Primer! on the simplest inelastic model:
non-Hardening von Mises (]J2) plasticity

Several elementary tutorials on plasticity theawy available by typing “plasticity” into the searobx at
the CSM website, http://csm.mech.utah.edfithese, the most complete tutorial is
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y This 2007 Book Chapter on the basics of plasticily theory reviews the terminology and

governing equations of plasticity, with emphasis on amending misconceptions, providing
physical insights, and outlining computational algorithms....

The textbook,

A. Anandarajah, Computational Methods in Elastieitg Plasticity: Solids
and Porous Media, Springer | 2010 | ISBN: 1441983585 pages | $119.

has a good introduction to computational plastittigory, with the added advantage of providing
guidance on how to incorporate such models ininigefelement computational framework.

Below (in this document) is a primer on simple f@melening von Mises plasticity, serving as a stgrti
point for reading the above resources. This pripnevides background on the theory, an algorithmh(wi
pseudo-code) and two verification test problems shauld ALWAYS be run whenever you use the von
Mises model in a code. For simplicity, the the@géscribed here for the case of small displacement
gradients (which means infinitesimal strains arfohitesimal rotations).

The von Mises theory is often called filasticity” because it is usually described imtsrof the so-
called second mechanics invariant of the stress,

! When used to mean “tutorial,” the word “primer’sispposed to rhyme with “glimmer” not “timer.”
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Here, s is the deviatoric part of the stress tensoWhen expressed in terms of the principal stresses

J :%[(01_02)2 +(0,-0)° +(03_0—1)2}
The von Mises yield criterion states that a sttessor is “at yield” or “on the yield surface” if
J, =k?,
whereK is a positive material constant. The materiatéated as elastic or “inside the yield surface” if

J, <k?

The “yield surface” is defined to be the set ofstiless states satisfying the yield criterion, von Mises
J, = k?. Substituting the previous expression thy in terms of principal stresses, the

yield surface is therefore defined by the setb{al, g,, o} for which

%[(01_0-2)2 +(02_03)2+(03_01)2] =k?

Though not immediately obvious, this describeslmdgr of radiusk\/z in principal
stress space. The cylinder axis is aligned witl 1kt 1] direction. In other words, it points afpthe
diagonal of the reference box in the sketch (whamkges are the principal stress axes). The [1,1,1]

direction is called the “hydrostat” because it tsane all principal stresses
(e}
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which should come as no surprise since the intéogeof the cylinder with -
the g, =0 plane (i.e. the back surface of the box in thed8&wing) is a

tilted ellipse.



The value of the material parametercan be found by running one of the following twgeriments:

1. Simple shearAt yield, the applied shear stress is denatgdPut the principal stresses to their
values in simple shear (at yield),
0, =1,
g,=-T,
0,=0
Then the yield criterion reduces to
1, =k,

implying thatk =7 .

2. Uniaxial stressAt yield, the applied axial stress is deno¥dlabeledo,;,, in the previous
tilted ellipse sketch). Put the principal stregsetheir values in uniaxial stress (at yield),
g =Y
g,=0
0,=0
Then the yield criterion reduces to
1y? =K%,
implying thatk =Y/ V3.

When someone tells you the “yield stress,” you rteegsk them whether they mean yield in shear or
yield in uniaxial stress so that you can assigrctiteect value tdk. If they give you yield in uniaxial
stressy, then you need to find out if the code requireddyin shear. If so, then you need to set

k= 7, =Y /+/3. The so-called Hugoniot elastic limi;™ , is yet another definition of yield stress

defined below in the discussion of uniaxial stilaiading.

WARNING: the relationships, =Y /+/3, relating yield in shear to yield in uniaxial stsedoes not apply in
general — it is a direct consequence of the voreM@iterion. The relationship (if any) will changlen using
other yield criterion. Any pressure dependence@flyor dependence on the third stress invariaitproduce a
different relationship between these two yieldstes. For this reason, you should insist on seébewartual lab
data from which the strength value was determined. &ligce is true in general: always decide for yelinahich
theoretical model and properties are appropriata fgiven application — don't trust anyone elsentke this
decision for you.



