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ABSTRACT 

Elastic waves radiated from a pressurized spherical cavity embedded within a homogeneous and isotropic 
wholespace are described by closed-form mathematical formulae, in both the time-domain and the 
frequency-domain. For this spherically symmetric problem, only radially polarized compressional waves 
are generated. All near-field and far-field terms are included in the solution, and the expressions are valid 
for arbitrary source pressure waveforms. Analogous formulae are developed for the elastic wavefield 
produced by a uniform radial particle displacement imposed at the cavity wall. These closed-form 
mathematical solutions facilitate rapid and accurate forward modeling, and hence are particularly useful 
for (i) performing order-of-magnitude estimations of various cavity-source elastic radiation phenomena, 
and (ii) validating purely numerical (i.e., finite-element or finite-difference) algorithms designed to solve 
similar problems. The formulae also indicate that the inverse source characterization problem is well 
posed: the source activation wavelet (pressure, traction, displacement, velocity, etc.) is obtained by 
performing a deterministic deconvolution of the response observed at a remote receiver. Numerical 
examples verify that the source signature is accurately recovered, provided the elastic parameters, 
recording geometry, and cavity radius are known. 
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1.0 INTRODUCTION 

When an explosive seismic energy source is detonated within a solid or fluid continuum, a zone of 
nonlinear deformation is produced in the immediate vicinity of the explosion. As the shock wavefront 
propagates outward through this zone, it rapidly loses amplitude due to irreversible conversion of wave 
energy to heat, as well as geometric divergence. Eventually, a radius is reached where material 
deformations, strains, and stresses have decayed to a level sufficient for linear wave propagation theories 
to apply. If the outgoing wavefield is known on the spherical surface with this particular radius, then 
relatively straightforward mathematical andlor numerical procedures developed from these linear theories 
may be used to calculate the wavefield at greater distances. 

In the simple situation where the continuum surrounding the explosion is taken to be a homogeneous and 
isotropic elastic wholespace, the radiated wavefield is characterized by closed-form mathematical 
formulae. Perhaps Jeffreys (1931) was the first to obtain the solution for compressional (P-wave) elastic 
radiation from a small spherical cavity subject to an instantaneous step in internal pressure. Numerous 
investigators (many referenced herein) have refined and extended this solution. The pressurized cavity 
source has subsequently been utilized to simulate and analyze seismic data arising in a variety of 
geophysical contexts, e.g. earthquake seismology, mine blasting, underground nuclear explosions, and 
petroleum exploration. 

In the present study, the spherically symmetric cavity source problem is re-examined, and several 
improvements to the solution are developed. Specifically, these improvements include: 

1) The source activation wavelet s(t) is considered an arbitrary function of time. Many previous 
investigators have restricted this waveform to specific mathematical forms, like the instantaneously- 
applied and infinitely-maintained step in cavity pressure s(t) = so H(t) (where H(t) is the Heaviside unit 
step function). The resulting formulae for the radiated compressional waves are similarly restricted in 
applicability. 

2) The boundary condition applied at the spherical cavity wall is generalized to include a prescribed radial 
particle displacement function. All previous investigators have utilized a radial stress function at the 
spherical interface. Complicated physical and continuum mechanical processes occur adjacent to an 
explosion seismic source. Hence, it is not obvious what boundary condition should be imposed at the 
surface separating zones of nonlinear and linear deformation. The new formulae derived for the 
displacement boundary condition provide an additional degree of flexibility for modeling elastic 
wavefields generated by explosive sources. Interestingly, these expressions have a very different 
mathematical character than the analogous formulae for an applied radial stress. Also, they are simpler. 

3) Expressions for the total elastic energy (sum of kinetic energy and strain energy) radiated from the 
cavity are developed, for both types of source boundary conditions and for a general source activation 
wavelet. These energy expressions may be useful for explosion yield estimation. 

4) The inverse problem associated with determining the source signature is developed, again for both 
types of boundary conditions and for a general source activation wavelet. Expressions for the elastic 
response (particle displacement, velocity, acceleration, or pressure) at a remote receiver are readily 
inverted (via either time-domain or frequency-domain methods) to obtain the source waveform applied to 
the spherical cavity wall. The particular mathematical procedure corresponds to a deterministic 
deconvolution of the recorded traces. Accurate recovery of the source waveform requires knowledge of 
the source-receiver geometry, the cavity radius, and the elastic parameters of the wholespace. 
Interestingly, it is not necessary to know the particular type of boundary condition imposed at the cavity 



wall (radial stress, displacement, velocity, acceleration, etc.), in order to perform a useful source signature 
deconvolution. 

The particular motivation for undertaking this re-examination of the cavity source elastic radiation 
problem is to assess the feasibility of using observed seismic data to determine the pressure generated by 
a bomb explosion. In this scenario, seismic receivers will be distributed relatively close to the bomb 
detonation point, so the assumption of a homogeneous and isotropic elastic wholespace for the analysis 
may not be unduly restrictive. Moreover, the source signature deconvolution process may be effective if 
it is applied to the initial compressional arrival observed at each receiver, and subsequent reflected, 
refracted, scattered, surface wave, etc. arrivals are neglected. Close proximity of the receivers to the 
explosion point requires that all near-field terms be included in the mathematical formulae used for both 
forward modeling and inversion. 

Finally, several numerical examples illustrate the utility of the derived formulae for both forward 
modeling and source signature inversion purposes. 

2.0 SPHERICALLY SYMMETRIC SOURCE 

Consider a spherical cavity of radius a embedded in a homogeneous and isotropic elastic wholespace. A 
uniform, time-varying normal stress s(t) is applied to the interior surface of the cavity. Spherically 
diverging waves are generated that propagate outward from the cavity wall with the compressional wave 
speed of the medium. The problem is to determine the elastic particle displacement at a field point P with 
position vector r. 

A spherical polar coordinate system with origin at the cavity center is used in the subsequent analysis. 
From symmetry considerations, the elastic particle displacement vector u(r,t) is strictly radial and is 
independent of the two angular coordinates f3 and 4. Thus: 

where e, is a unit radial vector for the spherical polar coordinate system. 

