)
Sn

j+1/2 = minmod(S, tmax)

(3.3.6.5)

3.4 TWO-DIMENSIONAL ADVECTION

3.4.1 Volume and mass coordinates. The spatial coordinate system is not a very

convenient measure of distance even in one dimension if the underlying geometry is not
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planar. Consider, for instance, using the van Leer MUSCL algorithm on a one-dimensional

problem in cylindrical coordinates. If the linear distribution of φ is expanded about the

spatial centroid, ri+1/2, of the element, then the distribution is conservative only if Sn
i+1/2 is

equal to zero (donor cell). An arbitrary slope can be used, however, if the linear distribution

is expanded about the volume centroid. Instead of calculating the spatial location of all

the volume centroids, volume coordinates can be used instead.

xi ≡
∫ ri

r1

rdr (3.4.1.1)

For an arbitrary cross section, the volume coordinates at each node are defined by the

volume integral.

xi ≡
∫ ri

r1

dV

dr
dr (3.4.1.2)

A similar problem arises in measuring the distance along a particular row of elements

in space. Again, volume coordinates can be defined, where J(y, z; i, j) is the Jacobian

relating the spatial coordinates y and z to the mesh coordinates i and j. The superscript

(j, j +1) denotes that the volume coordinates are defined in the i direction between j lines

j and j + 1. In general, x
(j,j+1)
i − x

(j,j+1)
i−1 is not equal to x

(k,k+1)
i − x

(k,k+1)
i−1 when j and k

are not equal.

x
(j,j+1)
i ≡

∫ i

1

∫ j+1

j

J(y, z; i, j)didj (3.4.1.3)

Volume coordinates can also be defined in the j direction. Mass coordinates are similar

in definition to the volume coordinate except that the density appears in the integral of

Eq. (3.4.1.3).

The advection algorithms discussed in the previous sections can be used for arbitrary

one-dimensional flows without any other changes than replacing the spatial coordinate x

with the volume coordinates and replacing the one-dimensional transport volume, a�t,

with the transport volume between elements.

3.4.2 Spatial operator split. The simplest approach to extending a one-dimensional

advection algorithm to two dimensions is the spatial operator split, or more commonly,

the “alternating direction” method [98]. In the context of the operators in Eq. (3.2.3),

A and B are −ay∂φ/∂y and −az∂φ/∂z. Consider for the moment the advection between

element (i + 1/2, j + 1/2) and its eight adjacent elements, and assume that the velocities
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are edge centered, see Fig. 2. If the flow is restricted to the i or j mesh directions, then

the one-dimensional algorithms discussed in the previous section can be applied directly.

In general the flow is two-dimensional, and some volume should be transported between

elements that share only a vertex. Note that by limiting the motion of an edge to its

normal direction, there is no unambiguously defined vertex volume as there is for meshes

with node-centered velocities. If the one-dimensional advection algorithms are applied

simultaneously in the two mesh directions, no material is tranported between diagonal

elements in a single step. The velocity at which a signal propagates for isotropic advection

along the diagonal is slower than in the two mesh directions, resulting in a loss of spherical

symmetry.

The vertex coupling is introduced by using an operator split. A first order application

of the operator split is obtained by advecting in the i direction followed by advecting in

the j direction. To simplify the following discussion, only the volume transported between

elements is considered, and the factor of �t is implied in the transport volume f . Since the

advection algorithms are nonlinear, a precise estimate of how much of φ was transported

between diagonal elements would require the use a Taylor expansion. The complexity of

the analysis would be greatly increased but the additional insight would be insignificant.

Assuming the flow is positive in the i and j directions, during the i direction sweep,

a volume of f(i+1,j+1/2) is transported between element (i + 1/2, j + 1/2) and element

(i + 3/2, j + 1/2). During the j sweep, element (i + 3/2, j + 1/2) donates a volume of

f(i+3/2,j+1) to element (i + 3/2, j + 3/2). The volume transported indirectly from element

(i+1/2, j +1/2) to element (i+3/2, j +3/2) is calculated assuming uniform mixing, where

the volume of the elements after the first sweep is superscripted with n + 1/2.

f(i+1,j+1) = f(i+1,j+1/2)f(i+3/2,j+1)/V
n+1/2
(i+3/2,j+1/2) (3.4.2.1)

For a uniform flow on a rectangular mesh, the vertex transport volume simplifies to

(�t)2ẏż. Aliasing errors are introduced into the calculation if the i sweep always pre-

cedes the j sweep. These errors are eliminating by switching the order of the sweeps every

time step: at tn, i, j, at tn+1, j, i, . . . etc.

A second order algorithm requires that the sweeps be split into three stages: 1) a

sweep in the i direction using one half the transport volumes, 2) a j sweep using the full

transport volume (in theory, this step should be split into two steps, each using one half

the transport volume ), and 3) another i sweep using one half the volumes. During the first
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sweep material from element (i + 1/2, j + 1/2) is transported to element (i + 3/2, j + 1/2).

During the second sweep, material originally in element (i + 1/2, j + 1/2) is transported

from element (i + 3/2, j + 1/2) to element (i + 3/2, j + 3/2), and material is transported

from element (i+1/2, j +1/2) to element (i+1/2, j +3/2). On the third sweep, additional

material from element (i + 1/2, j + 1/2) is transported to element (i + 3/2, j + 3/2) via

element (i + 1/2, j + 3/2). Ignoring terms higher than second order in �t, the transport

volume from element (i + 1/2, j + 1/2) to element (i + 3/2, j + 3/2) is calculated.

f(i+1,j+1) = 1
2


f(i+1/2,j+1)f(i+1,j+3/2)

V
n+1/2
(i+1/2,j+3/2)

+
f(i+1,j+1/2)f(i+3/2,j+1)

V
n+1/2
(i+3/2,j+1/2)


 (3.4.2.2)

For a uniform flow with elements of a constant size, this estimate of the corner volume is

the same as the previous estimate, Eq. (3.4.2.1). There are, however, cubic terms in the full

expression for f(i+1,j+1) in Eq. (3.4.2.2) that become significant in large Courant number

flows. Considering the special case of a uniform flow on a mesh with square elements of

unit volume, the full expression is given by Eq. (3.4.2.3).

f(i+1,j+1) = 1
2f(i+1,j+1/2)f(i+3/2,j+1)(1 − 1

2f(i+2,j+3/2))

+ 1
2f(i+1/2,j+1)f(i+1,j+3/2)(1 − 1

2f(i+1,j+1/2))
(3.4.2.3)

In addition, the three-sweep procedure transports material from element (i + 1/2, j + 1/2)

to elements (i + 5/2, j + 1/2) and (i + 5/2, j + 3/2). For the donor cell algorithm, the

amount of material can be quite significant at large Courant numbers. The higher order

monotonic advection algorithms drop to the first order donor cell algorithm in regions with

large discontinuities, e.g., shocks and contact discontinuities, and the greatest amount

of diffusion, therefore, will be experienced at the these discontinuities. Shocks tend to

eliminate the smearing introduced by the advection algorithms because of the continual

convergence of their characteristics, but the resolution of the contact discontinuities is

generally poor. In most hydrocodes the advection is performed in only two sweeps with

the order alternating every time step.

The proper implementation of an alternating direction advection method involves

some subtle considerations when the mesh is nonorthogonal. The best interface tracking

algorithms divide an element into regions of the appropriate volumes with straight line

segments. The obvious way to implement an alternating direction method is to define the

transport volumes as the regions swept out by the edges during a time step. Note that the
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transport volumes may overlap at the nodes, but that the total volume that is transported

will be correct. After the first direction is advected, the interface must be recalculated to

account for the transport. The question therefore arises as to what the proper geometry

is after the first direction.

Another problem can occur even when the mesh is orthogonal. Consider a square

element in a flow that translates along the line y = x. The transport volume on the right

edge is defined by the four locations xn+1
(i+1,j), xn+1

(i+1,j+1), xn
(i+1,j), and xn

(i+1,j+1), see Fig. 23.

The interfaces are calculated using the geometry at tn+1, but the transport volume contains

a triangular region, xn
(i+1,j), xn+1

(i+1,j), and (yn
(i+1,j), z

n+1
(i+1,j)) that lies entirely outside of

domain of the element at tn+1. What material should be assigned to that region? A blind

application of the interface tracker destroys the conservation of the different materials,

although the total volume of all the materials is conserved.

The simplest way to eliminate these problems is to use volume coordinates. While this

strategy works well with a smooth mesh, the transformation between volume coordinates

and spatial coordinates can lead to highly distorted material interfaces on distorted meshes.

A different strategy has been developed by Norm Johnson [138] for CAVEAT, see Fig. 23.

He calculates the transport volumes on all element edges due to the velocity field in one of

the spatial directions (r or z), advects the material isotropically, and then does the same

thing for the other direction (z or r). Note that the operator split is in terms of spatial

directions, not logical mesh directions. The geometry of the elements is well defined at all

times. One problem with this strategy is that symmetry is lost in spherical calculations.

For problems where this symmetry is important, isotropic advection is used in CAVEAT.

To avoid the second problem, he first calculates the magnitude of the transport volume

at an edge and then creates a region having the same volume that lies entirely within the

element. The new transport volume is constructed by calculating the position of a line

parallel to the edge such that its intersection with the element encloses the proper volume,

see Fig. 23b. This calculation uses the same algorithms used to determine the location

of the material interfaces. Extensive testing of this transport volume construction has

demonstrated that it works very well. For rectangular meshes, this construction appears

to be essentially equivalent to using volume coordinates.

3.4.3 Unsplit two-dimensional advection methods. Advection methods that do not

use operator splitting are referred to as “unsplit” methods despite the fact that they were

never split in the first place. One of the first higher order monotonic algorithms was the
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flux-corrected transport of Boris and Book [114]. It was generalized to two dimensions in

an unsplit manner by Zalesak [123], and implemented in an adaptive Eulerian programs

for gas dynamics by Löhner [124] and Oden [125]. One particularly interesting aspect

of this work is that FCT was originally developed as an edge-centered algorithm and it

was converted to a node-centered finite element method by doing little more than altering

some nomeclature. This method has not been used extensively in multimaterial hydrocodes

because other methods, such as the MUSCL scheme, are better in one dimension and the

spatial operator split works well in most cases.

Smolarkiewicz’s multipass donor cell algorithm [126] was recently extended to two

dimensions in an unsplit manner by Margolin and Smolarkiewicz [127] and implemented

in SHALE [23]. The essential idea is to estimate the truncation error from the donor cell

advection and subtract it. A sequence of donor cell steps is performed after the initial

advection with each step using an antidiffusive velocity field that is calculated from the

field being advected.

Mizukami and Hughes [128] developed a monotonic finite element advection algorithm

for unstructured meshes based on SUPG (Streamline Upwind Petrov Galerkin) approach

to computational fluid dynamics. It advects node-centered fields, which is useful for the

momentum advection, but attempts at using the simpler SUPG formulation for element-

centered quantities reduced the method to an interpolated donor cell algorithm even in

one dimension [105].

Many other researchers have developed unsplit, multidimensional advection algo-

rithms that are not mentioned here. Oil reservoir simulation is one application area in

particular where unsplit methods are very valuable, and the interested reader is urged

to survey their literature for additional methods. The work by Bell, Dawson, and Shu-

bin [129] on a Godunov method for scalar conservation equations is of particular interest.

It presents some of the most accurate pure convection solutions obtained to date.

The major drawback to unsplit algorithms is their cost. Another difficulty is the

enforcement of the monotonicity constraint along the mesh diagonals without being overly

diffusive because a linear approximation of φ will always have its maximum and minimum

at the vertices. As computers become faster, unsplit methods will probably become more

popular.

A relatively efficient unsplit method, which uses a time-centering strategy similar to

the Runge-Kutta method, has been proposed recently by Christensen [50] that gives vertex
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coupling. The advection algorithms are applied in both directions simultaneously, but with

time-centered values of φ used in the transport volumes. To obtain the time-centered values

of φ, the advection algorithms are applied from tn to tn+1/2, or equivalently, half the full

transport volume are used in the calculation.

φ
n+1/2
(i+1/2,j+1/2) =

1

V
n+1/2
(i+1/2,j+1/2)

{
φn

(i+1/2,j+1/2)V
n
(i+1/2,j+1/2)

+ f(φn)(i,j+1/2) − f(φn)(i+1,j+1/2)

+ f(φn)(i+1/2,j) − f(φn)(i+1/2,j+1)

}
φn+1

(i+1/2,j+1/2) =
1

V n+1
(i+1/2,j+1/2)

{
φn

(i+1/2,j+1/2)V
n
(i+1/2,j+1/2)

+ f(φn+1/2)(i,j+1/2) − f(φn+1/2)(i+1,j+1/2)

+ f(φn+1/2)(i+1/2,j) − f(φn+1/2)(i+1/2,j+1)

}

(3.4.3.1)

If the terms cubic in the volumes are again ignored, then Eq. (3.4.3.1) transports the

same volume as given by Eq. (3.4.2.2), but with both volumes centered at n + 1/2. The

particular advantage of this approach is it works on meshes that do not have a logically

regular structure.