Side comment: Noting thal, is a function of stressy, the geometry of a yield surface is often

described by introducing a “yield function” as tolis:

Yield function: fe)=J,-k?
At yield (on the yield surface): fo(9 O

Below yield (in the elastic domain)f ¢ (<) 0

Yield functions are never unique. The yield funatimust only have the property that it is negatoves|
elastic states, zero for all states at yield, avgitive for all states that cannot be reached gjnou
quasistatic elastic loading. For example, instefad ((:s) =J, —k?, we could have alternatively defined
f(o) = \/Z -k, which satisfies the required sign conventionsafgield function. Another common
cho~ice for a von Mises yield function it((:s) =0,,~Y, whereY is the axial stress at yield in uniaxial
stress loading, and., is an alternative stress invariant (called “eql@mstress” and almost always

available for plotting in commercial FEM codes)fided by

O = %§:§=1/3J2

A related strain invariant is

Similarly, equivalent plastic strain is defined

t

aepq::j /%szypdt where "= deg(
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in which £P is the plastic part of the strain rate, definelbive

Note that the equivalent stress is defined wittaation 3/2, while equivalent strain is definedngsthe
reciprocal of this fraction, 2/3. (Mnemonic: sgés big while strain is small, so stress getsiilyger

fraction.) The fractions, 3/2 on stress but 2/3tain, are used so that,, equals the axial component of

stress under uniaxial stress loading and so thiathis and general loading, the plastic work “tage

sabP — ~P
C.& _a-eq‘geq




As is the case in any classical elastic-plastic ehdtie total strain rate;, is taken to be broken into two

parts: an elastic (recoverable) péftplus a plastic (permanent/non-recoverable) part

The stress rate is taken to depend on the eldsiio sate according to elasticity theory. For shiaity,

the upcoming algorithm presumes linear elasticityhich the bulk and shear modulu§,andG, are
known material parameters. Accordingly,

1
devg®)=— dev6 '
(‘E) 2G g‘

is06") = i 506 )

During plastic loading, the stress is constraimele on the yield surface (the region outside thkly
surface is unattainable). Therefore, during pldstcling, the stress rate must either remain statipat a
single point on the yield surface, or it is allowlednove arountbngentially to other states on the yield
surface. An examination of full equations of pleityi (see the previously referenced documents en th
CSM website) reveals thdtr strain-controlled loading, the stress rate will be exactly what it would
have been under Hooke’s law except that the pahisftrial elastic stress rate” that is normathe
yield surface is discarded. This view leads toftlewing computational algorithm.

Below is a J, plasticity radial return algorithm ...



A typical strain-controlled von Mises plasticity ol is set up so that the inputs and outputs are
INPUTS:

¢ = total strain rate

At =time step
6™ = stress at the beginning of the time step

K = bulk modulus
G = shear modulus

r,=yield in shear(=Y/ \/§)

OUTPUTS:

£°= elastic strain rate

P = plastic strain rate

uMm

"4 = stress at the end of the time step

nq

The solution procedure is summarized as follows:

1. Tentatively assume elastic response to obtaintattea “trial” prediction for the updated stress,
found byczstrial :c:sbeg+At[2G devg )+ XK iso ﬂ Compute its invariand;™ .
2. Testif the trial stress is outside the yield scefeand complete the solution as follows:
a. If J;”a' < r;, then the tentative assumption of elasticity e@sect because it predicted

a stress not outside the yield surface. Accordintle updated stress is equal to the trial
stress. Moreover, during elastic loading, the piagtain rate is zero, and the elastic
strain rate is therefore equal to the total straia.

b. Otherwise, ifJ;’ia' > Tj, then the trial stress is outside the yield stgfamplying that

the tentative assumption of elasticity was incdrriecthis case, set the updated stress to
be identical to the trial stress except with thgnide of the stress deviator scaled
down by a factor selected to put this modifiedsstrexactly on the yield surface, thus

giving the value for the corrected updated strédiseaend of the stepje”d. The effective

end be
¢ —¢™

(consistent) stress rate for the step is then= . Applying Hooke's law then

gives the elastic strain rate. Applying the strai® decomposition then gives the plastic
strain rate.

This solution scheme, in which the updated stredsund by simply scaling down the trial stressidew, is called “radial return.”It gives
grossly inaccurate results for the majority of more realistic (non von Mises) models. Moreover, radial return applies in strain-contitmit not
stress-control. Seehttp://csm.mech.utah.edu/content/wp-content/upl®ddd /09/2007BrannonPlasticityBookChapterWithErgdé for the
correct solution procedure for more sophisticatéabtizity models. Any serious study of computatiopksticity must be based on more
complete and rigorously justified governing equadithan what is provided here in this primer.




Pseudo code for the above algorithm is as follows

function J2plasticity(
//inputs:
edot, dt, sigBEG, K, G, tauy,
//outputs:
eEdot, ePdot,sigEND)

[/ == e e e e oo
// Get the trial updated stress

// In what follows, “iso” and “dev” stand for functions that return

// the isotropic and deviatoric parts of a tensor, respectively

sigTRIAL = sigBEG + (2G*dev(edot) + 3K*iso(edot))*dt

[/ == e e e e oo
// The stress state is above yield if J2>tauy”2.