A graphic depiction of the problem geometry is given in figure 1. In general, the boundary condition 
imposed at the spherical interface r = a may consist of a prescribed radial displacement, velocity, 
acceleration, 01: traction function (or any linear combination thereof). This boundary condition must be 
uniform (i.e., spatially invariant) in order to preserve the spherically symmetric nature of the problem. 
The equivalent elastic radius concept is illustrated in figure 2. The spherical surface with radius a is now 
considered a reference surface, rather than a physical interface, separating zones of nonlinear deformation 
(for r < a) and linear elastic deformation (for r > a). Of course, any spherical surface with radius larger 
than a could be utilized as the reference surface. The only requirement is that linear elasticity apply at all 
greater radial distances. 

The mathematical development in the sections that immediately follow pertains to the more difficult case 
where the boundary condition at r = a is a prescribed radial stress function. A later section treats the 
simpler radial displacement boundary condition. The formulae pertaining to the displacement boundary 
condition are readily generalized to particle velocity or particle acceleration boundary conditions, merely 
by differentiating (in the time-domain) or by multiplying by a power of frequency (in the spectral- 
domain). 



3.0 FIELD EQUATIONS 

The elastic particle displacement vector u(r,t) satisfies the elastodynamic equation. For the case of a 
homogeneous and isotropic solid subject to no body forces or body moments, this is 

where A and p are the Lam6 coefficients and p is the mass density. An alternate form is obtained by 
using the identity v2u = grad div u - curl curl u. Thus 

The particular displacement under consideration [equation (2.1)] is curl-free motion; that is curl u(r,t) = 
curl [u(r,t) e,] = 0. Hence, expression (3.2) reduces to 

where = ,/(A + 2p)/p is the compressional wave speed of the elastic medium. Expression (3.3) 
indicates that a curl-free displacement u(r,t) satisfies the three-dimensional vector wave equation. 

4.0 GENERAL SOLUTION 

Under the aforementioned conditions of spherical symmetry, the Laplacian of the vector u is 

Thus, the radial component of the wave equation (3.3) is 

Equation (4.2) can be solved after removing the time dependence by Fourier transformation. The Fourier 
transform of the radial displacement component u(r,t) is defined by 

Hence, Fourier transforming equation (4.2) gives 



where the derivative theorem of Fourier transformation is used. 

Equation (4.4) can be transformed to Besse17s equation by an appropriate change of variables. First, 
define a new independent variable x via x r kr where k = 2nf la . Then U(r, j) = U(xlk, j) e V(x, j). 
Equation (4.4) becomes 

Now define a new dependent variable W(x, f) = & V(x, f )  . The above expression reduces to 

This is Bessel's differential equation of order 312. It has the solution 

where J3/2(~) and N3t2(~) are the Bessel and Neumann functions of order 312, respectively. A and B are 
coefficients that are independent of x, but may depend on frequency f. In terms of the original 
independent and dependent variables, the solution to (4.4) is 

The spherical Bessel and Neumann furictions of order I are defined as 

(Wylde, 1976, p. 178). Thus, equation (4.5) is written as 

where the factors d ( d 2 )  are incorporated into the coefficients A and B. In turn, the spherical Bessel and 
Neumann functions can be expressed in terms of elementary trigonometric functions: 

cosx sin x 
j , ( ~ ) = - - + ~ ,  

X X 

sin x cosx 
n,(x) =----. 

X x 



However, subsequent analysis is simplified if these functions are re-written in terms of complex 
exponentials. Substituting cos x = [exp(+ix)+exp(-ix)]/2 and sin x = [exp(+ix)-exp(-ix)]/2i into the above 
expressions results in 

Finally, substituting these expressions for the spherical Bessel and Neumann functions into equation (4.6) 
yields the following form for the Fourier transformed radial particle displacement: 

u(., /) = c e + i k r [ ~  kr +L] (kr) ' + ..-jkr[' - L], 
kr (kr)' 

where C and D are coefficients that depend on the frequency f. It should be recalled that k also depends 
on frequency via k = 2nf la.  Equation (4.7) is a general solution for the Fourier transformed radial 
particle displacement, under the specified conditions of spherical symmetry. The coefficients C and D are 
determined by introducing additional radiation and boundary conditions into the problem. 

5.0 RADIATION AND BOUNDARY CONDITIONS 

The first and second terms in the general solution (4.7) correspond to inward propagating and outward 
propagating spherical waves, respectively. This can be established by considering the kernel function for 
inverse Fourier transformation. Multiplying exp(+ikr) in the first term by exp(+i2@) gives 
exp[i2@t+rla)], which exhibits the proper time dependence for inward propagation. Similarly, the 
inverse Fourier transform of the second term in (4.7) has the time dependence t - r/a appropriate for 
outward propagation. Only outward radiating elastic waves are allowed in the present problem. Hence, 
coefficient C in (4.7) is set equal to zero, yielding 

( ,  /) = De-ikr [L - L] 
kr (kr)' 

The remaining coefficient D is determined by imposing a boundary condition at the cavity wall. In the 
present section, an applied stress boundary condition is considered. In spherical polar coordinates, the 
stress tensor components for radial and spherically symmetric motion are 

ow (r, t)  = oe (r, t)  = ore (r, t)  = 0 . (5.4) 

The boundary condition at the spherical interface r = a involves only the err tensor component. It is 



where s(t) is a prescribed function of time. In terms of the radial particle displacement, this boundary 
condition becomes 

Fourier transforming equation (5.6) to remove the time dependence gives 

where S(f)  is the Fourier transform of the applied radial stress function s(t). An expression for the 
derivative of the transformed displacement function U(r,fi is obtained from (5.1) above: 

Equations (5.1) and (5.8) are substituted into (5.7) and the resulting expressions is solved for the 
coefficient D. The analysis is simplified if the Lam6 parameters R and p are written in terms of the 
compressional and shear wavespeeds a and P of the elastic medium: R = p(d-2@) and p = pf. The 
result is 

6.0 FREQUENCY -DOMAIN SOLUTION 

Substituting (5.9) into (5.1) and engaging in a certain amount of algebraic manipulation yields 

U(r9 f) = G(r9 f N f )  7 

where the response function G(r& is given by 

Symbols in this expression are defined as follows: 

r - a  
z ( r )  = - , 

a 



where y =  p la is the ratio of S-wave to P-wave speed of the elastic medium. yranges from 0 to a 
maximum of 43 12 = 0.866 (assuming an elastic medium with negative Poisson ratio is allowed). z(r) is 
the traveltime of the elastic wave propagating from the cavity wall to radius r at the compressional wave 
speed a. 