A similar idea was recently published by Colella [90] for hyperbolic systems of equa-

tions, which he calls the CTU (Corner Transport Upwind) scheme. It is based on tracing

the characteristics of the advection equation in two dimensions. Although his publication

is recent, it has been in use since 1983 [131]. A scheme identical to the two-dimensional

scalar advection algorithm was derived in a different manner by van Leer [132]. Following

Colella’s presentation, for a problem with a constant velocity field of (u, ν) on a uniform

mesh, the second order advection update can be written in terms of the time-centered

values defined in Eq. (3.4.3.2).
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φn+1
(i+1/2,j+1/2) = φn

(i+1/2,j+1/2) +
u�t

�y
(φn+1/2

(i,j+1/2) − φ
n+1/2
(i+1,j+1/2))

+
ν�t

�z
(φn+1/2

(i+1/2,j) − φ
n+1/2
(i+1/2,j+1))

φ
n+1/2
(i+1,j+1/2) = φn

(i+1,j+1/2) + 1
2 (�y − u�t)

�yφ(i+1/2,j+1/2)

�y

−
{

ν�t

2�z
(φn

(i+1/2,j+1/2) − φn
(i+1/2,j−3/2))

}

φ
n+1/2
(i+1/2,j+1) = φn

(i+1/2,j+1) + 1
2 (�z − ν�t)

�zφ(i+1/2,j+1/2)

�z

−
{

u�t

2�y
(φn

(i+1/2,j+1/2) − φn
(i−1/2,j+1/2))

}

(3.4.3.2)

The terms �yφ(i+1/2,j+1/2)/�y and �zφ(i+1/2,j+1/2)/�z are montonic approximations to

the derivatives of φ in the y and z directions. The terms that do not appear in the first

order unsplit algorithm are enclosed by curly brackets.

In the previous sections we have interpreted the advection operation as a projection of

the solution on the Lagrangian mesh at tn onto the spatially fixed Eulerian mesh. The extra

terms arising in the second order unsplit algorithm defined by Eq. (3.4.3.2) can be given

a geometrical interpretation. For φ
n+1/2
(i+1,j+1/2), the extra term is − ν�t

2�z (φn
(i+1/2,j+1/2) −

φn
(i+1/2,j−3/2)), which accounts for the fact that the centroid of the transport volume at

(i + 1, j + 1/2) is shifted in the positive z direction by the flow. In a similar manner,

the additional term for φ
n+1/2
(i+1/2,j+1) is associated with the displacement of the transport

volume centroid associated with the y direction flow.

3.5 MOMENTUM ADVECTION

Except for the Godunov schemes, the velocity is centered at the nodes or the edges

while the remaining variables are centered in the elements. Momentum is advected instead

of the velocity in most codes to guarantee that momentum is conserved. The element-

centered advection algorithms must be modified to advect the node-centered momentum.

Similar difficulties are encountered when node-centered algorithms, such as the SUPG

method [111], are applied to element-centered quantities [105]. There are two approaches:

1) construct a new mesh such that the nodes become the element centroids of the new mesh

and apply the element-centered advection algorithms, and 2) construct an auxiliary set of
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element-centered variables from the momentum, advect them, and then reconstruct the

new velocities from the auxiliary variables. Both approaches can be made to work well, but

their efficiency is heavily dependent on the architecture of the codes. The algorithms are

presented in detail for one dimension first for clarity. Their extensions to two dimensions,

which are briefly discussed, are straight forward even if the equations do become lengthy.

A detailed discussion of the algorithms in two dimensions is presented in Ref. [133].

3.5.1 Notation. Finite difference notation is used in this section so that the relative

locations of the nodes and fluxes are clear. The algorithms are readily applied, however,

to unstructured meshes. To avoid limiting the discussion to a particular element-centered

advection algorithm, the transport volume through node i is fi, the transported mass is f̃i,

and the flux of φ is φifi. Most of the element-centered flux-limited advection algorithms

calculate the flux of φ directly, but the mean value of φ in the transport volumes is

calculated by dividing the φifi by the transport volume. A superscript ‘−’ or ‘+’ denotes

the value of a variable before or after the advection. Using this notation, the advection of

φ in one dimension is represented by Eq. (3.5.1.1), where the volume is V .

φ+
j+1/2 =

φ−
j+1/2V

−
j+1/2 + φjfj − φj+1fj+1

V +
j+1/2

V +
j+1/2 = V −

j+1/2 + fj − fj+1

(3.5.1.1)

3.5.2 The staggered mesh algorithm. YAQUI [26] was the first code to construct a

new mesh that is staggered with respect to original mesh for momentum advection. The

new mesh is defined so that the original nodes become the centroids of the new elements.

The element-centered advection algorithms are applied to the new mesh to advect the

momentum. In theory, the momentum can be advected with the transport volumes or the

velocity can be advected with the mass.

v+
j =

M−
j v−

j + vj−1/2f̃j−1/2 − vj+1/2f̃j+1/2

M+
j

v+
j =

M−
j v−

j + (ρv)j−1/2fj−1/2 − (ρv)j+1/2fj+1/2

M+
j

M+
j = M−

j + f̃j−1/2 − f̃j+1/2

(3.5.2.1)

A consistency condition, first defined by DeBar [102], imposes a constraint on the

formulation of the staggered mesh algorithm: if a body has a uniform velocity and a
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spatially varying density before the advection, then the velocity should be uniform and

unchanged after the advection. The new mass of a node can be expressed in terms of the

quantities used to advect the element-centered mass.

M+
j = 1

2 [M+
j−1/2 + M+

j+1/2]

= 1
2

[
(M−

j−1/2 + ρj−1fj−1 − ρjfj) + (M−
j+1/2 + ρjfj − ρj+1fj+1)

]
= M−

j + 1
2

[
(ρj−1fj−1 − ρjfj) + (ρjfj − ρj+1fj+1)

] (3.5.2.3)

The staggered mass fluxes and transport volumes are defined by equating Eq. (3.5.2.3)

and Eq. (3.5.2.2).

ρj+1/2fj+1/2 = f̃j+1/2 = 1
2 (ρjfj + ρj+1fj+1)

= 1
2 (f̃j + f̃j+1)

(3.5.2.4)

The density ρj+1/2 is generally a nonlinear function of the volume fj+1/2, hence cal-

culating fj+1/2 from Eq. (3.5.2.4) requires the solution of a nonlinear equation for each

transport volume. In contrast, the mass flux is explicitly defined by Eq. (3.5.2.4). Most

codes, including KRAKEN [102], CSQ [62], CTH [63], and DYNA2D [103], use mass fluxes

with the staggered mesh algorithm because of their simplicity.

The dispersion characteristics of this algorithm are identical to the underlying element-

centered algorithm by construction. This is not true, however, for some of the element-

centered momentum advection algorithms. There are some difficulties in implementing

the staggered mesh method in two dimensions. First, the number of edges defining a

staggered element equals the number of elements surrounding the corresponding node. On

an unstructured mesh, the arbitrary connectivity results in an arbitrary number of edges

for each staggered element. Most of the higher order accurate advection algorithms assume

a logically regular mesh of quadrilateral elements, making it difficult to use them with the

staggered mesh. Vectorization also becomes difficult because of the random number of

edges that each staggered element might have. In the ALE calculations of DYNA2D, only

the nodes that have a locally logically regular mesh surrounding them can be moved in

order to avoid these difficulties [134]. These difficulties do not occur in finite difference

codes which process logically regular blocks of zones. Another criticism is the staggered

mesh algorithm tends to smear out shocks because not all the advected variables are

element-centered [135]. This is the primary reason, according to Margolin [135], that the

element-centered algorithm was adopted in SALE [24].
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3.5.3 The SALE algorithm. SALE advects an element-centered momentum and re-

distributes its changes to the nodes [24]. The mean element velocity, vj+1/2, specific

momentum, pj+1/2, element momentum, Pj+1/2, and nodal momentum are defined by

Eq. (3.5.3.1).

vj+1/2 = 1
2 (vj + vj+1)

pj+1/2 = ρj+1/2vj+1/2

Pj+1/2 = Mj+1/2vj+1/2

Pj = Mjvj

(3.5.3.1)

Denoting the change in the element momentum �Pj+1/2, the change in the velocity

at a node is calculated by distributing half the momentum change from the two adjacent

elements.

�Pj−1/2 = pj−1fj−1 − pjfj

P+
j = P−

j + 1
2 (�Pj−1/2 + �Pj+1/2)

v+
j =

P+
j

M+
j

(3.5.3.2)

This algorithm can also be implemented by advecting the mean velocity, vj+1/2 with

the transported mass, and the transported momentum pjfj is changed to vj f̃j .

The consistency condition is satisfied regardless of whether masses or volumes are

used. Note that the velocity is not updated from the updated values of the adjacent

element momenta. The reason for this is evident when the velocities is calculated from the

momenta and no transport occurs.

v+
j =

1
2

[
1
2M−

j−1/2(v
−
j−1 + v−

j ) + 1
2M−

j+1/2(v
−
j + v−

j+1)
]

M+
j

= 1
2v−

j +
M+

j−1/2v
−
j−1 + M+

j+1/2v
−
j+1

4M+
j

(3.5.3.3)

Since the original velocities are not recovered, Eq. (3.5.3.3) indicates that there is an

inversion error associated with the algorithm.

3.5.4 The SHALE algorithm. Margolin and Beason [136] found that the SALE algo-

rithm created spurious oscillations near regions of steep gradients. They attributed the

oscillations to the inversion error illustrated in Eq. (3.5.3.3). To eliminate the inversion
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error, the SHALE algorithm advects two variables, one representing the average momen-

tum, P , and the other, the gradient of the momentum, S. Note that the element-centered

momentum defined here differs from the definition used by the SALE algorithm.

Pj = Pj+1/2 + Sj+1/2(xj − xj+1/2) = Mjvj

Pj+1 = Pj+1/2 + Sj+1/2(xj+1 − xj+1/2) = Mj+1vj+1

Pj+1/2 = 1
2 (Pj+1 + Pj) = 1

2 (Mjvj + Mj+1vj+1)

Sj+1/2 =
Pj+1 − Pj

xj+1 − xj

(3.5.4.1)

As with the SALE algorithm, the velocity is updated incrementally. Since this algo-

rithm does not have the inversion errors associated with the SALE algorithm, the velocity

could also be updated from the final values of S and P . The velocity at node j can be

expressed in terms of S and P of element j + 1/2 or j − 1/2 as in Eq. (3.5.4.1), but the

two expressions are averaged to obtain a symmetric algorithm.

P+
j =P−

j + 1
2

[�Pj−1/2 + �Sj−1/2(xj − xj−1/2)

+ �Pj+1/2 + �Sj+1/2(xj − xj+1/2)
]

v+
j =P+

j /M+
j

(3.5.4.2)

The primary disadvantage of this algorithm is that it is not monotonic unless the

flux limiters of the underlying element-centered advection algorithms are modified. Mar-

golin has successfully rewritten the limiters for his advection algorithms [135], but he has

indicated no systematic method that can be applied to all algorithms.

3.5.5 The HIS (Half Index Shift) algorithm. Benson [133] developed this algorithm

based on his analysis of the two other element-centered advection algorithms. It is designed

to overcome the dispersion errors of the SALE algorithm and to preserve the monotonicity

of the velocity field. The SHALE algorithm is a special case of a general class of algorithms.

To sketch the idea behind the HIS algorithm, the discussion is restricted to the scalar

advection equation. Two variables, Ψ(1,j+1/2) and Ψ(2,j+1/2) are defined in terms of a

linear transformation of φj and φj+1. The linear transformation may be a function of the

element j + 1/2.

{Ψ−
(1,j+1/2)

Ψ−
(2,j+1/2)

}
=
[

a b
c d

]{
φ−

j

φ−
j+1

}
(3.5.5.1)

This relation is readily inverted.
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{
φ+

j

φ+
j+1

}
=

1
ad − bc

[
d −b

−c a

]{Ψ+
(1,j+1/2)

Ψ+
(2,j+1/2)

}
(3.5.5.2)

A function is monotonic over an interval if its derivative does not change sign. The sum

of two monotonic functions is monotonic, but their difference is not necessarily monotonic.

As a consequence, Ψ−
(1,j+1/2) and Ψ−

(2,j+1/2) are monotonic over the same intervals as φ−
j if

all the coefficients in the linear transformation have the same sign. On the other hand, φ+
j

is not necessarily monotonic even if Ψ+
(1,j+1/2) and Ψ+

(2,j+1/2) are monotonic because of the

appearance of the negative signs in the inverse matrix. Monotonicity can be maintained

by transforming in both directions provided that the transformation matrix is diagonal.

Symmetry in the overall algorithm is obtained by using a weighted average of the values

of φ+
j calculated in elements j + 1/2 and j − 1/2.

A monotonic element-centered momentum advection algorithm is obtained by choos-

ing the identity matrix for the transformation and by using mass weighting for the inverse

relationship.

{
Ψ(1,j+1/2)

Ψ(2,j+1/2)

}
=
[

1 0
0 1

]{
vj

vj+1

}
(3.5.5.3)

To conserve momentum, Ψ is advected with the transport masses.

Ψ+
(m,j+1/2) =

M−
j+1/2Ψ

−
(m,j+1/2) + Ψ(m,j−1)f̃j−1 − Ψ(m,j+1)f̃j+1

M+
j+1/2

(3.5.5.4)

vj =
1

2Mj
[Mj+1/2 Mj−1/2 ]

{
Ψ(1,j+1/2)

Ψ(2,j−1/2)

}
(3.5.5.5)

3.5.6 Dispersion errors. A von Neumann analysis [137] characterizes the dispersion

errors of linear advection algorithms. Since the momentum advection algorithm modifies

the underlying element-centered advection algorithm, the momentum advection algorithm

does not necessarily have the same dispersion characteristics as the underlying algorithm.

The von Neumann analysis provides a tool to explore the changes in the dispersion char-

acteristics without considering a particular underlying advection algorithm.

The model problem is the linear advection equation with a constant value of c. A class

of solutions can be expressed as complex exponentials, where i is
√−1, ω is the frequency,

and ξ is the wave number.
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∂φ

∂t
+ c

∂φ

∂x
= 0

φ(x, t) = ei(ωt−ξx)
(3.5.6.1)

For Eq. (3.5.6.1), the dispersion equation is ω = cξ, but for discrete approximations

of the equation and for general hyperbolic equations, the relation is ω = ω(ξ). The phase

velocity, cp, and the group speed, cg, are defined by Eq. (3.5.6.2).

cp =
ω(ξ)

ξ

cg =
∂ω(ξ)

∂ξ

(3.5.6.2)

The mesh spacing is assumed to have a constant value J , and the time step, h, is also

constant. The + and − states in the previous discussions correspond to times n and n + 1

in the dispersion analysis. An explicit linear advection method that has the form given by

Eq. (3.5.6.3) results in a complex dispersion equation, Eq. (3.5.6.4), where P is a complex

polynomial.

