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ABSTRACT: Return algorithms are probably the most popular means of numerically solving conven-
tional plasticity equations. The basic tenets of these techniques are here rigorously justified and
interpreted geometrically in 6D stress space. For any return algorithm, the first step is to tentatively
assume elastic behavior throughout a given time step. If the resulting “trial” stress is forbidden (i.e. if
it violates the yield condition), then the tentative assumption of elastic response is rejected. Even
when it is found to violate the yield condition, the trial stress is nevertheless useful because it can
then be projected back to the plastic yield surface to give the updated stress. The return algorithm is
called “normal” or “orthogonal” if the trial stress is projected directly to the nearest point on the yield
surface. The return method is called “radial” or “Prandtl” when the projection is accomplished by
reducing the magnitude of the trial stress deviator. Return algorithms are often wrongly regarded as
numerical “tricks” because they appear to be ad hoc means of keeping the stress on the yield surface.
It is natural to inquire whether other approaches might be more accurate for the same computational
cost, but it is shown here that return methods are rigorously justifiable and appear to correspond to
optimal numerical accuracy and efficiency. It is shown that issues such as plastic stability, dissipa-
tion, and convexity dictate appropriate choices for the quantities that are presumed known in the der-
ivation of return algorithms; it is not the return algorithm per se that addresses such physical
concerns. It is proved that the correct return direction is dictated by the governing equations and is
not aligned with the plastic strain rate except under certain conditions. Consequently, normality of
the plastic strain rate does not necessarily correspond to normality of the return direction, and vice
versa. These claims are proved first in the context of stationary yield surfaces and then generalized to
permit hardening or softening. The technical note is intended to provide nothing more than geometri-
cal insight into known results.
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i Tensors are vectors!

To a mathematician, a vector iIs a member of a set for which addition
and scalar multiplication satisfy certain rules.

Many familiar 3D vector concepts and theorems also apply to
tensors when regarded as 9D vectors.

9D tensor operations
= ag means U;; = aCy;

3D vector operations
y = agc means u; = ac;
v =a+hb means v; = a; +Db;

< aC

3D inner product 9D inner product

3 3 3
L+s means % ris; R'g means § 3 RyS;
i=1j=1

=1
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' Projection operations

Orthogonal . Oblique
projection X projection

X

od |
D ‘A ~ //
P
lane perpendicular to lane pe

PZ)N(—D(D° X) p = x—=—=—=7
Note: b defines the target plane; a defines projection direction.
A(B1X)

A

~ ~
~ ~

Analog for 9D tensor space: P(X) = X

Projections are linear. . . P(oy X, +0,X,) = oy P(X,) +0o,P(X,)
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LEMMA

X

If there is a B such that
x = y+Ba, then P(x)=P(y).

<

Important: converse is true too!

P(x)=P(y)

Analog for tensors:

If X =Y+BA then P(X)=P(Y) and vice versa.

Corollary: P(P(X)) = P(X) (projecting twice makes no change).
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i Nonhardening plasticity

Known:

B, gradient of yield function (B;; = df/do;;).
e, total strain rate.

E, fourth-order elastic tangent stiffness tensor.
M, direction of the plastic strain rate.

Unknown:

g, rate of stress
g€, elastic part of the strain rate
eP, plastic part of the strain rate.

A, magnitude of the plastic part of the strain rate.
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Governing equations

£ = gt+gh strain rate decomposition

eP = plastic strain direction is known

g = stress rate linear in elastic strain rate

B:g =0 stress stays on (nonhardening) yield surface
Solution:

Note g° = g—gP = ¢

Enforce last equation to get B:[g!"@ MM for A and back

_ _ _ o [B:gtrial[]
substitute to get solution for stress rate: g = gta - F=—[A.

] B: A ]
TR Sandia
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A

Slightly rearrange solution to final form:

Geometrical interpretation

g = P(gtal) where P(X) = X -

Numerical solution: g = g"@ +BA. Find B by f(g"a +BA) = 0.
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Discussion

The return direction is...
* coaxial with A (= E:\m).