The response function G(rJ) is analytically continued onto the complex plane by defining a complex- 
valued frequency F = f + ig, where f and g are real. Then, equation (6.2) indicates that PI and P2 are poles 
and Z,(r) is a zero of the continued response function G(r,F). Since the poles are located in the upper half 
of the complex frequency plane, the associated timedomain impulse response is causal. Moreover, this 
time-domain response is minimum-delay [with respect to the amval time qr)] because the zero Zl(r) is 
also located in the upper half of the F-plane. 

Interestingly, the response function G(rJ) has no zeros anywhere on the real frequency axis, except in the 
limit as r --+ +-. Hence, all spectral components present in the source stress function s(t) (including the 
dc component) are radiated into the elastic wholespace. Finally, the response function (6.2) is consistent 
with an analogous frequency-domain expression given by Gurvich (1 965). 

7.0 TIME-DOMAIN SOLUTION 

A time-domain expression for the radial particle displacement u(r,t) is obtained by inverse Fourier 
transforming equation (6.1).. Thus 

where the asterisk denotes convolution with respect to time t .  The impulse response g(r,t) is the inverse 
Fourier transform of the response function G(rJ): 

g (r, t) = f ~ ( r ,  f )e""df . 

This integral is evaluated via contour integration on the complex frequency plane. For time t greater than 
the amval time qr), the contour is closed in the upper half plane; the residue theorem yields the 
contribution from the two poles PI and P2. The analysis is simplified by writing these poles as 

where 



The motivation for adopting this particular choice of symbols will rapidly become apparent. The residues 
are given by 

2m' res [ ~ ( r ,  F)e"'*'; P, ] = 2m' lim ( F  - P, ) G(r ,  F )  e"'m - 
F+Pk 
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for k = 1,2. Substituting in the expressions for the various quantities yields 

2m' res [ ~ ( r ,  ~ ) e " ~ " ;  P , ]  = - , 

2ni res [ ~ ( r ,  F)e"ld'; P,] = - 

Thus, fort > z(r), the integral in equation (7.2) evaluates to 

with fan) = a, /m, = y / d D .  For t < qr), the integration contour is closed in the lower half of the 

complex F-plane, yielding g(r,t) = 0. Thus, the displacement impulse response is causal with respect to 
the time t = z(r). 

Expression (7.5) indicates that the displacement impulse response is an exponentially decaying oscillatory 
function; aj is a (angular) decay rate and wd is a damped oscillation (angular) frequency. Note that the 
two terms of the oscillatory part of the response have different amplitudes and phases. Also, g(r,t) has the 
proper physical dimension for particle displacement response to an impulsive stress: reciprocal acoustic 
impedance. Finally, equation (7.5) is consistent with equivalent formulae in Eringen (1957) and Eringen 
and Suhubi (1975, p. 481). 

Elastic particle velocity and acceleration are obtained from the displacement impulse response via 

av(r,  t )  - dg ' ( r ,  t )  
a ( r , t )  = - - a 2 ~ ( t )  

* s ( t )  = g(r , t )* - .  
at at at 

The strain tensor components can be calculated via 



Expressions for the stress tensor components in terms of the particle displacement are given in the 
previous section 5.0. The pressure at radius r is determined from the stress tensor components via 

Alternately, pressure is given by 

1 a 1 a 
p(r , t )  = -k div u(r,t) = -k7-[r2u(r,t)]= -k7-[r'g(r,t)]* s(t) , 

r -  a r  r -  ar 

where k = p d  [I-(4/3)?] is the bulk modulus of the elastic medium. 

8.0 EXAMPLES AND APPLICATIONS 

The examples discussed in this section assume that a spherical cavity is filled with an ideal fluid (i.e., a 
gas) with a time-varying pressure. Hence, the symbol p(t) is used instead of s(t) for the source activation 
function. Of course, for an ideal fluid, all three diagonal components of the stress tensor are equal ( a ,  = 
000 = a@). Then, equation (7.1 1) indicates that this source pressure function is identical to the applied 
radial stress: p(t) = s(t). A distinction between p(t) and s(t) in necessary in the situation where the 
spherical surface is located at the equivalent linear elastic radius r = a within a solid continuum. 

8.1 Static Loading 

Suppose that the cavity is subject to the static pressure p(t) = po. Then, the Fourier spectrum of this 
pressure function is impulsive: Po = po 0, where is a Dirac delta function. Substituting P(f)  for 
So in equation (6.1) and (trivially) performing the inverse Fourier transform results in 

Interestingly, the static particle displacement uo(r) does not depend on the P-wave speed a or the Lam6 
coefficient it of the elastic medium. 

The total source pressure function often consists of static and dynamic parts: p,,,(t) = po + p(t). Linear 
superposition then implies that u(r,t) = g(r,t)*p(t) is a time-varying radial displacement relative to the 
static component uo(r). 



8.2 Explosive Loading 

An applied pressure of the form p(t) = po H(t) exp(-a) (where H(t) is the Heaviside unit step function) 
approximates explosive loading of the cavity wall (Sharpe, 1942; Blake, 1952, Goldsmith and Allen, 
1955; Peet, 1960). An expression for the radial displacement can be obtained by convolving this pressure 
function with the impulse response g(r,t) in equation (7.5). Persisting through a major amount of 
algebraic reduction yields 

where tan 8 = (a, - K)/w, . At a fixed radius r, the particle displacement consists of an exponential 

term which decays at the same rate as the forcing function, plus a damped oscillatory transient. Although 
the applied pressure function is discontinuous at t = 0, expression (8.2) indicates that the particle 
displacement is continuous at the onset of the arriving compressional wave: u[r,z(r)] = 0, as expected. 
However, the particle velocity has a step discontinuity and the particle acceleration is impulsive at onset 
time t = z(r). Sharpe (1942) and Duvall (1953) demonstrate that the velocity discontinuity is removed by 
considering a pressure of the form p(t) = po H(t) [exp(-qt) - exp(-~t)].  The results for this particular 
pressure can be obtained from equation (8.2) via superposition. 