φn+1
j = φn

j + F(c, h, J, . . . , φn
j−1, φ

n
j , φn

j+1, . . .) (3.5.6.3)

eiωh = 1 + P(eiξJ)

P(eiξJ) =
∑

j

βje
iξjJ for the appropriate range of j (3.5.6.4)

The dispersion equation has the general form given in Eq. (3.5.6.5), where Pr and Pi

denote the real and imaginary parts of P, respectively.

ωh = tan−1

( Pi

1 + Pr

)
(3.5.6.5)

Recognizing that the relations in the above equations are periodic in ωh and ξJ , the

normalized frequency and wave number are defined to simplify the notation.

ω = ωh ξ = ξJ (3.5.6.6)

The von Neumann analysis of the SALE algorithm proceeds by first calculating the

increment in the cell momentum.
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Pn
j+1/2 = 1

2 (vn
j + vn

j+1)

= 1
2 (1 + e−iξ)vn

j

∆Pn+1
j+1/2 = Pn+1

j+1/2 − Pn
j+1/2

= 1
2 (1 + e−iξ)Pvn

j

(3.5.6.7)

The velocity is updated from the changes in the cell momentum.

vn+1
j = vn

j + 1
2 (∆Pj+1/2 + ∆Pj−1/2)

eiωvn
j = 1

4 (1 + eiξ)(1 + e−iξ)Pvn
j

= 1
2 (1 + cos(ξ))Pvn

j

(3.5.6.8)

The dispersion relation for the SALE advection algorithm is given by Eq. (3.5.6.9).

ω = tan−1

(
1
2 (1 + cos(ξ))Pi

1 + 1
2 (1 + cos(ξ))Pr

)
(3.5.6.12)

By comparing Eq. (3.5.6.5) and Eq. (3.5.6.12), the effect of the SALE momentum advection

algorithm on the dispersion is to introduce a factor C, equal to 1
2 (1+cos(ξ)), into the spatial

part of the advection stencil. For small values of ξ, C is close to one, and the dispersion

characteristics are not changed, but when ξ is π, the phase and group velocity go to zero

and the amplification factor is one independent of the underlying advection algorithm. Not

only is the wave not transported, it is not damped out. The same effect is found in two

dimensions, where C has the form 1
4 [1 + cos(ξ) + cos(η) + cos(ξ) cos(η)].

In contrast, none of the other algorithms alter the dispersion characteristics of the

underlying algorithm. Benson has demonstrated for the element-centered algorithms that

the inversion error and the dispersion problem are linked. Algorithms that fall into the

same general class as the SHALE and HIS algorithms will, therefore, not have dispersion

problems [133].

The dispersion error in the SALE algorithm is illustrated in Fig. 24, which shows

the result of advecting a square pulse with the van Leer MUSCL algorithm. The high

frequency waves remain at the original position of the pulse and the lower frequency

trailing oscillations show that that the dispersion error is substantial. Since the error

can be interpreted as an inversion error, an exact inverse, Eq. (3.5.613), was derived for

this problem.

vj+1 = 2Pj+1/2 − vj (3.5.6.13)
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While the dispersion error is eliminated, there are oscillations along the top of the pulse

due to the nonlinearity of the MUSCL algorithm. When a linear advection method is

used, the solutions obtained by the SALE algorithm and the staggered mesh algorithm are

identical.

The loss of monotonicity with the SHALE algorithm is illustrated in Fig. 25. This

problem can be eliminated by using special limiters [135]. On a uniform mesh, the HIS

and staggered mesh algorithms give identical solutions. A nonuniform mesh, with the

mesh spacing given by Eq. (3.5.6.14), is used in comparing the staggered mesh and HIS

algorithms in Fig. 26. The two solutions are virtually identical and demonstrate that they

alter the underlying advection algorithms the least.

�xi = 1.0 + 0.8sin(
2π

60
(i − 20)) (3.5.6.14)

3.5.7 Two-dimensional momentum advection algorithms. The momentum advec-

tion algorithms discussed in the previous sections are extended to two dimensions in a

straight forward manner, but the expressions can become quite lengthy.

The staggered mesh algorithm requires the construction of a staggered mesh and

the appropriate transport masses. Based on the consistency arguments, the appropriate

transport masses are given by Eq. (3.5.7.1).

f̃(k+1/2,�) = 1
4 (f̃(k+1,�−1/2) + f̃(k+1,�+1/2) + f̃(k,�−1/2) + f̃(k,�+1/2)) (3.5.7.1)

The SALE advection algorithm calculates the average momentum of the element from

the four velocities at the nodes and distributes one fourth of the change in momentum to

each node.

p(k+1/2,�+1/2) = 1
4ρ(k+1/2,�+1/2)(v(k,�) + v(k+1,�) + v(k+1,�+1) + v(k,�+1))

P(k+1/2,�+1/2) = 1
4M(k+1/2,�+1/2)(v(k,�) + v(k+1,�) + v(k+1,�+1) + v(k,�+1))

(3.5.7.2)

v+
(k,�) =

M−
(k,�)

M+
(k,�)

v−
(k,�) +

1
4M+

(k,�)

[�P(k−1/2,�−1/2) + �P(k+1/2,�−1/2)

+�P(k+1/2,�+1/2) + �P(k−1/2,�+1/2)

]
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The original SHALE algorithm [136] advected three quantities: the average element

momentum and the momentum gradients in the two coordinate directions. It was indepen-

dently discovered by Margolin [135] and Benson [133] that a fourth momentum component,

which corresponds to a cross derivative or hourglass momentum term, is necessary in order

to eliminate the dispersion problems completely. While three terms eliminate the disper-

sion problems in the coordinate directions, extra dispersion is introduced in the diagonal

directions.

P (x, y) =P(k+1/2,�+1/2) + Sx
(k+1/2,�+1/2)(x − x(k+1/2,�+1/2))

+Sy
(k+1/2,�+1/2)(y − y(k+1/2,�+1/2))

+Sxy
(k+1/2,�+1/2)(x − x(k+1/2,�+1/2))(y − y(k+1/2,�+1/2))

(3.5.7.3)

For the incremental update formula, which involves sixteen terms from the four surrounding

elements, the interested reader is referred to Ref. [133].

The HIS algorithm is also readily extended to two dimensions. The defining matrices

are given in Eq. (3.5.7.4) and Eq. (3.5.7.5).




Ψ(1,k+1/2,�+1/2)

Ψ(2,k+1/2,�+1/2)

Ψ(3,k+1/2,�+1/2)

Ψ(4,k+1/2,�+1/2)


 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






v(k,�)

v(k+1,�)

v(k+1,�+1)

v(k,�+1)


 (3.5.7.4)

v(k�) =
1

4M(k,�)




M(k+1/2,�+1/2)

M(k+1/2,�−1/2)

M(k−1/2,�−1/2)

M(k+1/2,�−1/2)




t


Ψ(1,k+1/2,�+1/2)

Ψ(2,k+1/2,�−1/2)

Ψ(3,k−1/2,�−1/2)

Ψ(4,k+1/2,�−1/2)


 (3.5.7.5)

Despite the simplicity of this algorithm, it works well even on distorted meshes (see

Fig. 27a). In contrast, the dispersion errors of the SALE algorithm are readily appar-

ent even on a uniform mesh (Fig. 27b).

3.5.8 Momentum advection with edge-centered velocities. The staggered mesh

approach seems to be favored for codes with edge-centered velocities. Since the advection

is performed in alternating sweeps, it is sufficient to consider the advection of ẋ1 and ẋ2 in

the x1 direction. The advection of ẋ1 involves no more than the one-dimensional algorithm

discussed in section 3.5.2. To advect ẋ2 in the x1 direction, the transport masses must be

defined.
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Considering ẋ2 centered at (k + 1/2, 
), its associated mass is 1
2 (M(k+1/2,�+1/2) +

M(k+1/2,�−1/2)). Invoking the consistency condition, the masses at (k, 
) and (k + 1, 
) are

calculated using Eq. (3.5.8.1).

f̃(k,�) = 1
2 (f̃(k,�+1/2) + f̃(k,�−1/2))

f̃(k+1,�) = 1
2 (f̃(k+1,�+1/2) + f̃(k+1,�−1/2))

(3.5.8.2)

3.5.9 Momentum advection for Godunov methods. One of the advantages of Go-

dunov methods is the velocity is centered with all the other solution variables at the

element centroid. The momentum is advected like any other variable in a conservative

manner. While this section is trivial in some sense (no new algorithms), it does point out

a nontrivial advantage of the Godunov methods.

3.6 ADVECTING ENERGY

Either the internal energy, e, or the total energy, e + 1
2uiui, can be advected. The

internal energy is used in the evaluation of the equation of state, and most codes advect

it like any other conserved solution variable (keeping in mind that it must be converted

to energy per unit volume if transport volumes are used). While the internal energy is

conserved during advection, the momentum advection does not conserve the kinetic energy,

with the consequence that the total energy usually decreases with time. The decrease in

kinetic energy corresponds to the diffusion of the velocity through the mesh. An algorithm

that preserved both total momentum and kinetic energy would probably not be monotonic.

An alternative strategy, which is used in CAVEAT [3], CTH [63], and PISCES [2], is

to advect the total energy and calculate the internal energy in an element as the difference

between the total energy and the kinetic energy. When the total energy is advected,

anomalous pressures can result [138]. The internal energy, calculated as the difference of

two monotonic functions, is not necessarily monotonic. Note that this is the same reason

that the SHALE momentum advection algorithm is not monotonic. Another problem

with advecting the total energy is the unrealistic heating of materials [3], [63]. As the

momentum is diffused by the advection algorithm, the kinetic energy goes down, resulting

in an increase in the internal energy.

Advecting the internal energy is not a complete solution. McGlaun [63] has found in

CTH that the pressure and temperature oscillations can occur in problems involving large

compressions. To eliminate this problem, he makes the internal energy a linear function
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of the density, forcing the density and internal energy to fall on a line defined in the state

space of the adjacent elements.

If the total energy is not conserved, then shocks can weaken and other problems can

occur. Some codes selectively convert losses in the kinetic energy into internal energy to

avoid this problem. The selectivity is important because it reduces the problems that occur

when the total energy is advected. McGlaun [63] uses the analogy of an inelastic collision,

and converts the kinetic energy discrepancy into internal energy when the momentum

transported into an element has the opposite sign of the element momentum. He reports

that this gives the best results when compared to either always turning the kinetic energy

discrepancy into internal energy or advecting the kinetic energy and calculating the velocity

from it and the sign of the previous momentum. Christensen [51] converts a user-specified

fraction of the kinetic energy discrepancy to internal energy only if the element is being

shocked (the shock viscosity is on) and the kinetic energy discrepancy will increase the

internal energy. This algorithm reduces the loss of total energy at shock fronts (while

preventing shock overheating), but it does not attempt to enforce a global conservation of

total energy.

3.7 ADVECTING HISTORY VARIABLES

Most nonlinear constitutive models for the strength of materials use a set of history

variables to represent the current state of the material. For instance, J2 plasticity models

typically include the plastic strain, εp, and the backstress, αij . The deviatoric stress

is constrained to lie on or interior to a yield surface that is defined in terms of these

history variables. There is no guarantee that the deviatoric stress satisfies the yield surface

constraint after advection.

The simplest strategy is to let the constitutive model resolve the discrepancy during

the next Lagrangian step. This is the approach followed in the DYNA2D ALE calcula-

tions [103]. The material transport during any particular step is so low that the incon-

sistency between the yield stress and the current stress state is small. The Taylor impact

test was used in a series of numerical experiments and no significant difference was found

between doing nothing and projecting the stress on to the yield surface.

Predebon, Anderson, and Walker [110] have modified CSQ to return the stress to

the yield surface after the advection and to update the plastic strain. The stress is first

projected onto the yield surface. Their algorithm then back calculates the stress state at
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the previous time step based on the updated values of the velocity and the stress. The

plastic strain is updated to enforce the consistency condition by calculating the plastic

strain rates from the total strain rate and the stress rate. In their Taylor bar impact

calculations they found that less than one percent of the total plastic strain was caused by

their algorithm, indicating that, like DYNA2D, the stresses in the CSQ calculations were

never very far outside the yield surface.

In PISCES [2], Hancock updates the stress deviators after their advection with the

remapped strain rates instead of updating them after the Lagrange step. This eliminates

the problem of any inconsistency between the stress and the yield surface by construction.

Most of the problems solved with the Eulerian code in PISCES are dominated by the

pressure, and Hancock reduces his storage and computational costs by advecting the stress

deviator with a first order upwind advection algorithm.

All the algorithms discussed in this section are particular to J2 plasticity. The same

ideas could be applied to other constitutive models such as the cap model for soils [140].

Many models do not have a yield surface so there is no consistency problem and their

history variables are advected in a conservative manner. The fact that the test calculations,

using both DYNA2D and CSQ, showed only small differences between the stress and the

yield surface after advection suggests that the errors introduced by advecting the history

variables is usually small for calculations involving low to moderate velocities.

3.8 INTERFACE TRACKING

Eulerian codes allow several materials within a single element. Elements with more

than one material are referred to as “mixed elements.” The amount of each material in an

element must be known, and rules must be established to determine how each material is

advected. These rules, either implicitly or explicitly, track the interface between materials.

A review of the different tracking methods is given in Ref. [141] and [142]. Most of the

methods are based on tracking representations of the surface with marker particles or by

deriving the surface definitions from the volume fractions of the different materials.

The interface tracking problem is largely geometrical because there is only one velocity

field for all the materials within an element. This implies that slip is impossible on material

interfaces within a mixed element, i.e., there are no slide lines in mixed elements. In

problems involving the flow of gases next to solids, a boundary layer with a nonzero shear

stress occurs in the solids, and the velocity profile of the gas is altered because of the
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artificial sticking condition within the mixed elements.