* not generally normal to the yield surface.
* not generally aligned with the plastic strain rate.

* not dictated by physical considerations such as positive dissipation,
yield surface convexity, or plastic stability. (Such concerns dictate
appropriate values for “known” quantities.)

» “radial” if and only if the material is plastically incompressible.
 An algorithm that returns normal to the yield surface (i.e., A = aB)
Is implicitly using a plastic strain rate direction M = al;;_l: B.

The above analysis can be generalized ( ) to
Include hardening/softening. Projection of the trial stress back to the
current yield surface remains valid even though the stress rate is no
longer a projection of the trial stress rate.
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i Equivalent plastic strain

Many constitutive models use yield surface evolution laws that
depend on the so-called “equivalent plastic strain,” which is defined

ypsj' /ggp’:gp'dt = @I“gp

The best method uses the definition directly:

dt

o .S
Aypsﬁ e’ —g®||At, or, for isotropic, Aypsﬁ g’—ﬁ ‘At.
| For a finite time step At,
2G(gAtP)
gnew__ gold

2.
= \/old <
Vo =Yp +«ﬁ% ?

(...better suited for partially plastic intervals.)
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- i Supplemental topic:
iInvariant yield functions

Tresca:  Stress state is below yield if and only if

1
@ f(g) = 5max(|0, -0, [0, - 04, |03—0y|) —k <0 (1)

Some authors (e.g. Fung, 1965, Lubliner 1990) wrongly claim that
an acceptable alternative Tresca yield function is

F(Q) = [(0,-0,)?-4k?][(0,~03)*-4k?][(05~0,)*—4k?]. (2)

This is intoxicating because it can be written with invariants as

(3)

FATAL FLAW: If stress is below yield, then , but converse

Is false! A return algorithm using = might wrongly think a plastic trial
stress Is below yield. For example, o, = 0, = 3k and o; = 0 is

correctly identified to be above yield by f(g), but not by
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H - - -
| i Plot of (bad) invariant Tresca function

—

Under the assumption of plane stress where o, = 0, regions where
F(g)>0 are shown in black. A valid yield function should be black
everywhere outside the yellow Tresca hexagon. The invariant F(g)
IS invalid!

0,/ 2k

4
y
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A
- Supplemental topic: 9D vector basis

Recall that tensors are 9D vectors, so we may definea 9x 1
component array for them: T, T3, TS, T3, TS, T2, T9, T3, T3 =
{Tll’ T21’ T31’ T12’ T22’ T32’ T13’ T23’ T33} ’

3D vector basis expansion 9D tensor expansion

V = V€ tVyE, +V3€, T =T118181+T156818,+ T138,83
T T,16081 + T8, + Toa€r€5

T T316381 + T30€38, + T33€3€5

Summation form Summation form
3 3 3 9
= = — 0 0
V=) Vi T=> > Tyegj = > Tk&
k=1 1=1j=1 K=1
where T% = Tll’ Si = €1€1> TS - T21; ég = €561, etc
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i Subspace of symmetric tensors

Suppose that a physical problem involves a plane even if there are
some non-planar aspects of the motion (e.g., obligue impact of a
projectile onto a slab of armor). For solving the problem, any
sensible engineer would line up a basis with the plane: all base
vectors are either in the plane or normal to the plane.

The set of all symmetric tensors forms a subspace, which is
analogous to a plane. The “normal” to the plane is the set of all
skew-symmetric tensors. If you add two vectors in a plane, the result
IS also in the plane. Analogously, if you form any linear combination
of symmetric tensors, the result is also symmetric.

Yield functions are defined for stress, which is symmetric. Our
constitutive modelling problems intimately involve symmetric
tensors, so it makes sense to use a basis for tensor space such that
all base tensors are either purely symmetric or purely skew-

symmetric.
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- i Voigt vs. Mandel — Introduction

Voigt components: {T}Y = {T13, Ton T3z Tog Ty Too)
Then R:S equals RYSY + R¥SY+RYSY+  2(RYSY+ RYSY + RYSY)

Note the ungainly factor of 2 needed because the off diagonal
components contribute fwice in the expression R:$ = R;;S;;.