In the limit as K+ 0, expression (8.2) gives the response to a finite step in cavity pressure: 

As a check, note that the static displacement (8.1) is recovered as t + +=. Equation (8.3) is consistent 
with results in Jeffreys (1931), Sharpe (1942), Blake (1952), Miklowitz (1978, p. 281), Ben-Menahem 
and Singh (1981, p. 223), and Denny and Johnson (1991). In contrast, analogous formulae in Kawasumi 
and Yosiyama (1935) and Graff (1975, p. 298) contain a discontinuity at t = z(r) and hence are erroneous. 
The expression in Eringen and Suhubi (1975, p. 482) appears to be seriously in error: in addition to being 
dimensionally incorrect, it does not approach the static displacement uo(r) at large times. 



8.3 Acoustic Medium 

Although the wholespace is assumed to be a linearly elastic solid, the correct results for an ideal fluid 
medium can be obtained by taking the limit of the relevant expressions as the shear wave velocity P 
approaches zero. The particle displacement impulse response in equation (7.5) becomes 

b(r, t)  = lim g (r, t) = - - a[t- wl 
P+O P a  ( " ) { l +  r r }H[ t -~ ( r ) ] .  

Convolving b(r,t) with the applied pressure yields the radial displacement u(r,t) in an ideal fluid medium. 
However, the particle velocity is often of greater interest in acoustic problems. Differentiating the above 
expression and convolving the result with the pressure p(t) yields 

The first term of the particle velocity is directly proportional to the source pressure function, after 
accounting for propagation delay. The second term is often called the afterflow term (Kramer, et al., 
1968), and is relatively important at small ranges r. 

8.4 Far-Field Approximation 

At large distances from the cavity center, the expression for the particle displacement impulse response 
can be simplified. Consider the response function G(rJ) in equation (6.2). If H>> IZl(r)l = a 1  2nr, then 

This far-field representation is valid when r >> a 1  24tl = Aa 1 2% where il, = a 1  is the wavelength of 
compressional elastic radiation with frequency f. Thus, the distance to the far-field realm is wavelength 
(or frequency) dependent. The inverse Fourier transform of the above response function is 

Hence, the far-field impulse response is a damped sinusoidal oscillation that propagates without change in 
form, except for spherical divergence. In fact, the waveform in (8.7) is a Berlage wavelet of order zero 
(Aldridge, 1990). 

Note that the far-field response function GfuXrj) has a zero at f = 0. Thus, the dc component of the cavity 
pressure p(t) is not radiated into the far-field. 

8.5 Point source 

Let a dimensionless source waveform be defined as q(t) n p(t)lpo, where po is a positive measure of the 
cavity pressure p(t). For example, po could be the root-mean-square value of p(t), or the maximum 
absolute value of p(t), etc. A point source of compressional elastic radiation is obtained in the limit as the 



radius of the cavity a tends to zero and the pressure p(t) tends to infinity, in such a manner that the 
quantity EO = 4mzpo I3 remains finite. Note that Eo has physical dimension of energy. Under these 
conditions, it is straightforward to demonstrate that the Fourier transformed particle displacement in 
equation (6.1) approaches 

Inverse Fourier transforming this expression yields 

Hence, the particle displacement waveform generated by a point compressional source changes shape 
from the near-field to the far-field. In the far-field, it has the shape of the derivative of the source 
pressure pulse. Equation (8.9) agrees with the expression obtained by Ben-Menahem and Singh (1981, p. 
223). 

8.6 Scaling Relations 

The frequency response G(rJ) and the impulse response g(r,t) depend on the cavity radius a. How do 
these quantities change if the radius is scaled by a multiplicative constant? Let the dependence of the 
responses on a be denoted explicitly by G(rf;a) and g(r,t;a). Then, from equation (6.2), it is 
straightforward to demonstrate that 

G(r, f ; ca) = cG(r 1 c, cf; a) , (8.10) 

where c is a real and positive scalar. Inverse Fourier transforming this expression yields 

Interestingly, this scaling relation also applies to the far-field impulse response of equation (8.7): 

These scaling relations underlie many "charge size scaling laws" used for analysis of explosion seismic 
data (e.g., Latter, et al., 1959; Peet, 1960; Ziolkowski, et al., 1980; Denny and Johnson, 1991; 
Ziolkowski, 1993; Ziolkowski and Bokhorst, 1993). In this context, a is not considered to be the radius 
of the charge or of the underground cavity excavated by the explosion. Rather, a is taken to be the radius 
of a larger spherical cavity on which deformations, stresses, and strains have decayed to a level where 
linear elasticity applies (Sharpe, 1942). 

9.0 RADIATED ENERGY 

The total energy radiated away from the spherical cavity can be calculated from the energy balance 
principle of continuum mechanics. In the purely mechanical theory, there are no thermodynamic terms 
involved. Thus, the energy balance principle reduces to 



Rate of change of energy = Rate of work done by body and contact forces. 

In the current problem, body forces are neglected. The rate of work done by contact forces is given by the 
integral of T - v over the boundary dA of the elastic medium, where T and v are surface traction and 
particle velocity vectors, respectively. Hence, the energy balance principle can be expressed 
mathematically as 

where £(t) is the energy of the elastic body. This energy consists of kinetic energy X(t) and potential 
energy (strain energy) Wt). For the present spherically symmetric problem, the surface integral in (9.1) is 
readily evaluated, giving 

Integrating this expression with respect to time yields 

Finally, the total energy radiated into the elastic wholespace is given by E = lim , , £(t). Thus 

The energy expression (9.4) can be simplified. The Fourier transform of the cavity wall velocity v(a,t) is 
V(a8 = (i2m U(a8 = (i2191 G(a& So. Then, applying the power theorem (Bracewell, 1965, p.113) to 
equation (9.4) gives 

where the asterisk denotes complex conjugation. The total radiated energy depends on the energy density 
spectrum of the source stress waveform. The inverse Fourier transform of the energy density 
spectrum is the autocorrelation function &(r) = s(t) * s(-t). Hence, utilizing the power theorem once 
again yields 

+= 

E = 4m' 5#ss (t) ag(a,r) dt . - at 



This is an appealing result; the total radiated energy depends on the autocorrelation function of the source 
waveform, rather than on the waveform itself. A normalized autocorrelation is defined as 

( t )  f l  ( t )  1 f l  ( 0  . Then, substituting expression (7.5) for the displacement impulse response into 

the above equation gives 

where Dl and D2 are constants that depend on the wavespeed ratio y: 

For geological media where y = 112, then Dl = 0 and D2 = -2163. Curiously, if y = 63 / 2 = 0.866 (the 
theoretical maximum value corresponding to a Poisson ratio of -I), then the roles of Dl and D2 are 
reversed: Dl = -2l63 and D2 = 0. 