3.8.1 Donor cell methods. The volume fraction methods are the most popular approach

for tracking the material interfaces in current production Eulerian hydrocodes. Associated

with each element is a list of the materials in the element and the fraction of the total

volume they each occupy. The sum of the volume fractions, Vi, must equal one, where, by

definition, the empty region of an element is associated with a “void material” that has

the volume fraction V0. The volume of material i, ViV , is V i.

The simplest algorithms do not explicitly construct material interfaces. The fraction

of each material in a transport volume between elements is determined by an averaging

procedure. While these algorithms are efficient, they tend to smear the material interfaces.

The smearing can be characterized by the number of mixed elements that separate two

materials. The best algorithms can resolve a material layer with a volume fraction less

than one inside a single element, while the simplest methods may have several mixed

elements separating two pure materials. Aside from the decreased accuracy associated

with an inaccurate representation of the material interfaces, the cost of the calculation

increases. Mixed elements require more calculations than pure elements because of the

extra complexity that even the simplest mixture theories introduce. In addition, most

codes do not vectorize the mixed element calculations, which increases their relative cost

by a factor of five or more. Complicated interface tracking algorithms can increase the

overall speed of a code if they minimize the number of mixed elements.

Simple volume fraction algorithms are used in PISCES [2], TOIL [143], and the original

versions of CSQ [62] and JOY [100]. The descriptions for the VOF (Volume of Fluid) [145]

interface algorithms that are in the literature almost universally use volume coordinates

and reduce the element to a unit square. The VOF approach is illustrated with the

PISCES algorithm, which is a generalization of the TOIL algorithm. The upstream and

downstream volume fractions are denoted by V u
i and V d

i , respectively, and the volume

transported between the elements, which is to be calculated, is fi. Similarly, the upstream

and downstream element volumes are V u and V d. The first stage of the algorithm considers

only the materials that the upstream and downstream elements have in common. Each of

the common materials is advected in proportion to the downstream volume fraction unless

that would advect an amount greater than the volume fraction in the upstream element.

The summation in Eq. (3.8.1.1) is restricted to the common materials.
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f1
i = min(V u

i V u, fV u
i /
∑

j

V d
j ) (3.8.1.1)

If some of the materials are exhausted during the evaluation of Eq. (3.8.1.1), then

the total of the fi will be less than f . To make up the difference, Eq. (3.8.1.1) is applied

again with the summation restricted over the remaining common materials, where f̃ is the

remaining transport volume.

f2
i = min(V u

i V u, f̃V u
i /
∑

j

V d
j ) (3.8.1.2)

This equation is repeated until the total transport volume is accounted for or until

there are no remaining untransported common materials. The volume associated with each

common material is the sum of the increments calculated in Eq. (3.8.1.2) and Eq. (3.8.1.3).

fi =
∑

k

fk
i

f̃ = f −
∑

i

fi

(3.8.1.3)

In the second stage, the remaining materials in the upstream element are used to fill

the remaining volume, where the summation is restricted to the remaining materials in

Eq. (3.8.1.4).

fi = f̃V u
i /
∑

j

V d
j (3.8.1.4)

The original version of JOY [100] employed a similar strategy. JOY used an average

value of the volume fraction to determine the value in the flux of the common materials.

fi = min(V u
i V u, 1

2 (V u
i + V d

i )f) (3.8.1.5)

When the common materials are depleted, materials are chosen to fill the remaining vol-

ume fraction based on how close they were to the common materials during the original

definition of the problem. For example, if material 2 is a common material and it is de-

pleted from the upstream element, then the algorithm tries to advect the material from

the upstream element that was originally on the boundary of material 2. If that material

is not present in the element, then it searches backward material boundary by material

boundary to find the closest material.
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The next step up in complexity is to reconstruct the material interfaces within an

element based on which adjacent elements contain common materials. In this approach,

only two materials are considered at a time: the material of current interest, and the

“other” material, which combines all the remaining materials in the element. An example

of this approach is used in BBC [146], the precursor to the SLIC [147] algorithm. Although

the basic ideas behind this algorithm are quite simple, the algorithm is quite complicated:

almost half of the description of BBC is devoted to described the reconstruction of the

interface geometry from the volume fractions.

The four adjacent elements are searched for the material under consideration and

the result is either 0 for no and 1 for yes, resulting in a 4 bit code for the 30 possible

configurations. The thirty configurations are reduced to eight types, three of which have

subcases, which are finally divided into three classes. The first class assumes the materials

occur in horizontal layers, the second class assumes vertical layers, and the third class

contains the exceptions, most of which are materials concentrated at the corners or midsides

of elements. The thickness of the layers is proportional to the volume fraction of the

material. When a material is concentrated in a corner or an edge, it is assumed to have

the same aspect ratio as the element.

Based on the geometry of the reconstructed interface for each material and the geome-

try of the transport volume (i.e., the volume and which edge), the amount of each material

transported is calculated. Since each material is considered independently, it is possible

that the materials overlap and that the sum of the individual material contributions do

not equal the actual volume to be transported. The volume for the last material is chosen

to be the difference between the total transport volume and the contributions from all the

other materials. The last volume, however, must be positive and less than the amount of

the last material in the upstream element. Additional steps are performed if these last two

conditions are not satisfied. If the amount of the material is too large, then the individual

volumes are scaled back equally.

fi = fi(
∑

k

f/fk) (3.8.1.6)

The volume scaling is limited by the amount of each material available in the upstream

element. Additional scaling is performed to adjust the volumes of the different materials

that are not exhausted, and if the scaling does not work, then the actual volume transported

between elements is reduced.
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3.8.2 The SLIC algorithm. Probably the best first order interface tracking algorithm is

SLIC (Simple Line Interface Calculation) [147], which was developed by Noh and Wood-

ward. It is an alternating direction method that constructs the fluid interfaces out of

straight lines that are parallel or perpendicular to the advection direction. In a manner

similar to the BBC algorithm, the interfaces are completely determined by testing whether

or not adjacent elements contain the various materials. A major advantage of the SLIC

algorithm over the previous algorithms is it determines the volume of each material in a

single pass.

Following Noh and Woodward, the fluid occupation numbers for material i , ILi, and

IRi, are 0 if material i is absent and 1 if it is present in the elements to the left and right

of the current element respectively. Materials having the same combination of (ILi, IRi)

out of the four possible combinations are considered to be members of the same fluid

group and are treated equally. The six possible configurations of the four possible fluid

groups are shown in Fig. 28 from Ref. [147], where the sizes of the component rectangles

are determined by their fractional volumes. During the calculation of the volumes, the

materials in a particular fluid group are considered to be perfectly mixed. When only two

materials are in an element, one of the materials has the occupation numbers (0,1) or (1,0)

as shown in case b in Fig. 28. Regardless of the occupation numbers of the other fluid,

the interface is defined as in case b to prevent excessive diffusion. Note that the interfaces

are constructed based on information in one direction and that the interfaces will change

depending on the current advection direction.

The SLIC algorithm was enhanced by Chorin [99]. His first modification was the

introduction of a corner algorithm which uses information from both mesh directions. To

illustrate his algorithm, consider the case where element (i+1/2, j+1/2), (i+1/2, j−1/2),

and (i − 1/2, j + 1/2) have a common material k. This material occupies the lower left

hand corner of the element in both SLIC and in Chorin’s extension of SLIC. Chorin defines

the shape of the rectangle in element (i + 1/2, j + 1/2), having a horizontal length a and

a vertical height b, in terms of the volume fractions from the adjacent elements.

ab = Vk(i+1/2,j+1/2)

b

a
=

Vk(i−1/2,j+1/2)

Vk(i+1/2,j−1/2)

(3.8.2.1)

If Eq. (3.8.2.1) predicts a value for a or b that is greater than the element dimensions,

then a or b is limited to its maximum value and the other dimension is determined by
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conservation.

When there are only two materials, and one of them has the occupation numbers (0,0),

it is located in the center of the element. Unless the Courant number is sufficiently large,

the material remains trapped in the element forever. Chorin bases his positioning on the

Glimm construction [149], where the volume centroid, V c
k , of material k is located between

−1
2 and +1

2 in volume coordinates according to a parameter θ. A suitable sequence of

values for θ can be calculated in a number of ways, but θ must be equidistributed on the

interval [0,1].

V c
k = (1 − Vk(i+1/2,j+1/2))θ − 1

2 (Vk(i+1/2,j+1/2)) (3.8.2.2)

3.8.3 Higher order VOF methods. The most sophisticated of today’s VOF methods

represent the interfaces between materials as arbitrarily oriented straight line segments

within each element. The interfaces between the elements are not, however, necessar-

ily continuous. Among the programs that have taken this approach are CAVEAT [138],

KRAKEN [102], SOLA-VOF [145], PELE [150], MESA [101], and CTH [63]. The major

differences between the algorithms are the calculation of the slope and the ordering of the

materials for the slope calculations.

The calculation of the slopes is generally performed by one of two methods. KRAKEN

and PELE use the volume fractions of a material from two adjacent elements, see Fig. 29.

A line is drawn through the two elements such that the volume beneath the line equals

the material volume in each element. Each element edge, therefore, has its own set of

interfaces that are common to two elements, and that set of interfaces is used regardless of

the direction of the transport across the edge. Referring to Fig. 29, the two elements are

ordered such that the one on the right has the larger volume fraction, and variables are

subscripted S or L for the small and large volume fraction elements respectively. Volume

coordinates are used: the height of the elements is one and the volume widths are XS

and XL. The interface is defined by the slope of the line, s, and the intercept on the

common edge, b. Letting f be positive if it is transporting material from the left to the

right element, the volume of the current material advected, fi, is given by Eq. (3.8.3.1).

fi = bf − 1
2sf2 (3.8.3.1)
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There are four different configurations that can occur depending on the relative volume

fractions, see Fig. 29, and the interface definition is not necessarily unique. To avoid

smearing the interface, the definition with the steepest slope is chosen and the cases in

Fig. 29 are ordered with the steepest slope first.

For the first case, the slope and intercept are given by Eq. (3.8.3.2) and they must

satisfy the three constraints in Eq. (3.8.3.3).

a =

√
XSVS

XL(1 − VL)

b =
a

1 + a

s =
b2

2XSVS

(3.8.3.2)

XL(1 − VL) − (1 − b)2

2s
= 0

(1 − b)
s

≤ XL

2XSVS

b
≤ XS

(3.8.3.3)

The second case is defined by Eq. (3.8.3.4) and Eq. (3.8.3.5).

b =
2

XL

{√
X2

SV 2
S + XSVSXLVL − XSVS

}

s =
b2

2XSVS

(3.8.3.4)

YL ≡ b + sXL : b ≤ YL ≤ 1
2XSVS

b
≤ XS

(3.8.3.5)

Case 3 is similar to case 2, but with the materials switched. By switching the materials,

Eq. (3.8.3.6) and Eq. (3.8.3.7) are readily derived from Eq. (3.8.3.4) and Eq. (3.8.3.5)

respectively.

b = 1 − 2
XS

{√
X2

L(1 − VL)2 + XS(1 − VS)XL(1 − VL) − XL(1 − VL)
}

s =
(1 − b)2

2XLVL

(3.8.3.6)
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YS ≡ b − sXS : 0 ≤ YS ≤ b

2(1 − VL)XL

(1 − b)
≤ XL

(3.8.3.7)

The fourth case is defined by Eq. (3.8.3.8) and Eq. (3.8.3.9).

s =
2(VL − VS)
XL + XS

b =
VSXL + VLXS

XL + XS

(3.8.3.8)

b − sXS ≥ 0

b + sXL ≤ 1
(3.8.3.9)

A different strategy for finding the slopes was proposed by David Youngs [151] in two

dimensions. Youngs later created a similar method for three-dimensional calculations [152]

that is very similar to the one currently used in CTH [63]. Referring to Fig. 29, side

fractions, b(i,j+1/2), are calculated for each edge of an element using the two adjacent

elements and Eq. (3.8.3.2) through (3.8.3.9). Note that the element is normalized to a unit

square. The edge fractions are differenced to calculate an interface slope.

s(i+1/2,j+1/2) =
b(i+1,j+1/2) − b(i,j+1/2)

b(i+1/2,j+1) − b(i+1/2,j)
(3.8.3.10)

The position of the interface is adjusted to match the volume fractions of the two materials.

If the actual material interface is a straight line, then the calculations of the side fractions

is exact, and the exact material interface is calculated.

Since the concept of a side fraction is not readily generalized to three dimensions,

Youngs calculates the normal to the material interface by differencing the volume fractions

in the surrounding elements, and adjusts the interface position to match the volumes of

the two materials. For a uniform mesh, Youngs uses Eq. (3.8.3.11) to difference the slope

with α set to 2.

∂f

∂x1
=

fE − fW

2�x1

∂f

∂x2
=

fN − fS

2�x2
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fE =
f(i+3/2,j+3/2) + αf(i+3/2,j+1/2) + f(i+3/2,j−1/2)

2 + α

fW =
f(i−1/2,j+3/2) + αf(i−1/2,j+1/2) + f(i−1/2,j−1/2)

2 + α

fN =
f(i−1/2,j+3/2) + αf(i+1/2,j+3/2) + f(i+3/2,j+3/2)

2 + α

fS =
f(i−1/2,j−1/2) + αf(i+1/2,j−1/2) + f(i+3/2,j−1/2)

2 + α

(3.8.3.11)

Youngs’ algorithm was extended by Johnson [172] to nonorthogonal meshes and ax-

isymmetric geometries in CAVEAT. The differences in Eq. (3.8.3.11) are evaluated with

the logical coordinates, Li, and then transformed to the physical coordinate system by

inverting Eq. (3.8.3.12)

{ ∂f
∂x1
∂f
∂x2

}
=
[ ∂L1

∂x1

∂L2
∂x1

∂L1
∂x2

∂L2
∂x2

]{ ∂f
∂L1
∂f

∂L2

}
(3.8.3.12)

While the location of the interface for planar problems can be calculated explicitly, the

location in axisymmetric problems is described by a cubic equation which is solved by

Newton iteration.