// Equivalently, the stress state is above yield if ||dev(sigTRIAL)| |
// is larger than sqrt(2)*tauy. Below, we test by looking at the ratio:
fac = ||dev(sigTRIAL)||/(sqrt(2)*tauy)

if(fac<=1)then
//elastic

sigEND=sigTRIAL
ePdot = zeroTensor
eEdot = edot
elseif (fac>1) then
//plastic
//set the updated stress to be the same as the trial stress
//except that the stress deviator is reduced in magnitude to put the
//updated stress on the yield surface (done by dividing by “fac” below)
sigEND = iso(sigTRIAL)+dev(sigTRIAL)/fac

//evaluate the consistent stress rate

sigDOT = (sigEND-sigBEG)/dt
//apply Hooke’s law to get elastic strain rate:

eEdot = iso(sigDOT)/(3K) + dev(sigDOT)/(2G)

//apply strain rate decomposition to get the plastic strain rate
ePdot = edot-eEdot

endif
// If desired, the updated equivalent stress and equivalent plastic strain rate are

sigEQUIV=sqrt(3/2)*||dev(sigEND)!!
ePdotEQUIV=sqrt(3/2)*||dev(ePdot)|| //update by ePequivEND = ePequivBEG*ePdotEQUIV*dt

end of function J2plasticity



Verification test #1: Uniaxial strain
Under uniaxial strain, the axial component of sira,, increases with time while all other componeritstain
are zero. During the initial elastic phase of logdiHooke’s law implies that the axial stre@g and lateral stress
0, are given by

o,=Ce¢,, where C=K+4G= "constrained modult

o, =A&,, where A=K -2G= "Lame modulus"

Substituting these into the von Mises yield criiarshows that the yield criterion is reached when

Ufe'd =gt :%, where Y = \/_3y

The label “HEL” stands for “Hugoniot Elastic Linitwhere the word “Hugoniot” refers to states thah de
reached in shock loading. (Shock waves in isotrapedia are always initially uniaxial strain.) Aftgeld is reached
in uniaxial strain loading, the stress state maleng the surface of the von Mises cylinder inradion parallel to
the hydrostat, making the slope of the stressrspiait equal to the bulk modulus, as indicated Wweltnloading
follows the elastic slope until the yield surfasence again reached, launching another phaseslojtle equal to
the bulk modulus. The goal of this verificationttissto reproduce the following plots of axial dateral stresses,
each shown as functions of the axial componenttaf strain.
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Note from the figure that uniaxial strain is veiffetrent from uniaxial stress. In both cases, jimjdcauses the
material to flow like a fluid. For uniaxial stregke fluid is unconstrained laterally, causing zelnange in axial
stress to sustain flow. For uniaxial strain, thteral constraint causes the slope of both axiallatedal components
to be the bulk modulus during plastic flow. Botlpég of loading produce permanent plastic strailos upmoval of
the axial stress (and relieving the axial stresssdwt also relieve lateral stress in the unisstiain case).

WARNING: uniaxial stress is not a strain-controlledding, so radial return does not apply to tmeatve elastic
solution. See the book chapter for details ordibinction between a test elastic stress anddtzsitic stress!



Verification test #2: pure isochoric strain rates in different directions
This verification test initially applies a pure shetrain rate, and then it changes to a new stasénthat
is still isochoric, but orthogonal to the initidtain rate. This causes the stress state to maowmdithe
von Mises cylinder without changing pressure (iséthout moving parallel to the cylinder axis).

Table 2 Example 2: material parameters

Parameter Value
Yield in shear, 1y 165 MPa
Shear modulus, G 79 GPa

Example 2: strain table

Time (s) &1 £22 £33
0 0 0 0
1 —0.003 —0.003 0.006
2 —0.0103923 0 0.0103923
stress
2.x10° ¢

on

0.22 ——— - 0'33 LT

Fig. 13 The solution to the von Mises plasticity problem defined
in Example 2. The thick colored lines are the analytical solution.
The Thin black lines that overlay the exact solution a results
from a a user-defined routine with nested return algorithm imple-
mented in LS-DYNA

Note: since the problem is isochoric, a value li@ bulk modulus is not needed. When testing youtehgou should try putting
the bulk modulus to a large value, sky=10G , to call attention to any spurious predictionpadssure (which usually means
you are accidentally introducing some volume changeour kinematics driver). For details of thigleother plasticity
verification problems, seettp://www.mech.utah.edu/~brannon/pubs/7-2009Braheelavanichkul-1JF.pdf