9.1 Explosive Loading 

The general energy expression (9.7) simplifies dramatically in the particular case where the source radial 
stress waveform is given by s(t) = so H(t) exp(-a). As indicated previously, this stress approximates 
explosive loading of the cavity wall. The autocorrelation function is &(t) = (so212~ exp(-Kttl). Then, 
equation (9.7) reduces to 

where Vn = 4m3 1 3 is the volume 

9 (9.9) 

of the spherical cavity and cq is a characteristic angular frequency 
defined by = $a2 +ud2) = 2P la. In the limit as K+ 0, E approaches the value 3vo so2 I 8 p ,  which is 
the strain energy associated with the static displacement field uo(r). Interestingly, this same value is 
obtained by Denny and Johnson (1991) by considering only the far-field displacement. Also, note the E 
in (9.9) vanishes as the cavity radius a approaches zero, as expected. 

Now consider an applied stress of the form s(t) = so H(t) [exp(-qr) - exp(-~t)]. This function is 
continuous, and is thus a more realistic representation of a physical stress waveform. The autocorrelation 
function of s(t) is 

Except for a multiplicative scaling factor, expression (9.10) equals the difference between two 
autocorrelation functions of the form used in the derivation of the previous energy expression (9.9). 
Hence, the total energy radiated into the wholespace can be written down by inspection of (9.9). The 
result is 



where Q1(Kj and Q2(@ are polynomials given by 

In the limit as ~1 + 0, the stress becomes s(t) = soH(t) [l-exp(-~t)]. This stress exponentially approaches 
the static value so at large times. Sezawa (1935) and Sezawa and Kanai (1936) use this form of s(t) to 
study the dependence of the radiated energy on the "rapidity" of the radial stress application at the cavity 
wall. Setting q = 0 in (9.1 1) yields 

This expression is consistent with results in Sezawa and Kanai (1936). Note that E vanishes as 6 -+ 0, 
and E approaches the static deformation value as ~2 + +-, as expected. 

9.2 Energy Scaling 

The above formulae clearly indicate that the total elastic energy radiated from a spherical cavity source 
depends on the radius of the cavity. However, the problem of how the energy changes if the cavity radius 
is scaled by a multiplicative factor is somewhat subtle. In order to examine this issue, rewrite one of the 
above general energy expressions so that all relevant quantities depend explicitly on the cavity radius a. 
Thus, the frequency-domain expression (9.5) is re-written in the form 

Recall that C(rf ;a) is the response function (Fourier transform of the displacement impulse response) at 
distance r and frequency f, for a cavity source of radius a. Thus G(a f ;a) is the response function 
evaluated at the particular radius r = a (i.e, at the cavity wall). For a cavity with radius ca (where c is a 
positive scalar), the radiated energy is 

Utilizing the scaling relation (8.10), the above expression is put into the form 

Thus, in order to determine an energy scaling relation, an additional assumption must be adopted 
regarding the scaling properties of the source stress spectrum S C f a  If this spectrum obeys the scaling 
rule 



where n is an (not necessarily integer) exponent, then equation (9.16) reduces to 

The total radiated elastic energy exhibits a power-law dependence on the cavity radius a. 

An alternative way of writing the source spectrum scaling rule (9.17) is 

Inverse Fourier transforming this relation to the time-domain yields 

s(t;ca) = cn-'s(t l c ;  a )  . (9.20) 

Source radial stress functions of the form s(t) = so H(t) exp(-qt), or s(t )  = so H(t) [exp(-qt) - exp(-~t)],  
or s(t) = so H(t) [I-exp(-~t)] obey the scaling rule (9.20) provided (i) the magnitude scalar so is 
proportional to an-', and (ii) the exponential decay rates xi,  6 are inversely proportional to a. Clearly, the 
particular choice n = 1 leads to the simplified results 

E(ca) = c3E(a) ,  s(t; ca) = s(t I c; a ) ,  so independent of a. 

In this case, the total radiated elastic energy scales as the cube of the cavity radius. The shock wave 
theory described by Peet (1960) for the development of a spherical nonlinearly deformed zone around a 
buried explosion takes n = 1. 

10.0 INVERSE IMPULSE RESPONSE 

The particle displacement impulse response g(r,t) is minimum delay with respect to the arrival time z(r). 
Hence, it is possible to derive a stable inverse g-'(r,t) that can be used to deconvolve a recorded particle 
displacement seismogram. From equation (7.1), the convolution of g-'(r,t) with u(r,t) yields the radial 
stress waveform s(t) applied to the cavity wall: 

The Fourier transform of the inverse impulse response is the reciprocal of the response function G(rj) in 
equation (6.2): 

( [ f  - 8 f - '2 )] G-' (r, f )  = ~ ( r ,  f )-' = i2npa - 
a f - z, (11 

Hence, G'(~J)  has a single pole in the upper half of the complex frequency plane at F = Zl(r). The 
inverse Fourier transform of (10.1) can be calculated using the residue theorem. However, care must be 



exercised because ~ ' ( r f )  is not uniformly convergent as J1;1 + +=. This difficulty is overcome by 
applying the residue theorem to the quantity 

which approaches zero uniformly as II;I + +=. The result is 

where 6'(t)is the derivative of the Dirac delta function. The inverse impulse response is causal with 
respect to the time t = -z(r). It is possible to verify that g-'(r,t) * g(r,t) = qt), as is required. Also, 
analysis indicates that g*'(r,t) diverges as r + +=. This is consistent with the fact that the Fourier 
amplitude spectrum of the far-field impulse response has a zero at f = 0 Hz. 

Convolving g-'(r,t) in (10.2) with the radial displacement u(r,t) gives 

where v(r,t) is the elastic particle velocity. 

11.0 ART REPRESENTATION 

The response function G(r,F) of equation (6.2) is analytic everywhere on the complex frequency plane 
except at the two poles P I  and P2. Thus, it is possible to derive various power series representations for 
this response function. An expansion of G(r,F) in negative powers of complex frequency F is convergent 
in the infinite annulus IF1 > lPll = IP21 = P /xu, and yields the asymptotic ray theory (ART) representation 
of the response function. 