Mandel components: {T}™ = { T4, Too, Tag /2T 9g /2T 51, /2T 15}
Then RS equals RP'SI"+ RIS+ RI'ST + RS + RIS + RIS
Ah! much more intuitive! The Mandel approach incorporates the
factor of 2 inside the definition of the components.
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Change of basis for tensors

The basis expansion of any tensor may be written

T = T118181+T 158185t T 1381851 T 918081+ T 208,85+ T 938,85+ T 318581+ T 35838, T 338465

= Tn€181+ T(22€28, + T(33)€3€3
+ T 23(€631€38,) + Ti3p)(€38, 1 €183) + T(12(€,8, * €,€1)
+ Ti3p(€38,—€,83) + T13(€183—€3€1) + Toyy(€,81 —€1€))

where

1

_1 )
Tajy =5(Tij+ Tj) @nd Ty = 5(T5; =T )

1]

If the tensor is symmetric, the last three terms are all zero. If the
tensor is skew-symmetric, then the first six terms are all zero and the
last three terms are the components of the axial vector.
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A

Voigt sym-dev basis

I = Tupn€i€1+ T (22828, + T(33)€3€3
t T i23)(€283 1 €385) + T(31)(€381 1 €183) + T(1p(€18, 1 €,€1)
+ Ti3y(€38,—€283) + T (€183 —€381) + Tioy(€281—€1€))

Traditional Voigt:
Ti=T1y, T2=T 2 T3=T (33, Ti=T 23, T5=T 31y, -

V— V— V— V— V—
él—ngl, SZ_QZQZ’ 53—93@3; 54—(Q2Q3+§3Q2); 55—(Q3Q1+Q1§3)’

s

9

— V TV

Then T zTK .
K=1

For symmetric, T;;, = Tj; and Tp;; = 0, so the sum may be
truncated at six terms.

MAJOR PROBLEM : Voigt basis is not normalized!
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A

Voigt basis is not normalized

Consider the inner product:

9 9 9 9
R:S = E RV EV%E SVEVE: Z Z RV SV(EV:EV)
=1 =1 K=1J=1

The Voigt basis is orthogonal:
VTV — i
§K '53 0if K#J.

The first three Voigt base tensors are normalized:
§‘1’:§X =1, §\2’:§‘2/ = 1, and g;’:g‘sf = 1, but the remaining base tensors

are not normalized. They all have a magnitude of /2. Thus

2 = RYSY + RYSY + RYSY +2(RYSY) +2(RYSY) +...
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A

MANDEL basis

Obvious thing to do ... normalize the basis.

am

A<

Mandel basis: ¢ =

amn

AN <

T1=T 11y T2=T 22, T5=T 33), TT:ﬁT(z:a)’

m—
§1 _ngli

TO=.J2T 31y, -
(e,€5+€3€,)

s

n_(€3€1+€1€3)

7 ,55 % e

m— m— m—
M=g,8,, £1'=€385: §)'=

9
Then T = Z TRE

With this orthonormal Mandel basis, the tensor inner product takes a

form that is a direct analog of the ordinary 3D vector inner product
formula that applies when the basis is orthonormal.

&7 Sandia
05 sores. NMEP:I/Me.Unm.edu/~rmbrann/gobag.htm @[‘:‘.ﬁgﬂzﬂms

/home/rmbrann/Teach/MtIModels/RadialReturn/RadialReturn.vug




¥ i Mandel basis for symmetric tensors

Dropping “m” identifier, the Mandel basis for 9D full tensor space is

51 = €11, 52 = €80, 53 = Q3Q3
I T _1 R

&, " 72(62@3 €3€2), & = TZ(QSQ1 €183), &, = Tz(glgz €2€1)
1 1 1

57 - r/—é(gggz_gzggL 58 - 'ﬁ(glgg_gggl)’ §9 - E(Q2Q1_Q1Q2)

The basis is orthogonal because £.8,=0 If K#J. The basis is

~
~

normalized (i.e., ¢ £ = dy,) because of the factors of ./2.