Somewhat simpler difference expressions were proposed earlier by Hirt and Nichols for

SOLA-VOF [145]. For a rectangular mesh, the height of a particular material above the

bottom edge of a row of elements is defined by Eq. (3.8.3.12), then the slope is calculated

with Eq. (3.8.3.13), where �y and �z are the element dimensions.

Zi+1/2 =f(i+1/2,j−1/2)�z(i+1/2,j−1/2)+

f(i+1/2,j+1/2)�z(i+1/2,j+1/2)+

f(i+1/2,j+3/2)�z(i+1/2,j+3/2)

(3.8.3.12)

∂Z

∂y

∣∣
(i+1/2,j+1/2)

=
2(Z(i+3/2) − Z(i−1/2))

�y(i−1/2,j+1/2) + 2�y(i+1/2,j+1/2) + �y(i+3/2,j+1/2)
(3.8.3.13)

If the material interface is determined to be almost vertical, the slope ∂Y/∂z is calculated

using an expression similar to Eq. (3.8.3.13). As in Youngs’ algorithm, once the slope is

calculated, its position is adjusted to match the volume fractions in element (i + 1/2, j +

1/2).

McGlaun and Thompson [63] use a contouring algorithm to calculate the material

interface. At each element corner, a volume fraction is calculated by averaging the volume
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fraction from the four surrounding elements. The family of possible material interfaces is

the set of straight contour lines through the element parameterized by the contour level.

The particular contour line that is used for the interface is the one that matches the

material volumes.

3.8.4 Handling more than two materials. The VOF algorithms which explicitly

calculate interfaces, with the exception of SLIC, are described in terms of two materials.

Extending the algorithms to handling more materials is nontrivial. With three materials,

Y intersections can occur and the material interfaces calculated by the VOF algorithms

can intersect. Only the SLIC algorithm has the topological flexibility to represent Y or T

intersections, while the other algorithms simply layer the materials.

Two strategies are used in calculating multiple material interfaces. The first is to

calculate the interface between each material and the mixture of all other materials in a

completely independent manner. The second strategy is more complicated to explain, but

only a little more difficult to implement. The materials in the element are ordered in some

manner, with the precise ordering being dependent on the code. The interface between the

first material and the remaining materials is determined. The volume fractions of the first

and second material are added to generate a mixed material, and the interface between

the mixture and the remaining materials is calculated. The layer of the second material is

defined by the two interfaces. In a similar manner, the layer for material i is defined by the

previous interface and the interface between the mixture of materials 1 through i and the

remaining materials. Youngs requires the user to specify the order of the materials in the

layers as input [151], while McGlaun orders the materials by decreasing volume fraction in

the downstream element. While building the interfaces layer by layer does not eliminate

the problem of intersecting interfaces, it does minimize the problem and layers of material

less than an element wide can be tracked accurately.

When two interfaces intersect, the interfaces can either be adjusted to eliminate the

intersection or the fluxes can, if necessary, be scaled during the advection. The first strategy

is fairly straight forward to implement when the interfaces are built up layer by layer. The

second strategy follows the same rules used in section (3.8.2). Presumably the interfaces

have been calculated using one of the higher order schemes of the previous section, and any

alteration of the interfaces corresponds to adding extra diffusion. If the interfaces intersect

outside of the volume being advected, then no problem will occur and interfaces and fluxes

should remain unchanged. When the interfaces intersect inside the volume flux, the sum
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of the partial volume fluxes for each material will not equal the total volume flux.

3.8.5 Lagrangian marker particles. One way to represent material interfaces that is

not used very much anymore in hydrocodes is Lagrangian marker particles. The particles

are initially placed at the interface between materials. Their positions are updated during

the Lagrangian step, and the current interface is defined by interpolating between the

particles. Hermitian interpolation is sometimes used instead of linear interpolation to

reduce the noise in the solution [141]. Particles are added and deleted dynamically to

maintain an accurate interface. While this approach is superficially attractive (e.g., no

diffusion across the material interfaces, the exact location of the interface is known), it has

a number of difficulties. One difficulty is the topology is fixed by the Lagrangian nature

of the lines. Complicated logic must be added to handle the changes in the topology that

occur in penetration calculations.

Another problem is updating the position of the marker particles. Consider, for ex-

ample, a particle in the interior of an element that is on the interface between steel and

air. When the element is compressed, most of the compression is taken up by the air.

An isoparametric interpolation of the velocity at the particle would compress the steel as

much as the air, resulting in erroneously high stresses within the steel and incorrect volume

fluxes during the advection. To eliminate this problem, some programs such as HELP [95],

use a density weighted velocity average over an area surrounding the particle. The area is

generally comparable to the area of an element.

Errors in the Lagrangian velocity of the marker particles can lead to the interfaces

becoming tangled. Surface tension algorithms can prevent kinks and contact algorithms

can prevent interpenetration of the interfaces. Each additional fix, however, reduces the

attractiveness of the marker particles.

3.9 COUPLED EULERIAN LAGRANGIAN CALCULATIONS

In some cases it is desirable to represent one part of a problem with a Lagrangian

mesh and another part with an Eulerian mesh. Examples of this type of calculation in-

clude underwater explosions, where the fluid is Eulerian and the hull is Lagrangian, and

low velocity penetration calculations, where the penetrator is Lagrangian and the target is

Eulerian. The Lagrangian mesh moves through the Eulerian mesh, and some mechanism

is necessary to couple the their responses. Note that this is a different problem than the

typical fluid-structure interaction problems described in the engineering literature. The
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latter case is usually treated by putting a slideline between the fluid and the structure,

and the fluid is treated with a simplified ALE formulation. In explicit codes, the general

strategy for coupled Eulerian Lagrangian calculations is to apply pressure boundary con-

ditions on the Lagrangian mesh from the Eulerian mesh, and to treat the Lagrangian mesh

boundaries as velocity boundary conditions in the Eulerian mesh [2], [150], [9].

3.9.1 The pressure boundary conditions. The Lagrangian boundary overlaps the

Eulerian mesh as shown in Fig. 32. Each boundary segment is considered independently

and subdivided into a set of subsegments, which each subsegment being defined as the

portion of the segment that divides a particular Eulerian element. The force contribution

from a particular Eulerian element to a segment is the normal component of the stress

acting at the subsegment centroid times the area of the subsegment. The superscript k

refers to the kth element contributing to the force acting on the segment, Ak is the area

of the kth subsegment, and n is the normal to the boundary segment, and half the force

on the segment is distributed to the two Lagrangian nodes defining it.

F seg
i = n�σ

k
�jnjA

kni (3.9.1.1)

Fαi = 1
2n�σ

k
�jnjA

kniNα(xk) (3.9.1.2)

While the area weighting works well in practice, Noh [9] has pointed out that the

boundary is, in general, a contact discontinuity, and that the pressure and the normal

component of the velocity are continuous across it. A better treatment might calculate

the pressure as a density weighted average of the Eulerian and Lagrangian pressures.

Usually the deviatoric contribution is ignored, and n�σ
k
�jnj simplifies to −P k. Many

codes, such as PELE [150] and CEL [9], assume that the pressure is constant within each

Eulerian element, while other codes, such as PISCES [2], use a linear pressure approxima-

tion based on the van Leer MUSCL algorithm. In Eq. (3.9.1.3), a subscript c indicates

the value at the area centroid of the element. The area centroid is calculated based on the

area of the Eulerian element that is not covered by the Lagrangian mesh, see Fig. 32.

P (y, z) = Pc +
∂P

∂y
(y − yc) +

∂P

∂z
(z − zc) (3.9.1.3)

Once the contributions to the boundary forces from the Eulerian mesh are calculated,

the Lagrangian mesh is updated in the usual manner.
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3.9.2 The velocity boundary conditions. The geometrical quantities associated with

the Eulerian element cannot be calculated in the standard manner when it is partially

overlapped by a Lagrangian mesh. Instead of the standard difference stencil for the average

strain rate, an integral difference is performed over the arbitrarily shaped polygon defined

by the intersection of the Eulerian element and the Lagrangian mesh, see Eq. (2.5.3.1), in

CEL and PISCES. In PELE [150], the velocities at the covered edges of an element are

calculated by requiring that the normal velocity of the Lagrangian boundary equal the

fluid velocity in the same direction. After the edge velocities are calculated, the strain

rates are calculated in the usual manner. The element volume is calculated by subtracting

the Lagrangian volume from the volume of the Eulerian element. Once these quantities

have been established, the stress and pressure are updated. The velocities of the uncovered

parts of the element are updated in the normal manner.

When the Lagrangian boundary is uncovering an element, initial conditions must be

established for the velocity, stress, and history variables. PISCES [2] blends and unblends

small, partially covered elements with their adjacent elements to maintain a large time

step. When an element is being uncovered, its uncovered area is initially very small and

it is blended with its neighbor. When it is large enough not to control the time step, it

is unblended. Its initial values are evaluated at its centroid by using a monotonic Taylor

expansion about the centroid of the blended elements. CEL [9] also uses blending for the

element-centered quantities, but the node-centered velocities are handled in a different

manner. The velocity of a covered node in the direction direction of the normal to the

boundary is interpolated from the boundary while the tangential velocity is governed by the

Eulerian difference equations. As mentioned previously, PELE determines the velocities

at the covered edges of an element by requiring that the normal velocity of the boundary

and the normal component of the fluid velocity match.

3.10 REMAPPING AND REZONING

One alternative to Eulerian and ALE formulations, which is referred to as “rezoning,”

is to allow a Lagrangian calculation to run until the mesh becomes unacceptably distorted,

create a new, undistorted mesh, map the solution from the undistorted mesh, and then

continue the Lagrangian calculation. The boundary between rezoning and the other for-

mulations is not sharply defined. ALE codes can run in a purely Lagrangian manner or

remap the solutions only regionally on a periodic basis. Rezoning algorithms are usually
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defined as mapping algorithms that operate on two arbitrary meshes while advection algo-

rithms are restricted to topologically identical meshes and have a Courant limit on their

stability.

The generality of rezoning algorithms makes them computationally expensive in com-

parison to advection algorithms, and generally restricts them to first or second order ac-

curacy. As a consequence, they are used infrequently during an otherwise Lagrangian

calculation. The simplest rezoning algorithms are based on interpolation and are not con-

servative, while more expensive algorithms map arbitrary linear approximations from one

mesh to another in a conservative manner. The mathematical basis for rezoning algo-

rithms is simple, but their implementation is complicated due to the tedious geometrical

calculations associated with handling an arbitrary mesh, e.g., whether or not a point lies

within a particular element.

3.10.1 Interpolation. The cheapest and most diffusive method for rezoning is interpo-

lation. An interpolation function is constructed for the distorted mesh and new values

are calculated by evaluating the interpolation function at the centroids of the elements in

the new mesh. The definition of the interpolation function is not unique, but the most

common approach is to use the bilinear shape functions at the nodes to interpolate both

the node-centered and element-centered quantities.

The construction of the values of φ, an element-centered variable, at the nodes is

frequently based on the minimization procedure developed by Zienkiewicz, et al., [157].

Denoting the node-centered values with Greek subscripts, and the element values with

upper-case subscripts, the least squares fit is found by minimizing the functional Π.

Π = 1
2

∑
I

∫
ΩI

(φαNα − φI)2dΩ (3.10.1.1)

Taking the derivative of Π with respect to each φα generates a set of linear equations.

[∑
I

∫
ΩI

NαNβdΩ
]
φβdΩ =

∑
I

∫
ΩI

NαφI = fα (3.10.1.2)

The term within the square brackets has the same form as the consistent mass matrix,

defined in Eq. (2.4.1.6), and it is denoted Mc
αβ . A lumped matrix, M�

αβ can also be

defined in the same manner as for a mass matrix. Using the lumped matrix, values for φα

can calculated in a trivial manner.
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φα =
fα

M�
αα

no sum on α (3.10.1.3)

The values defined by Eq. (3.10.1.3) provide a starting vector for an iterative solution to

the fully coupled equations. The superscript on the φ refers to the iteration number

φi+1
α =

fα − (Mc
αβ −M�

αβ)φi
β

M�
αα

no sum on α (3.10.1.4)

When the convergence criteria, ε, is relatively loose (∼ 10−2), approximately five iterations

are needed, while tight tolerances (∼ 10−4) require approximately forty iterations [18].

||φi+1
α − φi

α||
||φi+1

α || ≤ ε (3.10.1.5)

Hallquist [18] reports that the difference between the original element-centered values of φ

and values calculated from the interpolation function average under five percent. Before the

new value of φ is calculated for an element, the nodes are checked to see if they have been

moved during the smoothing of the mesh. If they have not been changed, then the value

of φ remains unchanged, which reduces the computational cost and avoids introducing any

interpolation error into that element.

The new element-centered values in DYNA2D [18] are calculated by integrating the

interpolation function with Gaussian quadrature (usually 2×2) and dividing it by the area

of the new element.

φI =

∫
ΩI

φdΩ

ΩI
(3.10.1.6)

The two problems with this approach are the solution variables are not conserved,

and the nodal values defined by Eq. (3.10.1.2) may not be monotonic. In practice, the

conservation error is usually only a few percent. It can be reduced by increasing the

number of Gauss points used in the quadrature, but the order of the integration should

not be increased since the interpolation function is only bilinear. In areas where there are

steep gradients, first order integration should be used with a large number of integration

points. The lack of monotonicity can be easily demonstrated by considering two elements

of equal size in one dimension. Letting the left element have a value of φ equal to one and

the right element, zero, the nodal values for φ are 3/2, 1/2, and -1/2 from left to right.

In regions around strong shocks, the initial iteration values of φα defined by Eq. (3.10.1.3)
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may be preferable to the converged values since the initial values do define a monotonic,

if diffusive, interpolation function.