Since the problem under investigation has an exact solution (in the form of equation (6.2) in the 
frequency-domain or equation (7.5) in the time-domain), the ART representation would seem to be of 
limited utility. However, the following development does illustrate one important point: the ART 
solution is mathematically exact for all ranges r > a and all frequencies f exceeding the finite cutoff value 
f, = wc/2?r= /?lm. The commonly held notion that the ART solution is valid only for "infinite frequency" 
is erroneous. The ART expansion obtained below for the spherical cavity problem is also useful for 
comparison with other ART solutions. 

Consider the factor ll(f - P,) in the response function G(rJ). This factor can be expressed as an infinite 
series in negative powers of frequency f as follows: 



This series converges for IP, /A < 1, or equivalently for f l >  lPll = P lm. Similarly 

if fl> IP21 = Plm. Multiplying these two infinite series together yields 

k 
where b, 4"" P," . These coefficients can be evaluated in closed form as follows: 

n d  

Using PI = +(Plm) exp(+i@ and P2 = -(P lm) exp(-i@) gives 

Substituting the series (1 1 . l)  into the expression for the response function G(r& and engaging in a certain 
amount of manipulation yield the ART representation of the (Fourier transformed) elastic particle 
displacement: 

where the amplitude coeficients of the expansion are given by 

The coefficients ck are defined as 

cos[(k + I)@], k even, 

isin[(k + I)@], k odd, 

and c-, = 0. Recall that f, = j? lm and tan @ = 1 J l - y ' .  The amplitude coefficients are real-valued 

and have physical dimensions of (frequency)" so that each term in the infinite sum is dimensionless. 
Also, note that there is no zeroth-order term in the sum. Finally, as, expected, the phase function of the 
ART expansion is z(r) = (r - a) la. 



It is emphasized that the series (1 1.2) is convergent, and not merely asymptotic, for all frequencies 
exceedingf, is absolute value. 

Thefirst-order ART approximation is obtained by retaining only the k = 1 term in sum (1 1.2) above: 

or alternately 

where V(rf) is the Fourier transformed radial particle velocity. Equation (1 1.5) indicates that the far-field 
radial velocity waveform is a scaled and delayed version of the source radial stress waveform. 

In the limit as the shear wave speed /I approaches zero, the amplitude coefficients uk(r) vanish for k > 2, 
and the series (1 1.2) reduces to 

with ul(r) = a 1  r and u2(r) = ( a  1 r)'. [Note that the (Fourier transformed) source radial stress S o  is 
replaced by a source pressure P o  for an ideal fluid medium.] The ART expansion for spherically 
diverging acoustic waves in a homogeneous medium contains only two terms, in agreement with the 
previous expression (8.5). This result can also be derived directly from the response function G(r& of 
equation (6.2) when /I + 0. In this case, the poles PI and P2 move to the origin of the complex frequency 
plane, and the series (1 1.2) is convergent for all nonzero frequencies. 

12.0 DISPLACEMENT BOUNDARY CONDITION 

The foregoing analysis is restricted to the case where a radial stress s(t) [or a pressure p(t)] is applied to 
the cavity wall. An alternate boundary condition at r = a entails a prescribed radial displacement u(a,t). 
The resulting outward propagating spherical waves are still described by equation (5.1); coefficient D is 
easily determined from the displacement boundary condition. The solution to this particular formulation 
of the problem is summarized in this section. In general, the expressions are simpler than the analogous 
expressions for the stress boundary condition. 

12.1 Frequency-Domain Solution 

Evaluating (5.1) at r = a and solving for the coefficient D yields 



where U(af )  is the Fourier transform of the prescribed radial particle displacement u(a,t). Substituting 
this result back into (5.1) gives 

where the responsefunction H(rf)  is defined as 

The analytically continued response function H(r,F) has a zero Zl(r)  = i a l 2 m  and a pole Zl(a) = i a / 2 m  
on the complex frequency plane. Since these are both located in the upper half of the F-plane, the 
associated time domain impulse response is causal and minimum delay [with respect to the amval time 
2(r) = ( r  - a) la] .  

12.2 Time-Domain Solution 

A time-domain expression for the radial particle displacement is obtained by inverse Fourier transforming 
equation (1 2.2): 

The impulse response h(r,t) is the inverse Fourier transform of the frequency response H(rf) .  Applying 
the residue theorem to the quantity H(r& - (alr) exp[-i2nFz(r)] yields 

Finally, convolving (12.5) with the applied displacement function u(a,t) gives 

The first term in the particle displacement solution represents the familiar amplitude decay due to 
spherical divergence. The second term indicates that the displacement waveform undergoes a progressive 
change in shape as it propagates outward. 

12.3 Static, Step, and Exponential Displacements 

Suppose that the static displacement u(a,t) = uo is applied to the cavity wall. Then, the Fourier 
transformed displacement is impulsive: U(a& = uo 60. The inverse Fourier transform of U(r f )  is easily 
evaluated, giving 



This result is consistent with the previous equation (8.1) if uo is taken to be poa14,u . 

Now assume that the cavity wall is subject to the step displacement u(a,t) = uo H(t). Evaluation of 
equation (12.6) with this boundary displacement yields 

As t + +oo , this expression approaches the static displacement (12.7). Although this step response is a 
mathematically correct solution of the general displacement equation, one should not invest too much 
physical significance in the result. Propagating displacement discontinuities [u(r,t) in (12.8) is 
discontinuous at the anival time t = z(r)] are not admissible within the context of continuum mechanics. 
Rather (12.8) should be understood as a limiting situation. 

Finally, consider the exponentially decaying applied displacement u(a,t) = uo exp(-a) H(t). Evaluating 
(1 2.6) yields 

The indeterminacy in this expression that arises when K= a l a  is easily treated. Note that (12.9) also has 
a discontinuity at t = z(r). 