Just as an ordinary vector has components v, = v« ¢,, the Mandel

components of a tensor T are Ty = T:g .
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4 i Related topic: isomorphic stress space

Stress: g

Mean stress: p = Strg = Zl:g  (positive in tension)

Unit tensor in the direction of S: és

~ | alN

Then g = tg+ pl.

We now show that non-intuitive factors appear because the identity

1 is not a unit tensor. Specifically, ||1| = /1:1 = 3.
Y Sandia
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i Motivational example

A popular simplified yield criterion assumes that the yield function
depends only on t and p. F(g) = f(t, p). The yield surface defined

by F(g) = 0 is a hyper-cylinder in stress space — it is a surface of
revolution about the isotropic axis.

- eld: B = 9F - of dto, of rdppy _ of oy, of il
Gradient of yield: B = 1o " arEng+ 5pCgh ™ 3 (3 )+apEB 5

~
~

Let gt = rt§ + pt] denote a trial (t) elastic stress.

Let g" = t"g + p"] denote the new (n) updated stress on the yield
surface obtained by returning to the nearest point on the yield

surface in stress Space. (We now know this doesn’t necessarily mean that the plastic
strain rate is normal to the yield surface — we use a normal return direction to illustrate a different point
here. A normal return direction implies a direction of plastic strain rate parage_ljt(g ).
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i Normal projection (cont’d)

Suppose we wish to return nearest point on yield surface. Then
gt—g" is normal to the yield surface. There's a scalar § such that

- of (L
gt-g" =BB, or (t'-tMg+(p'-pM)] = B (S)+—
0 ) : opLB* lis
t n :
"—T Daf/aTD T trial stress
Therefore = : Yo
pt—pn Lot /opU :,(p )
Thus, to project normal to the yield surface in /™
. . wrong answer Q. 1
Stress space, you must project using a slope é(clgr;]ectTarn]sjwer
3 times steeper than the normal in T vs. p OAL: RETURN T0 NEAREST PO
: : L : : ON THE YIELD SURFACE in stress space! P
space. This counterintuitive behavior arises et means praject obianely s Tve Repace.

because T and p are not isomorphic to stress
space. The base tensors g and |, while orthogonal, are not normalized. We

~

should instead use ; = ;/HzH 1/ ./3 with an appropriately modified

measure of mean stress. Namely, p = /ap.
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i Rendulic plane

The Rendulic plane plots a “shear stress” versus a “mean stress.”

View in 3-D | Cylindrical

Engineer’s choice physicalspace | | ane.
“shear stress:” t = [S:S, and xbrg +z8,

“mean stress:” p = %trg. Theng = S+ pl.

Problem: This t vs. p space isn't [
Isomorphic to stress space. For example,
g:g # 12+ p2. Importantly, the normal to the

yield surface in t vs. p space is not normal
to the yield surface in stress space.

isomorghic

engineering

Mathematician’s (iIsomorphic) choice:  “shear stress”

= [S:S = g:é} and “mean stress” p = %trg = g:] = J/3p. Then

g = 1S+ pl. The normalized | is like the &, cylindrical base vector.
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i Supplemental Topic:

Anisotropic yield surfaces

For elastically anisotropic material, a very common “first-cut” best
guess at the plastic yield surface is a Tsai-Wu ellipsoid of the form

f (Q’) = (Q’ — Q'D) o I (Q’ Q'D) 1, (contrary to Walker's recent claims, this form is perfectly capable
~ -7 g~ 7 of modelling even highly anisotropic media.)

where L shares the same anisotropy with the stiffness E.

Elastic constants may be nondestructively measured, but the yield
Li; Parameters are more difficult since a fresh sample must be

used to measure each component. Thus, data are often lacking.

Proposal: Face with a dearth of data, assume that E and L have
the same eigenprojectors, a term which we now define...
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What are eigenprojectors?