The geometrical challenge associated with this algorithm is calculating the location in

the original mesh of a point in the new mesh. As a first step, the element in the original

mesh that contains the point must be determined. The algorithm outlined here is used in

the DYNA2D rezoner, and it also contains the basic search strategy for locating a slave

node on a master surface in three dimensions [75].

To check whether or not an element contains a particular point is computationally

expensive, and therefore a simple strategy is used to reduce the number elements that

must be checked. Before the rezone is performed, a list of the elements surrounding each

node is generated. The list is easily and efficiently generated from the connectivity data.

The closest node in the original mesh to the specified point is determined either through

a brute force search or a nested bucket sort [64], the latter being much more efficient.

The list of elements surrounding the closest node provides an initial list of elements that

could contain the specified point. Unless the mesh is unusually distorted, the initial list is

sufficient, but the search list can be recursively expanded by considering all the elements

surrounding all the nodes that are used to define the elements in the initial (or previous)

search list.

The specified point usually lies within an element if Eq. (3.10.1.7) is satisfied. The

vector �s is the vector from the closest node to the specified point, and vectors �v1 and �v2

radiate outward from the closest node along the edges of the element, see Fig. 33.

(�v1 × �s) · (�s × �c2) > 0 (3.10.1.7)

After passing this test, the isoparametric coordinates of the point are calculated. If they

fall outside the range of [-1,+1], the specified point doesn’t lie within the element and

the element search must be continued. There are other tests that can be performed to

determine whether or not the point is within the element before attempting to calculate

its isoparametric coordinates. Milgram [158] provides a concise review of the methods for

solving this problem generalized to arbitrary polygons and introduces a method of his own.

The isoparametric coordinates are calculated by eliminating ξ1 in terms of ξ2 and

solving the resulting quadratic equation. When a quadrilateral element is degenerated

to obtain a triangular element, the isoparametric coordinates are degenerate at the two

condensed nodes. A logical check must be performed for triangular elements to handle this
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case.

3.10.2 The completely conservative rezone. Conservation is guaranteed by construc-

tion if the new element-centered (or momentum control volume) values of φ are defined

by Eq. (3.10.1.6) with a conservative interpolation function and the integrals are evalu-

ated exactly. This approach is used by Dukowicz [159], [160] and Hancock [2], but their

implementations differ considerably in detail.

Hancock uses a constant value of φ over each zone and calculates the volume con-

tributed from each of the old elements that overlaps a particular new element in the mesh.

Denoting the values before and after the rezone by a superscript − and + respectively,

and the volume from old element J overlapping new element I as V I
J , the discrete version

of Eq. (3.10.1.6) is given by Eq. (3.10.2.1). Note that the sum of V I
J equals the volume of

I, V I .

φ+
I =

∑
J V I

J φ−
J∑

J V I
J

(3.10.2.1)

The algorithm, which he attributes to Thorn and Holdridge [161], for calculating the

overlap is the same one Hancock uses for calculating the volumes of the Eulerian elements

in the coupled Eulerian-Lagrangian calculations. Both elements are decomposed into four

quadrilaterals, as shown in Fig. 34, by projecting their four edges onto the y axis. The

quadrilateral defined by the third and fourth nodes of element I is denoted V I
4,3, and

the others are denoted in a similar manner. The signed union of the four quadrilaterals

equals the area of the associated element. Assuming that the nodes are numbered in a

counterclockwise manner, the sign of the quadrilateral V I
i+1,i is the same as the sign of

yi−yi+1 so that the upper edges of the quadrilateral always contribute a positive volumes,

and the lower, negative volumes.

V I =
4⋃

i=1

sgn(yi − yi+1)V I
i+1,i (3.10.2.2)

The overlap volume is the intersection of V I and V J .

V I
J = V J

I = V I
⋂

V J =
4⋃

i,j=1

sgn
(
(yi − yi+1)(yj − yj+1)

)
V I

i+1,i

⋂
V J

j+1,j (3.10.2.3)

The problem, therefore, is reduced to calculating the intersection of V I
i+1,i ∩ V J

j+1,j .

The two cases of the edges intersecting or not intersecting are identified and handled
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separately. The components of vector along the edge of element I are �yI and �zI , and

similarly for element J . If sgn
(
(yi − yi+1)(yj − yj+1)

)
is zero, then at least one of the

edges is parallel to the z axis and the volume is zero. The left and right boundaries of the

overlap are calculated according to Eq. (3.10.2.4).

yL = max[min(yI
i , yI

i+1),min(yJ
j , yJ

j+1)]

yR = min[max(yI
i , yI

i+1),max(yJ
j , yJ

j+1)]
(3.10.2.4)

The values of z at the left and right boundaries of the overlap are the minimums of

the two edge values at yL and yR because the intersection of the two volumes is being

calculated.

zL = min(mI(xL − xI
i ) + zI

i ,mJ(xL − xJ
j ) + zJ

j )

zR = min(mI(xR − xI
i ) + zI

i ,mJ(xR − xJ
j ) + zJ

j )

mI =
�zI

�yI

mJ =
�zJ

�yJ

(3.10.2.5)

The intersection of the edges does not occur in the region of the overlap if the slopes,

mI and mJ , are equal, or if the intersection occurs outside of [yL, yR]. The intersection of

the lines defined by the edge segments is calculated using Eq. (3.10.2.6).

yM =
(zJ

j − zI
i + mIyI

i − mJyJ
j )

mI − mJ

zM = mI(yM − yI
i ) + zI

i

(3.10.2.6)

For the nonintersecting case, the volumes are given by Eq. (3.10.2.7), while the volumes

for the intersecting case are given by Eq. (3.10.2.8). In the axisymmetric case, the volumes

are for a wedge subtending one radian.

V I
i+1,i ∩ V J

j+1,j = 1
2 (yR − yL)(zR + zL) planar

= 1
6 (yR − yL)(z2

R + zRzL + z2
L) axisymmetric

(3.10.2.7)

V I
i+1,i ∩ V J

j+1,j

= 1
2

{
(yM − yL)(zM + zL)+
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(yR − yM )(zR + zM )
}

planar (3.10.2.8)

= 1
6

{
(yM − yL)(z2

M + zMzL + z2
L)+

(yR − yM )(z2
R + zRzM + z2

M )
}

axisymmetric

Dukowicz [159] assumed a constant φ within an element in his original paper, but he

has extended his method to a piecewise linear approximation of φ [160]. His method is

currently implemented in CAVEAT [3] and CAVEAT-GT [91]. Instead of performing a

volume integral, Dukowicz uses the divergence theorem to convert the volume integral to

a boundary integral. The reduced dimensionality greatly reduces the complexity of the

problem and a careful structuring of the calculations makes this method very efficient.

A flux, F , is defined such that Eq. (3.10.2.9) holds, with the result that the volume

and boundary integrals of Eq. (3.10.2.10) are equal by the divergence theorem.

∂Fi

∂xi
= φ(x) (3.10.2.9)

∫
Ω

φdΩ =
∮

Γ

FinidΓ (3.10.2.10)

The flux is not uniquely defined by Eq. (3.10.2.9), and Dukowicz discusses a number

of alternatives. In his original paper, he chose a flux parallel to the i lines in a logically

regular mesh. In two dimensions, the divergence theorem is written as Eq. (3.10.2.11)

where the y and z components of the flux are P and Q.

∫
Ω

(
∂P

∂y
+

∂Q

∂z

)
dydz =

∮
Γ

Pdy − Qdx (3.10.2.11)

After transforming to the logical mesh coordinate system, the element average for φ is

given by Eq. (3.10.2.12).

φ(i+1/2,j+1/2) =
1

V(i+1/2,j+1/2)

∮
Γ

Pdj

∂P

∂i
= φ(i, j)

∂(y, z)
∂(i, j)

(3.10.2.12)

The function P is evaluated by integrating ∂P/∂i with j constant, requiring only a

single pass through the old mesh. For axisymmetric problems, ∂P/∂i is set equal to
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2πφ(i, j)∂(y, z)/∂(i, j). The integral appearing in Eq. (3.10.2.12) is evaluated by making

a sweep along the i lines and a sweep along the j lines of the new mesh. Since each mesh

line is a boundary for two rows of elements, the contribution from each line is added to one

row and subtracted from the other, which greatly enhances the efficiency of the algorithm.

This strategy also eliminates the need for the search strategy discussed in the section on

interpolation, with a result that for logically regular meshes, this method is probably faster

than interpolation.

An extension of the sweeping method to arbitrary meshes composed of triangular

elements is used in CAVEAT-GT [195]. The key to the algorithm is a unique “Z” data

structure that is associated with each edge, see Fig. 35. The body of the “Z” is designated

the “direct” segment while the two arms are “indirect” segments. A path through the

mesh is generated by using the downwind indirect segment as the index into the next “Z”

structure. Each segment is covered twice, once as a direct segment, and once as an indirect.

Starting at the boundaries, paths are generated through the mesh, with flags set after a

segment is traversed as a direct and an indirect segment. When both flags have been set

for all the boundary segments, all lines starting and ending on the boundaries have been

traversed. For a logically regular mesh of quadrilaterals or hexagons, all lines would have

been traversed at this point. A counter which is equal to the number of segments that have

been traversed as either direct or indirect segments is checked. If it is equal to twice the

number of segments, then all lines have been traversed for an arbitrary mesh, otherwise

a starting segment is found in the interior of the mesh and segments are traversed until

the loop closes. The counter is updated and checked. Interior loops are generated in this

manner until the counter equals twice the number of segments.

When a piecewise linear approximation is used for φ, the flux F is generally discontin-

uous across the old element boundaries. The contributions to φ from the jumps in F across

the old elements is accounted for by making an additional pass through the old mesh. Al-

though this increases the computational cost, the linear approximation is worthwhile for

problems involving steep gradients.

3.10.3 The PIC (Particle in Cell) method. Christensen [50] is currently using this

method to conservatively remap problems in two and three dimensions. The old mesh is

mapped sequentially element by element to the new mesh, where
∫

φdΩ is initially set to

zero for each new element. For a particular old element, a linear, monotonic approximation

of φ is calculated using the van Leer MUSCL algorithm. The element is subdivided by a
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logically regular mesh n subelements on a side, where n ranges between ten and twenty.

The contribution of each subelement is φ(ξ)J(ξ)�ξ1�ξ2, and it is attributed to the new

element that contains the centroid of the subelement. After the old mesh contributions

are distributed to the new mesh, the value of φ is given by Eq. (3.10.3.1), where δVα is the

volume of subelement α.

φ =
φαδVα

V
(3.10.3.1)

Note that the value used for the volume in the denominator is the volume of the new

element, which will be slightly different than the sum of the subelement volumes. The new

element volume is used to guarantee the conservation of φ between the old and new meshes.

If the difference between the element volume and the sum of the subelement volumes is

significantly different, the sum of the subelement volumes is used to avoid oscillations in

the values of φ.

Some particle methods combine particle and continuum advection strategies [196].

Pure cells are advected with one of the conventional advection algorithms discussed in the

previous sections, while the advection of the mixed cells is treated with the particle formu-

lation. This approach is particularly attractive when new materials are created during the

calculation, e.g., the formation of void material by a crack opening [197]. The Lagrangian

nature of the particle transport overcomes the difficulties associated with transporting iso-

lated material fragments. This is particularly important in problems involving localized

material failure and impact debris.

3.10.4 Moving the mesh. During a rezone, the old mesh can be replaced by an entirely

new mesh. A complete survey of mesh generation methods is beyond the scope of this

paper, and the interested reader is referred to the review paper by Thompson [163], and

[164]. Adaptive methods, where the mesh is changed locally based on some local error

indicator, are being used extensively in gas dynamics codes, e.g., [124], [125], [130] and in

solid mechanics, e.g., [121], but are currently not in production multimaterial hydrocodes.

There are, however, some experimental hydrocodes, such as CAVEAT-GT [91], which can

completely regenerate their mesh, but the user must specify through a weighting function

how the mesh should be distributed.

Most ALE codes have adopted mesh relaxation procedures based on elliptic mesh gen-

eration methods. The coordinates of the nodes are calculated by minimizing a functional,

I, which usually has elliptic Euler-Lagrange equations. Jacobi iteration is commonly used
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instead of a direct equation solver, resulting in a difference stencil that can be applied in a

vectorized manner over the interior mesh. A mesh generator typically iterates hundreds of

times to calculate the mesh, while ALE codes make only a few sweeps through the mesh

each time step. The displacement increment calculated by the Jacobi iteration is limited

by Courant restrictions associated with the advection algorithms.

One of the oldest relaxation stencils was developed by Winslow [109], [148]. He in-

verted Laplace’s equation and derived a stencil so that the mesh forms lines of equal

potential on a logically regular mesh. The mesh directions are φ and ϕ instead of ξi to

avoid putting subscripts on the subscripts in the following equations. The inverted form of

Laplace’s equation is given by Eq. (3.10.4.1), with the coefficients given by Eq. (3.10.4.2).

The differencing for quadrilateral elements is given by Eq. (3.10.4.3) and stencils for a wide

variety of triangular mesh configurations have been derived [156].