12.4 Point Source 

A dimensionless displacement waveform applied to the cavity wall can be defined as q(t) = u(a,t) 1 UO, 

where uo is a positive measure of u(a,t). Then, a point source compressional elastic waves is obtained in 
the limit as the cavity radius a vanishes and the source displacement u(a,t) grows without bound, in such 
a manner that the product V, = 4m2 Z.Q remains finite. Note that V, has physical dimension volume. 
However, V, is not the cavity volume; rather, it is additional volume "injected" by the radial displacement 
source into the elastic wholespace. Under these conditions, equations (12.2) and (12.3) approach 

Inverse Fourier transforming this expression yields the time-domain displacement 

The mathematical structure of the above two expressions is identical to that of the previous equations 
(8.8) and (8.9) obtained for a point source with stress boundary conditions! Thus, in the limiting case of a 
point compressional source, the details of the applied boundary conditions (stress or displacement) 
become irrelevant. 



12.5 Scaling Relations 

The frequency-domain and timedomain response functions obey scaling relations that are similar, but not 
identical to, the previous scaling relations (8.10) and (8.1 1 ) :  

H ( r ,  f ;ca) = H(rlc ,cf  ; a ) ,  (12.12) 

and 

where c is a positive scalar multiplier of the cavity radius a. 

12.6 Radiated Energy 

The total elastic energy radiated from a spherical cavity may be expressed in terms of the radial 
displacement applied at r = a. Starting with equation (9.4), the stress function s(t) is eliminated in favor 
of u(a,t) by utilizing expressions (5.5) and (5.2). Transforming to the frequencydomain gives 

where 

&(a) is the zero, and P1(a) and P2(a) are the poles, of the frequency-domain response function G(rf i .  
[Interestingly, these analytic function roles are reversed in expression (l2.15).] All are written in forms 
emphasizing dependence on the cavity radius a. If the cavity radius is multiplied by the positive factor c, 
then the radiated energy becomes 

But equation ( 1  2.15) implies ~ ( c a ,  f ) = ~ ( a ,  cf ) . Thus 

If the Fourier spectrum of the cavity wall displacement obeys the scaling rule 

then (12.16) gives the simple result 



The inverse Fourier transform of (12.17) yields the time-domain scaling condition for the source radial 
displacement 

If exponent n = 1 ,  then 

Interestingly, the total radiated energy scales linearly with the cavity radius, in contrast to the analogous 
situation for an applied pressure or radial stress. 

12.7 Inverse Impulse Response 

Since the impulse response h(r,t) is minimum delay with respect to the P-wave arrival time t = q r ) ,  a 
stable inverse h-'(r,t) exists that can be used to deconvolve a recorded particle displacement seismogram. 
From equation (12.4), the convolution of h"(r,t) with u(r,t) yields the displacement waveform applied to 
the cavity wall: 

The Fourier transform of the inverse impulse response is the reciprocal of the frequency spectrum H ( r 8  
in equation (12.3); 

Analysis reveals that this expression has the same mathematical form as equation (12.3) above, except 
that the roles of r and a are reversed. Thus, a time-domain expression for the inverse impulse response 
can be written down by inspection of equation (12.5): 

Convolving h-'(r,t) with u(r,t) gives 



12.8 ART Representation 

An expansion of H(rj) in negative powers of frequency f is convergent for Lfl > a 121~12, and yields the 
asymptotic ray theory representation of the (Fourier transformed) radial particle displacement: 

The amplitude coefficients of the ART expansion are given by 

u (r)  [ I  r - )  k = 2 , .  (12.24,b) 

The well known zeroth-order ART solution is obtained by neglecting terms with k > 0 in the infinite sum 
of expression (12.22). Thus 

or in the timedomain 

The elastic particle displacement at radius r is a scaled and delayed version of displacement at radius a. 

13.0 NUMERICAL EXAMPLES 

Figure 3 displays radial particle displacement and radial particle velocity responses generated by the step 
pressure p(t) = po H(t) within a small spherical cavity of radius a = 0.3079 m (= 1 foot). Each trace is 
labeled with radial distance r from the center of the source sphere. The elastic wholespace is a hard 
limestone (called a Solenhofen limestone) with compressional wavespeed a = 5354.8 m/s, shear 
wavespeed P = 3091.6 m/s, and mass density p = 2670.0 kg/m? These seismological parameters 
correspond to Poisson's ratio o= 114 and Young's modulus Y = 63.8 GP. Displacement signals, obtained 
simply by evaluating equation (8.3) above, exhibit a sharp (but continuous) onset at the P-wave amval 
times z(r) = (r - a) / a. The onset is followed by approximately a single cycle of damped oscillation, and 
then the trace asymptotically approaches the static displacement value of equation (8.1). This static offset 
is clearly a near-field effect; it diminishes rapidly [- (air)'] with increasing source-receiver distance. 

The particle velocity response to a step in pressure is proportional to the displacement impulse response. 
From equation (7.6): 



Thus, velocity traces in figure 3 are obtained simply by evaluating equation (7.5) above. Since each 
displacement trace has a slope discontinuity at the P-wave arrival time, the corresponding velocity trace 
possesses a step discontinuity at this same time. 

For the Solenhofen limestone parameters, the decay rate a;l and damped oscillation frequency wd of the 
spherical source evaluate to = 11,594.3 radianslsecond and wd = 16,396.7 radianslsecond (the latter 
corresponding to fd = 2609.6 Hz). For such high damping, the radial particle motion is obviously pulse- 
like, rather than oscillatory. 

The source traction waveform used for the examples illustrated in figures 4 through 8 is a Berlage wavelet 
(Aldridge, 1990) defined by 

s ( t )  = so (oJ)" exp(-hwst) cos(w,t + q ~ ,  )H ( t )  . 

This waveform possesses advantages of causality, continuity, and differentiability. Numerical values of 
the wavelet parameters are: main frequencyf, = oA/2n= 30 Hz; damping factor h = 1 ; time exponent n = 
3; and initial phase angle ps = -90". The frequency bandwidth of this wavelet (calculated at the 1 % level 
of the Fourier amplitude spectrum) extends from 0 Hz to about 117 Hz. 

Figure 4 depicts pressure signals recorded at horizontal offset distances ranging from 0 m to 500 m from 
a spherical traction source with radius a = 10 m, and located at the coordinate origin. Pressure receivers 
are elevated 50 m above the source level. The elastic wholespace is characterized by P-wave speed a = 
2000 mls, S-wave speed P = 1000 m/s, and mass density p = 2000 kg/m3, corresponding to a generic 
sandstone. Pressure traces are calculated using the frequency-domain analogue of equation (7.12), and 
then performing a numerical inverse Fourier transformation. Figure 5 indicates that the source radial 
stress waveform is recovered by deconvolving each recorded pressure trace, using the inverse (frequency- 
domain) response function ~ ' ( r f i  = ~ ( r d - '  of equation (10.1). As expected, all deconvolved source 
wavelets have the same onset time (i.e., 0 s), amplitude, and waveshape. The waveform is the Berlage 
pulse described above. 