To illustrate, consider simpler 3D space. Here’s a sample tensor

17 -2-2 M=9 0 vl 2 2
[A] = |—2 14—4, Which has eigenpairs A, = 18 v,=%{-2,0 1}
— =17r_ —
-2 -4 14 Ay =18 \~/3—3f5{ 2, 5 —4}

In spectral form, A = AV v, + AV, HAgV,VY,

=9V, vy + 18(v v, + V3Vs)
-

m)

1 B, < unique!

With respect to the principal basis,

9 0 0 10 000
A=l018 0, P, =|oog.and B, =010
0 0 18 00 001
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i What are eigentensors?

We seek tensors Y and scalars A such that E:Y = AY. The major

~
~

and minor symmetries of E allow this to be written as an ordinary

6 x 6 matrix eigenproblem:

Ei111 Bi1oo Brizz V2E1103/7E1131 VB 1110| Yy Y11

Eoo1r Eoooo Eppas 2Egppg /7Egpsy V2Eppng| Y22 Y22

Essir  Easze  Easss “Easos “Eagar 7Egard| '98 | _ \ Va3
Egs11/2Egspp /2Egaas 2Epzps 2Epgzy 2Epgy,|| V7Y 23 Va3
Es111/2E319 /2E3133 2Eg103 2Egyzy 2Ezypp|| 7731 a1
E1p11 /2E12pp \7E1zs “E1npy “Enpar 2Eqrp|L7Y28  [17V23

An eigensolver will output a set of six orthonormal 6-dimensional
eigenvectors. Each of these correspond to symmetric eigentensors.
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> i If A has multiplicity of 1, then Py, = Y;Yy, Is the

corresponding eigenprojector. When it operates on any
tensor, the result is the part of that tensor in the direction of Y;;.

EXAMPLE: For isotropy, 3K is an eigenvalue of multiplicity 1. The
normalized eigentensor is 1//3. The projector is 355, which

merely returns the isotropic part of any tensor it operates on.

If A has multiplicity of 2, then the eigentensors Y (1) and Y (2 are not

unique. Instead, the eigenprojector, P, = YYD +Y Y (3 is
unique. When it operates on an arbitrary tensor, the result is the part
of the tensor in the subspace. Higher multiplicities are similar.

EXAMPLE: For isotropy, 2G is an eigenvalue of multiplicity 5. The
eigenprojector (constructed by summing dyads of the five
orthonormalized eigenprojectors) returns the deviator of any tensor it
operates on. Thus, ANY DEVIATORIC TENSOR is an eigentensor

for isotropy.
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i Back to anisotropic yield...

—gl) -1. If the material is transverse, the

Recall f(g) = (g—gD):L(

Mandel eigenproblem is of the form

Q

E,E,E; 0 0 0 Yu Y11

E,EqE; 0 0 0f| Y22 Yoo

E;E;E, 0 0 Of| Ya3 N Y33

0 0 0E, 0 O|/2Yp Y.s Where

0 0 0 0Eg0f[./2Yy Yay| E1 7 Esssz Bz = Eqgpo B3 = Eyqggs
000 0 0Eg) 2y, Yo Fa = 2Boza Bs = 2B1510 By = Byt Eg

There are five independent stiffnesses, but only four independent
eigenvalues (and therefore only four independent eigenprojectors).
Forcing L o have the same eigenprojectors gives a formula for the

elusive L35 value that couples lateral and axial response.
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=X 4
: Conclusions

This presentation covered many applications that illustrate the
usefulness of regarding tensors as higher-dimensional vectors.

Key points were

 For radial and oblique return models, the stress may be returned to
the yield surface via a projection operation that is analogous to
projecting a simple vector onto a plane.

o Symmetric tensors are analogous to planes. The Mandel convention
for symmetric tensor components correspond to an orthonormal
basis for symmetric tensors.

* The invariant form of the Tresca yield criterion is invalid because
negative values of that “yield function” do not necessarily
correspond to stresses that are below yield.

* The isomorphic stress measures are a more accurate representation
of stress space that is analogous to viewing the stress “vector” in the
“plane” formed by the isotropic tensor and the stress itself.

« Anisotropic yield may be coupled to elastic isotropy via the elastic

eigenprojectors.
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