αyφφ − 2βyφϕ + γyϕϕ = 0

αzφφ − 2βzφϕ + γzϕ = 0
(3.10.4.1)

α = y2
ϕ + z2

ϕ

β = yφyϕ + zφzϕ

γ = y2
φ + z2

φ

(3.10.4.2)

The difference stencils for z are derived by substituting z for y in Eq. (3.10.4.3).

yφ = 1
2 (y(i,j+1) − y(i,j−1))

yϕ = 1
2 (y(i+1,j) − y(i−1,j))

yφφ = y(i,j+1) − 2y(i,j) + y(i,j−1)

yϕϕ = y(i+1,j) − 2y(i,j) + y(i−1,j)

yφϕ = 1
4 (y(i+1,j+1) − y(i−1,j+1) + y(i−1,j−1) − y(i+1,j−1))

(3.10.4.3)

After substituting Eq. (3.10.4.2) and Eq.(3.10.4.3) into Eq. (3.10.4.1), the coordinates

of the center node are calculated.
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y(i,j) =
1

2(α + γ)

(
α(y(i,j+1) + y(i,j−1)) + γ(y(i+1,j) + y(i−1,j))

−β

2
(y(i+1,j+1) − y(i−1,j+1) + y(i−1,j−1) − y(i+1,j−1))

)

z(i,j) =
1

2(α + γ)

(
α(z(i,j+1) + z(i,j−1)) + γ(z(i+1,j) + z(i−1,j))

−β

2
(z(i+1,j+1) − z(i−1,j+1) + z(i−1,j−1) − z(i+1,j−1))

)
(3.10.4.4)

The basic idea behind the Winslow algorithm has been extended in many ways, includ-

ing by Winslow [148], Brackbill and Saltzman [144], and Giannakopoulos and Engel [139].

Winslow’s variable diffusion method is used in CAVEAT [138], where w(y, z) is a positive

function.

I =
∫

Ω

1
w

{
∂φ

∂xi

∂φ

∂xi
+

∂ϕ

∂xi

∂ϕ

∂xi

}
dΩ (3.10.4.5)

When w is constant, the original Winslow algorithm is recovered. The mesh is concentrated

in areas where the logarithmic gradient, ∇w/w, is largest. To concentrate the mesh in a

region, a large value of w can be assigned in the neighborhood of the feature. A smoothing

filter is applied to w to eliminate any high frequency components before it is used in

Eq. (3.10.4.5).

In CAVEAT-GT [91], there are two rezoning algorithms, one being nearly Lagrangian,

and the other, a complete rezone. The nearly Lagrangian rezone attempts to preserve the

Lagrangian element volumes and a smooth mesh by filtering out the vorticity in the mesh

motion. The functional is given by Eq. (3.10.4.6), where the increment in the mesh displace-

ment and the volume are denoted as δx and δV respectively. A diagonally scaled conjugate

gradient algorithm is used to solve the linearized equations generated from Eq. (3.10.4.6).

I =
∫

Ω

{(
∂δxi

∂xi

)2

+ 2δxj
∂δV/V

∂xj

}
dΩ (3.10.4.6)

In the complete rezone, the functional is a linear combination of two functionals. The

first term wants to make the elements circular since it wants to make the ratio of the

circumference Ci, to the area, Ai, of an element stationary. Triangular elements become
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equilateral, and quadrilaterals (which are not used in CAVEAT-GT) would become square.

The second term is the sum of the squares of the lengths, Di, of the element edges and its

purpose is to smooth the distribution of the areas over the mesh. A relative weight, α, is

used as a scaling coefficient.

I =
elements∑

i=1

Ci

Ai
+ α

edges∑
j=1

D2
j (3.10.4.8)

The boundary nodes are moved before the interior mesh is smoothed. Usually the

nodes are equally spaced or their locations are calculated by projecting the locations of

the first row of interior nodes onto the boundary. If a row of ghost elements surrounds the

mesh, the interior mesh relaxation algorithm can be applied to the boundary nodes with

the final positions of the nodes determined by a projection onto the boundary. Unless the

nodes are moved tangentially to the boundary, volume is not conserved. For multimaterial

ALE formulations, this does not present a problem, but simplified ALE formulations do not

allow mixed elements. Instead of adjusting the values of the solution variables to enforce

the conservation of mass, energy, etc, the loss of conservation, which is usually small, is

tolerated in preference to introducing spurious oscillations in the solution variables.

3.11 MIXTURE THEORY

There are two essential issues associated with mixed elements:1) the force a mixture

generates at a node during the Lagrangian step, and 2) the thermodynamic state within

a mixed element. Since the forces are related to the state within the element, it is quite

common to see both issues buried in the handling of the element thermodynamics within

a calculation. The biggest obstacle to an accurate solution within a mixed element is

the lack of information about the velocity distribution within the element. When the

compressibility of the materials in a mixed element differ greatly, the standard assumption

of a bilinear or linear velocity field over the element is inaccurate. Some assumptions about

the behavior of the mixture must be introduced.

In hydrocodes, the subelement thermodynamics is treated with mixture theory. Each

material has its own set of properties and history variables, and each material is assumed

to occupy some fraction of the total volume of the element. Thermodynamic conditions are

imposed to define a system of equations, which are generally nonlinear, with the volume

fractions as the unknowns. There are three different sets of conditions that are frequently
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used [63]: 1) all the materials have the same pressure, but all the other variables may

differ, 2) all the materials have the same pressure and temperature, and 3) the volumetric

strain rate is equal for all the materials. These conditions may be imposed in either an

exact or an approximate manner.

The first two sets of conditions assume pressure equilibrium. All researchers realize

that this is a physically unrealistic assumption. A wave would cross the element many

times during the length of time necessary for the materials to equilibrate. The Courant

limit on the time step size, however, prevents a wave from crossing even the smallest

element during a single time step. When material models incorporating tensile failure

mechanisms are in an element that is partially a void, the failure may never occur because

the void cannot support tension.

Thermal equilibrium is also a questionable assumption. It implies an infinite thermal

conductivity within the element (thermal equilibrium applies only within an element; ad-

jacent elements may have different temperatures). Gases that are in elements with solid

materials may be artificially heated or cooled to an extreme degree depending on the

situation.

The assumption of equal strain rates is clearly incorrect. In an element containing

a mixture of steel and air, the air, being highly compressible, will absorb most of the

volumetric strain. By assuming equal strain rates, however, the steel is forced to accept the

same amount of strain as the air, and artificially high stresses are calculated in it. Despite

the error in the assumption, McGlaun [63] and Christensen [51] report that solutions it

gives are surprisingly good. This approach is also used in CAVEAT [138] and MESA [101].

Once the thermdynamics assumptions are established, their effect on the nodal forces

can be determined. Based on virtual work, the relation between the mean stress, σ̄, and

mean pressure, P̄ , which are used to generate the nodal forces, and the individual stresses

for each material is given by Eq. (3.11.1). The deviatoric stress and pressure in material

k are σ′k
ij and P k respectively, and the fraction of the ij strain rate in material k is αk

ij .

σ̄′
ij =

∑
k

σ′k
ij αk

ijVk no sum on ij

P̄ij =
∑

k

P kαk
jjVk

αk
ijVk = 1

(3.11.1)

When the pressures are equal, then the mean pressure equals the individual material
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pressures. On the other hand, if α is 1.0 in all cases (equal strain rates), then the mean

quantities are simply the volume-weighted average of the individual stresses. The con-

sistency between the volume-weighted stress in the Lagrangian treatment and the equal

strain rate thermodynamics established by Eq. (3.9.1) is probably the major reason that

the equal strain rates assumption works as well as it does. An interesting application of

mixture theory arises in elements that are designed for problems involving shearbanding.

Belytshcko and his students use two materials elements with shear bands [197], [198], with

one material unloading elastically and the other experiencing strain softening.

While the thermodynamics of the mixture theory is simple, the resulting equations

are highly nonlinear and quite difficult to solve. The remainder of this section is devoted

primarily to the numerical methods that different codes use to solve the mixture equations.

When only two materials are present, the algorithms discussed below can be simplified by

eliminating one of the volume fractions. See Anderson, O’Donoguhe, and Skerhut [153] for

a very complete description of the simplifications and the application of mixture theory to

composite materials.

3.11.1 The basic equations. The pressure equilibrium condition is expressed in either

of two ways. The first equates the pressure in pairs of materials.

Pi(ρi, ei) − Pi+1(ρi+1, ei+1) = 0 for i = 1, N − 1 (3.11.1.1)

The second expression equates the pressure in each material to the volume weighted pres-

sure in the element.

Pi(ρi, ei) − PT = 0

PT = PiVi

(3.11.1.2)

The pressure terms in Eq. (3.11.1.1) and Eq. (3.11.1.2) may include the shock viscosity for

finite element and finite difference formulations, but not for Godunov formulations.

The pressure can be reduced to a function of only the volume fraction by expressing

the density and the energy in terms of the volume fraction. The specific form for the

energy function in Eq. (3.11.1.3) naturally depends on how the energy equation is being

integrated. Some methods assume that the internal energy remains fixed in each material

during the solution, while others account for the PdV work from the volume changes due

to equilibrating the pressures.
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ρi =
Mi

ViV

ei = e(ei, P
n+1
i , Pn

i , V n+1
i , V n

i , V n+1, V n,Mi)
(3.11.1.3)

The temperature can be calculated either from the equation of state, or, as is usually

the case, by dividing the internal energy by the heat capacity, C, (which is usually assumed

to be constant).

ei

Ci
=

ei+1

Ci+1
(3.11.1.4)

Most solution methods iterate on the N−1 pressure equations defined by Eq. (3.11.1.1)

or Eq. (3.11.1.2) and the constraint on the volume fractions, Eq. (3.11.1.5), with the N

volume fractions as the unknowns. One reason that the equal strain rate assumption is

often preferred to the pressure equilibrium assumption is the solution of the equilibrium

equations may result in volume changes larger than the initial volume [92]. The constraint

equation therefore also requires that all the volume fractions are positive.

∑
i

|Vi| = 1 (3.11.1.5)

3.11.2 Solving the mixture equations with Newton-Raphson. The discussion

in this section is restricted to the case where the materials are in pressure equilibrium,

but they are not in thermal equilibrium. The Newton-Raphson method is one of the

most efficient numerical methods available to solve nonlinear algebraic equations when the

equations are well behaved and the initial guess for the solution is good.

When Eq. (3.111.1.) and Eq. (3.11.1.5) are used, the structure of the Jacobian matrix

is simple enough that an efficient, special purpose equation solver can be written for it. For

the first N − 1 equations, there is a diagonal entry, ∂Pi/∂Vi, and a superdiagonal entry,

∂Pi+1/∂Vi+1, and the last row is all 1s. An alternative approach is used in CSQ [62].

Instead of Eq. (3.11.1.1), a set of functions is defined.

Fi = Pi − PN for i = 1, N − 1 (3.11.2.1)

For each Newton-Raphson iteration, the increments in the volume fractions are calculated

according to Eq. (3.11.2.2).
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�VN =

∑N−1
i=1 Fi/

∂Pi

∂Vi

∂PN

∂VN

∑N
k=1 1/∂Pk

∂Vk

�Vi =
∂PN

∂VN
�VN − Fi

∂Pi

∂Vi

(3.11.2.2)

The Newton-Raphson iteration requires good ∂P/∂V data. Unfortunately, the quality

of the derivative data from tabular equations of state is often not very good [92], [166]. A

better better estimate for the derivatives is often obtained by using ρc2, which is a better

behaved quantity, even for tabular equations of state.

The default element thermodynamics in CSQ assumes that the materials are at the same

temperature. The CSQ solution strategy for thermal equilibrium, which will be discussed

in a later section, consists of two nested iteration loops. In the inner loop, the equilib-

rium pressure calculation, described by Eq. (3.11.2.1) and Eq. (3.11.2.2), assumes a fixed

temperature.

Christensen [50] uses only a single iteration of Newton-Raphson towards P + Q equi-

librium. The viscosity term is linear in the volumetric strain rate and it is only used in

calculating the new volume fraction. This procedure relaxes the pressures towards equi-

librium rather than enforcing equilibrium exactly. Once the new volume fractions are

calculated, the pressure in each material is evaluated and the element pressure, PT , is

evaluated according to Eq. (3.11.1.2).

An alternative strategy [2], [154] is based on Eq. (3.11.1.2). A set of functions is again

defined, but this time the range is from 1 to N .

Fi = Pi − PT (3.11.2.3)

Using the Newton-Raphson algorithm, the change in the volume fraction is given by

Eq. (3.11.2.4).

�Vi =
PT − Pi

∂Pi

∂Vi

(3.11.2.5)

The expression for PT is derived by summing both sides of Eq. (3.11.2.5) and using the

fact that the sum over i of Vi + �Vi is one.

PT =
1 +

∑N
i=1(Pi/

∂Pi

∂Vi
− Vi)∑N

k=1 1/∂Pk

∂Vk

(3.11.2.6)
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During the solution of the equilibrium equations the change in the volume fractions

must be limited so that the volume fraction of every material is bounded between zero

and one. Furthermore, the magnitude of the change in the volume fractions must be

limited since the pressure tends to infinity as the volume of a material approaches zero. If

the changes in the volume fractions are not limited, then a material may become overly

compressed during a single iteration and destabilize the Newton-Raphson iteration. When

a phase transition occurs, ∂P/∂V is zero and the iteration schemes described above will not

work. A backup scheme, which is described later, is used instead of the Newton-Raphson

method.

3.11.3 Integrating the partial volumes with time. Drumheller [155] numerically

integrates Eq. (3.11.3.1) to solve for the new values of the volume fractions. The value of

α is chosen so that the solution of Eq. (3.11.3.1) approximates the solution of Eq. (3.11.1.2).

Care must be used to avoid choosing a value of α that results in a numerically stiff set of

differential equations.

V̇i = α(PT + QT − Pi − Qi) (3.11.3.1)

Drumheller uses an Adams method to solve this set of equations. The densities and their

time derivatives are approximated by linearly interpolating the densities between tn and

tn+1. Although Drumheller does not discuss it in his paper, it appears that densities at

tn+1 are calculated initially by assuming that the volume fractions remain constant over

the time step.

3.11.4 Iteration for pressure and thermal equilibrium. Thermal equilibrium im-

poses a constraint on the energy distribution, Eq. (3.11.1.4). Following the practice in

most hydrocodes, the temperature, T , is related to the internal energy by ei/Ci, where Ci,

the specific heat, is assumed to be constant. In addition, the sum of the energy increments

for each material must equal the total work of the element performed over the time step.

The increment in the specific internal energy is �Ei/Mi.