Figures 6 and 7 illustrate a similar numerical experiment for the same earth model and recording 
geometry, but with different source and receiver types. The source consists of a prescribed radial velocity 
function imposed at the radius a = 10 m. Frequency-domain expressions (12.2) and (12.3) are then used 
to calculate horizontal (i.e., x-component) particle velocity responses at receivers with horizontal offset 
distances extending from 0 m to 500 m. Note that there is no response at x = 0 m, since the particle 
motion at this receiver is strictly vertical. Once again, as indicated in figure 7, deconvolving the recorded 
particle velocity traces [using ~ ' ( r f i  = ~(r , j ) - '  of equation 12.20)] yields identical source waveforms. 
Prior to deconvolution, the horizontal component of particle velocity recorded at each receiver must be 
rotated into the radial direction. 

Accurate recovery of the source signature requires knowledge of the elastic parameters of the wholespace 
and the cavity radius. Interestingly, the deterministic deconvolution operator ~ ' ( r f i  of equation (12.20) 
is independent of the S-wave speed P and the mass density p. It depends only on the P-wave speed a 
and the cavity radius a. Hence, an incorrect choice for p and/or p has no influence on source wavelet 
estimation! Figure 8 displays source radial velocity waveforms obtained by deconvolving the traces in 
figure 6 [using H1(rfi], when the wholespace P-wave speed is incorrectly specified as a= 2500 m/s (i.e., 
25% larger than the true value). The wavelets have linear moveout with respect to source-receiver 
horizontal offset, and amplitude is overestimated by -10% (compare with figure 7). Source waveforms in 
Figure 9 are obtained by erroneously specifying the cavity radius as a = 20 m (i.e., 100% too large). 
Although the timing, amplitude, and waveshape of the recovered pulses are consistent, all are incorrect. 



Finally, it is emphasized that it is not necessary to know the particular type of boundary condition (i.e., 
radial displacement, velocity, acceleration, traction, etc.) applied to the cavity wall, in order to perform 
the deterministic trace deconvolution. Figure 10 illustrates source radial traction waveforms obtained by 
deconvolving the traces of figure 6 [using G ' (~s )  / (27911. Although the horizontal particle velocity 
traces in figure 6 are originally calculated by applying a radial velocity to the cavity wall, the 
deconvolution procedure accurately recovers the associated source radial traction waveform. It is readily 
established that the positive-going pressure pulse in figure 10 produces the same horizontal particle 
velocity traces (i.e., figure 6) as the oscillatory source radial velocity waveform in figure 7. 

14.0 CONCLUSION 

The closed-form mathematical formulae characterizing elastic waves radiated from a pressurized 
spherical cavity facilitate rapid and accurate forward modeling. In particular, the solutions developed in 
this study have already found use in (1) performing order-of-magnitude estimations of seismic responses 
produced by explosions, and (2) validating purely numerical (i.e., finite-difference or finite-element) 
solutions of similar problems. 

Two obvious limitations of the present solution methodology are: 

1) The medium surrounding the cavity is considered a homogeneous and isotropic elastic wholespace. If 
spatial heterogeneity and/or anisotropy is introduced into the earth model, then synthetic seismograms 
must be calculated by numerical techniques. 

2) The source boundary condition, and the resulting compressional elastic wavefield, are spherically 
symmetric. However, this particular limitation is not fundamental, and may be relaxed. Figure 11 depicts 
a spherical cavity embedded within a homogeneous and isotropic elastic wholespace, and subject to an 
arbitrary boundary condition at the cavity wall. The boundary condition entails a prescribed 
displacement, velocity, acceleration, or traction function at r = a, which may vary in magnitude, direction, 
and/or waveform over the spherical interface. In this situation, non-symmetrical compressional (P) and 
shear (S) waves will be generated. The particle displacement vector u(r,t) has radial and tangential 
components which depend on the two angular coordinates 8 and @, in addition to the radius r. Although 
this situation is considerably more complicated, the problem is still amenable to mathematical solution. 
The Fourier transformed elastic wavefield may be obtained as an infinite series involving spherical 
Hankel functions and spherical vectors (a vector-valued generalization of spherical harmonics; see 
Korneev and Johnson, 1993). Although this solution would allow computation of synthetic seismograms 
generated by asymmetrical explosions, the corresponding inverse problem (i.e., source signature 
estimation) is not particularly well defined. 
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16.0 FIGURES 

Figure 1: Spherically symmetric seismic source model. 

Figure 2: Definition of equivalent linear elastic radius. 

Figure 3: Radial particle displacement and velocity responses to a step pressure p(t) = po H(t) applied to 
spherical cavity wall at a = 0.3079 m. 

Figure 4: Pressure traces generated by a spherical cavity source with prescribed radial traction imposed 
a t a =  10m. 

Figure 5: Source radial traction waveforms obtained by deconvolving the pressure traces displayed in 
figure 4. Each recovered waveform is a Berlage wavelet. 

Figure 6: Horizontal (x-component) particle velocity traces generated by a spherical cavity source with 
prescribed radial velocity imposed at a = 10 m. 

Figure 7: Source radial velocity waveforms obtained by deconvolving the horizontal (x-component) 
particle velocity traces displayed in figure 6. 

Figure 8: Estimated source radial velocity waveforms obtained by deconvolving the horizontal (x- 
component) particle velocity traces displayed in figure 6. P-wave speed a specified 25% larger than 
correct value. 

Figure 9: Estimated source radial velocity waveforms obtained by deconvolving the horizontal (x- 
component) particle velocity traces displayed in figure 6. Cavity radius specified 100% larger than 
correct value. 

Figure 10: Source radial traction waveforms obtained by deconvolving the horizontal (x-component) 
particle velocity traces displayed in figure 6. 

Figure 11 : General spherical source model. 
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General Spherical Source 

P-wave speed a 
S-wave speed P 
Mass density p 

Displacement, velocity, acceleration, or 
traction prescribed at r = a, as function 
of angles (8,cp) and time t. Figure 11 
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