N∑
i=1

�Ei = �E =
∫

Ω

∫ tn+1

tn

σk�ε̇k�dtdΩ (3.11.4.1)

The stress in Eq. (3.11.4.1) includes the pressure, the shock viscosity, and the deviatoric

stress. For a Godunov method, �E is completely determined by boundary tractions and

velocities of the element, and it is also known when Eq. (2.7.3.2) is used to update the
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energy since the element stress and the strain rate, centered at tn+1/2, are known. In these

two cases the energy distribution in the element is independent of the volume fractions

and it can be solved for directly. The pressure equilibrium is then determined holding

the specific energies constant. Following a procedure similar to the pressure equilibrium

iteration starting at Eq. (3.11.2.3), the energy distribution can be calculated explicitly.

�ei

Ci
− �eN

CN
=

eN

CN
− ei

Ci
= Fi

N−1∑
i=1

Mi�ei + MN�eN = �E

�ei = Ci(Fi + �eN/CN )

�eN =
�E −∑N−1

i=1 MiCiFi

MN +
∑N−1

i=1 MiCi/CN

(3.11.4.2)

When the energy equation is integrated using the strategy in HEMP, see Eq. (2.7.2.1),

then the element energy equation increment is unknown. For a Grüneisen equation of state,

the energy increment can be expressed as a function of the volume, see Eq. (2.7.2.4). By

linearizing and substituting Eq. (2.7.2.1) into Eq. (3.11.4.2), the total derivative for the

pressure can be calculated for the Newton-Raphson iteration.

dP

dVi
=

∂P

∂ρ

∂ρ

∂Vi
+

∂P

∂e

∂e

∂Vi
(3.11.4.3)

CSQ [62] uses two nested iterations to calculate the equilibrium temperature and

pressure. The inner loop equilibrates the pressure for a given constant temperature, while

the outer loop iterates on the temperature.

Mi[ei(Tn+1) − ei(Tn)] −
∫

Ω

∫ tn+1

tn

σk�(T )ε̇k�dt dΩ = 0 (3.11.4.4)

The derivatives of the energy and pressure with respect to the temperature at a constant

density must be evaluated to solve Eq. (3.11.4.4) by the Newton-Raphson method. Using

the chain rule, the derivatives are evaluated provided that ∂ρi/∂T |ρ is known. CSQ [62]

evaluates these derivatives by solving a set of linear equations.

∂Pi

∂T

∣∣∣
ρi

+
∂Pi

∂ρi

∣∣∣
T

∂ρi

∂T

∣∣∣
ρ

=
∂PN

∂T

∣∣∣
ρN

+
∂PN

∂ρN

∣∣∣
T

∂ρN

∂T

∣∣∣
ρ

Mi

ρ2
i

∂ρi

∂T

∣∣∣
ρ

= 0
(3.11.4.5)
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The second equation is derived by differentiating the conservation of volume, written as

Eq. (3.11.4.6), with respect to temperature.

N∑
i=1

Mi

ρi
= V (3.11.4.6)

Assuming that ∂Pi/∂ρi is positive for all the materials (i.e., no phase changes at the current

pressure), the solution for Eq. (3.11.4.5) can be obtained directly.

∂ρi

∂T

∣∣∣
ρ

=

N∑
k=1

[
∂Pk

∂T

∣∣∣
ρk

− ∂Pi

∂T

∣∣∣
ρi

]
γk

βk

βi

N∑
�=1

γ�

β�

βi =
∂Pi

∂ρi

∣∣∣
T

γi =
Mi

ρ2
i

(3.11.4.7)

When a phase change occurs, at least one of the βi are zero. The solution for all i

such that βi is positive is given by Eq. (3.11.4.8).

∂ρi

∂T

∣∣∣
ρ

=
1
βi

[
∂P

∂T

∣∣∣
ρ
−∂Pi

∂T

∣∣∣
ρi

]
(3.11.4.8)

The derivatives for the materials that have βj equal to zero are not uniquely defined if

there are more than one, and they are all set to the same value.

∂ρj

∂T

∣∣∣
ρ

= −

∑
i∈S1

γi
∂ρi

∂T

∣∣∣
ρ∑

k∈S2

γk

∀ j ∈ S2

S1 = {i|βi �= 0}
S2 = {i|βi = 0}

(3.11.4.9)

If an element contains a void, the equilibrium pressure is zero and the volume of each

material for a zero pressure can be calculated independently. A check must be performed

to ensure that the sum of the volumes does not exceed the element volume. If the sum is

too large, then the void is eliminated by the expansion of the materials. Some equations

of state incorporate a pressure cutoff, Pmin, to restrict the amount of tension the material
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can withstand. If the pressure exceeds the pressure cutoff, then the material has failed

and a void is allowed to form. The pressure is usually allowed to decay towards zero over

several time steps in order to avoid instabilities in the solution. The step nonlinearities

associated with pressure cutoffs can prevent the Newton-Raphson method from converging

to a solution.

3.11.5 The backup search. A failsafe method is usually incorporated in Eulerian codes

for the cases when the Newton-Raphson method cannot find the equilibrium pressure.

A binary search strategy is used in CSQ [62] and PISCES [2], while CTH [113] uses a

combination of the secant method and the binary search. The PISCES binary search, which

incorporates ideas from monotonicity analysis, appears to be a very efficient algorithm.

A binary search is useful only for solving single equations when the solution is known

to lie within a specified interval. The problem is to determine a set of volume fractions

such that each material is at the equilibrium pressure, PT , subject to the constraint that

the volume fractions sum to one.

Pi(Vi) = PT

N∑
i=1

Vi = 1
(3.11.5.1)

If the pressure falls below the cutoff pressure, then there is a void, the volume fraction of

the void, V0, is given by Eq. (3.11.5.2), and the pressure is zero.

V0 = 1 −
N∑

i=1

Vi (3.11.5.2)

The problem is reduced to a single equation by considering the test function F , the

error in the volume fraction constraint (or void volume) as a function of pressure.

F = 1 −
N∑

i=1

Vi (3.11.5.3)

The zero of Eq. (3.11.5.3) is the equilibrium pressure if there is no void, otherwise the

value of F is the void volume, see Fig. 30. Once the equilibrium pressure is established, the

volume fraction for each material is calculated by solving the first equation of Eq. (3.11.5.1)

for each material independently.
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The bounding interval for the pressures is defined by a lower pressure, PL, and an

upper pressure, PU . The bounding interval is reduced every iteration and convergence in

the pressure is defined when the interval is smaller than some specified value.

PU − PL ≤ max(�P, ε2|PL|) (3.11.5.4)

An alternative convergence criterion, based on the volume fractions, is necessary to guar-

antee convergence.

|F (PT )| ≤ ε1 (3.11.5.5)

In the CSQ implementation, the volume fraction for a specified pressure is calculated

for each material using Newton-Raphson. Hancock invokes a monotonicity assumption,

Eq. (3.11.5.6), in PISCES to reduce the number of equation of state evaluations to one per

binary search iteration, an enormous increase in efficiency.

Vi(P+) ≤ Vi(P−) if P+ ≥ P− (3.11.5.6)

An arbitrary set of states can be used to bound F by invoking Eq. (3.11.5.6). For example,

by letting P− equal Pi, and P+ equal the maximum Pi over all i, and summing the volume

fractions gives a bound for the maximum Pi.

∑
i

Vi(Pmax
i ) ≤

∑
i

Vi(Pi)

F (Pmax
i ) = 1 −

∑
i

Vi(Pmax
i ) ≥ 1 −

∑
i

Vi(Pi)
(3.11.5.7)

In a similar manner, a bound can be found for the minimum pressure.

F (Pmin
i ) = 1 −

∑
i

Vi(Pmin
i ) ≤ 1 −

∑
i

Vi(Pi) (3.11.5.8)

An ordinary binary search would pick a value of PT , evaluate F , and then determine

whether the pressure corresponds to a new upper or lower bound. Hancock keeps a history

of the equation state evaluations for each material, ordered by pressure. A description of

how the history is generated is deferred. For a specified PT , a utility routine gathers a set

of states with pressures below PT and another set with pressures above PT , see Fig. 31. If

F evaluated with the lower pressures is positive, then the maximum of the lower pressures

defines a new PU by Eq. (3.11.5.7). Similarly, if F evaluated with the higher pressures is
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negative, then the minimum of the higher pressures defines a new lower bound, PL. Note

that the inequalities produce a sharper bound than the ordinary binary search, reducing

the number of iterations required for a specified level of accuracy.

A single equation of state evaluation is made if the bracketing states do not result in

a new upper or lower bound. The material with the greatest difference in its bracketing

volume fractions is evaluated with a volume fraction midway between the bracketing values.

Depending on whether the pressure is larger or smaller than the test pressure, the new

equation of state evaluation is a new upper or lower bracketing state. The upper and lower

bounds on the void fraction function F are again evaluated and checked. Once new upper

and lower bounds are established, a new test pressure is calculated. When the upper and

lower pressure bounds are widely separated, a geometric average is used, otherwise the

new test pressure is the arithmetic average.

The backup search is invoked when the Newton-Raphson iteration appears to be

diverging. During each Newton-Raphson iteration, new volume fractions are calculated

corresponding to a value of PT . A set of bracketing values of Vi for each material is found

in the equation of state history tables based on the current value of PT . If the new Vi falls

outside the bracketed range for any material, then the binary search is used until a solution

is found. There is no mechanism in PISCES for switching back to the Newton-Raphson

method from the binary search.

To reduce the cost of evaluating the equations of state, a record of the results of each

equation of state evaluation is kept in a doubly linked list that is sorted by pressure. When

bracketing states for a particular pressure are requested, the table is searched. If a lower

bound cannot be found, then the volume fraction is set to one and the pressure is set to

the negative of some large number. Conversely, if an upper bound cannot be found, then

the volume fraction is set to zero, and the pressure is set to a large number. The linked list

is also used to generate interpolating functions for the equations of state since the search is

performed over a single parameter. After each equation of state evaluation, the new state

is stored unless the following four criteria are met:

1. Neither of the bracketing states corresponds to one of the artificial bounding

states discussed above.

2. The volume fraction lies in the middle sixty percent of the interval. This

criterion is included because the interpolation error is largest at the center

of the interval.

– 177 –



METHODS IN LAGRANGIAN AND EULERIAN HYDROCODES

3. The interpolation function, PI , closesly approximates the equation of state.

|PI − P | ≤ max(�P, ε2|P |) (3.11.5.9)

4. The bracketing states are not too far apart. This prevents a false indication

of convergence.

An interval is considered to have “converged” when the criteria are satisfied and all future

equation of state evaluations lying in the interval are replaced by a cubic spline (or a linear

fit if the spline is not monotonic).

In CTH [113], the void function is solved using secant iteration, Eq. (3.11.5.10), with

every third or fourth secant iteration followed by a single binary search. Note that each

evaluation of F (P ) involves iteratively solving N nonlinear problems for the volume frac-

tions.

PT = PL − PU − PL

F (PU ) − F (PL)
F (PL) (3.11.5.10)

The binary search improves the convergence rate for some problems where one of the initial

bounds remains fixed during the iterations.

The relative efficiency of the binary search and the secant method are difficult to assess.

Each iteration of the binary search reduces the error by a factor of two in theory, but the

monotonicity assumptions invoked by Hancock give him sharper bounds. In addition, the

bounding strategy does not require the accurate evaluation of F , only its bound, so that

Hancock can reduce the number of equation of state evaluations by using the bracketing

states and interpolation. The near quadratic convergence rate of the secant method is

attractive, but each iteration requires the solution of N nonlinear subproblems.

3.11.6 Partitioning the deviatoric strain rate and the bulk viscosity. The devia-

toric strain rate in each material is assumed to be the average strain rate of the element.

This assumption permits a solid material to retain its strength when it is in a mixed

element containing a gas or liquid. The deviatoric stress for each material is computed

independently and a volume weighted mean stress is calculated for the element.

σij = σk
ijVk (3.11.6.1)

The shock viscosity is usually constant throughout the element, and it is computed based

on the element average for the density and sound speed. The increment in work for
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each material from its deviatoric stress and bulk viscosity is calculated and treated as a

source term during the pressure equilibrium calculations. Anderson, O’Donoghue, and

Skerhut [153] follow a slightly different path for their two material mixture theory. They

assume that the strain rate in each material is the same as the element average strain

rate, but the densities are different. Their final element viscosity has the same form as the

volume weighted mean stress in Eq. (3.11.6.1).

3.11.7 Modifications for Godunov methods. The internal energy in a Godunov

method is calculated as the difference between the total energy of the zone and its kinetic

energy. The total energy is updated by a boundary integral involving the contact pressures

and velocities. Unlike finite element and finite difference codes, which solve the pressure

and energy equations simultaneously, the internal energy of the zone in a Godunov code

is calculated independently of the zone pressure. The energy distribution of the zone after

the pressure equilibrium must satisfy the conservation of energy equation, where En+1 is

the total internal energy of the zone.

Mie
n+1
i = En+1 (3.11.7.1)

The energy En+1 includes contributions associated with shock heating while the al-

gorithms outlined in the previous sections for calculating the equilibrium pressure include

shock heating only through the shock viscosity. Since Godunov methods do not include

a shock viscosity, Eq. (3.11.7.1) is generally not satisfied. The difference, �E, which is

associated with the shock heating, must be distributed to the different materials.

�E = En+1 − Mie
n+1
i (3.11.7.2)

PISCES distributes the difference based on the relative compressibilities of the ma-

terials. The energy increment �ei is the energy added to material i during the pressure

equilibration for Eq. (3.11.7.2).

en+1
i = en

i + �ei + ωi
�E

M

ωi =
Mi/ρia

2
i∑N

k=1 Mk/ρka2
k

(3.11.7.3)

Using the new values for the internal energies given by Eq. (3.11.7.3), a new equilibrium

pressure is calculated using the strategy discussed in the previous section.
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CAVEAT distributes the internal energy increment according to the mass fraction of

each material [92]. Although this is a very simple algorithm, it works well and it is very

robust.
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